Independent Component Analysis-Based Composite Drought Index Development for Hydrometeorological Analysis
Abstract
1. Introduction
2. Study Area and Data Description
2.1. Study Area
2.2. Data
3. Study Procedure and Methods
3.1. Procedure of the Current Study
3.2. Model Development Method
3.2.1. Independent Component Analysis (ICA)
3.2.2. ICA-Based Composite Drought Index (ICDI)
3.2.3. ICA-Based Composite Drought Index with Constraints (ICDI-C)
3.3. Model Comparison Method
4. Results
4.1. Difference Performance
4.2. Model Performance
4.3. Alarm Performance
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Al-Bakri, J.T.; Alnaimat, M.J.; Al-Karablieh, E.; Qaryouti, E.A. Assessment of combined drought index and mapping of drought vulnerability in Jordan. Int. J. Eng. Res. Appl. 2019, 9, 59–68. [Google Scholar]
- Niemeyer, S. New drought indices. Mediterr. Options Ser. A Mediterr. Semin. 2008, 80, 267–274. [Google Scholar]
- Balti, H.; Ben Abbes, A.; Mellouli, N.; Farah, I.R.; Sang, Y.; Lamolle, M. A review of drought monitoring with big data: Issues, methods, challenges and research directions. Ecol. Inform. 2020, 60. [Google Scholar] [CrossRef]
- Eslamian, S.; Ostad-Ali-Askari, K.; Singh, V.P.; Dalezios, N.R.; Ghane, M.; Yihdego, Y.; Matouq, M. A review of drought indices. Int. J. Constr. Res. Civ. Eng. 2017, 3, 48–66. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. Characteristics of hydrological and meteorological drought based on intensity-duration-frequency (IDF) curves. Water 2023, 15, 3142. [Google Scholar] [CrossRef]
- Wang, W.; Ertsen, M.W.; Svoboda, M.D.; Hafeez, M. Propagation of drought: From meteorological drought to agricultural and hydrological drought. Adv. Meteorol. 2016, 2016. [Google Scholar] [CrossRef]
- Quiring, S.M. Monitoring drought: An evaluation of meteorological drought indices. Geogr. Compass 2009, 3, 64–88. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- Wei, W.; Zhang, J.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Comparative evaluation of drought indices for monitoring drought based on remote sensing data. Environ. Sci. Pollut. Res. 2021, 28, 20408–20425. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Yang, C.; Liu, C.; Gu, Y.; Wang, Y.; Xing, X.; Ma, X. A novel comprehensive agricultural drought index accounting for precipitation, evapotranspiration, and soil moisture. Ecol. Indic. 2023, 154, 110593. [Google Scholar] [CrossRef]
- Balint, Z.; Mutua, F.; Muchiri, P.; Omuto, C.T. Monitoring Drought with the Combined Drought Index in Kenya. Dev. Earth Surf. Process. 2013, 16, 341–356. [Google Scholar] [CrossRef]
- Keyantash, J.A.; Dracup, J.A. An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res. 2004, 40, W0930401–W0930413. [Google Scholar] [CrossRef]
- Barua, S.; Perera, B.; Ng, A. A comparative drought assessment of Yarra River Catchment in Victoria, Australia. In Proceedings of the 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009; pp. 13–17. [Google Scholar]
- Al Bakri, J.; Rakonczai, J. Applicability of a Combined Drought Index to Monitoring Drought in Jordan. J. Eng. Res. Appl. 2019, 9, 20–39. [Google Scholar]
- Ozawa, S.; Kotani, M. A study of feature extraction and selection using independent component analysis. jEf 2014, 1, 1. [Google Scholar]
- Lee, T.; Won, C.-H.; Singh, V.P. ML-based regionalization of climate variables to forecast seasonal precipitation for water resources management. Mach. Learn. Sci. Technol. 2024, 5, 015019. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hong, E.-M.; Choi, J.-Y. Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea? Agric. Water Manag. 2015, 150, 129–138. [Google Scholar] [CrossRef]
- Kyoung, M.; Kwak, J.; Kim, D.; Kim, H.; Singh, V.P. Drought analysis based on SPI and SAD curve for the korean peninsula considering climate change. In Climate Change—Geophysical Foundations and Ecological Effects; IntechOpen: London, UK, 2011. [Google Scholar]
- Kim, H.; Park, J.; Yoo, J.; Kim, T.-W. Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea. J. Hydro-Environ. Res. 2015, 9, 28–35. [Google Scholar] [CrossRef]
- Kwak, J.; Kim, S.; Jung, J.; Singh, V.P.; Lee, D.R.; Kim, H.S. Assessment of meteorological drought in Korea under climate change. Adv. Meteorol. 2016, 2016, 1–13. [Google Scholar] [CrossRef]
- Bae, H.; Ji, H.; Lim, Y.-J.; Ryu, Y.; Kim, M.-H.; Kim, B.-J. Characteristics of drought propagation in South Korea: Relationship between meteorological, agricultural, and hydrological droughts. Nat. Hazards 2019, 99, 1–16. [Google Scholar] [CrossRef]
- Lee, J.-W.; Hong, E.-M.; Kim, J.-U.; Jang, W.-J.; Jung, C.-G.; Kim, S.-J. Evaluation of agricultural drought in South Korea using socio-economic drought information. Int. J. Disaster Risk Reduct. 2022, 74, 102936. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. Innovative drought classification matrix and acceptable time period for temporal drought evaluation. Water Resour. Manag. 2024, 38, 2811–2833. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. A comprehensive analysis and comparison of SPI and SPEI for spatiotemporal drought evaluation. Environ. Monit. Assess. 2024, 196, 980. [Google Scholar] [CrossRef]
- Jeong, M.-S.; Park, S.-Y.; Kim, Y.-J.; Yoon, H.-C.; Lee, J.-H. Identification of propagation characteristics from meteorological drought to hydrological drought using daily drought indices and lagged correlations analysis. J. Hydrol. Reg. Stud. 2024, 55, 101939. [Google Scholar] [CrossRef]
- Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar]
- Comon, P. Independent component analysis, a new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Jutten, C.; Herault, J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Process. 1991, 24, 1–10. [Google Scholar] [CrossRef]
- Baek, K.; Draper, B.A.; Beveridge, J.R.; She, K. PCA vs. ICA: A Comparison on the FERET Data Set. In Proceedings of the 6th Joint Conference on Information Science, Research Triangle Park, NC, USA, 8–13 March 2002; pp. 824–827. [Google Scholar]
- Hyvärinen, A. Independent component analysis: Recent advances. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20110534. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.V. Independent component analysis: An introduction. Trends Cogn. Sci. 2002, 6, 59–64. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model. Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model. Dev. Discuss. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
SPI/SRSI | Drought Category |
---|---|
≥2.0 | Extreme wet |
1.50 to 1.99 | Severe wet |
1.49 to 1.00 | Moderate wet |
0.99 to −0.99 | Near normal |
−1.00 to −1.49 | Moderate drought |
−1.5 to −1.99 | Severe drought |
≤−2.00 | Extreme drought |
Type of Performance Measurement | Performance Metrics | Equation | Ideal Values |
---|---|---|---|
Difference performance | Boxplot | Each drought index value − composite drought index value |
|
Timeseries plot | Each drought index value − composite drought index value |
| |
Model performance | RMSE |
| |
MAE |
| ||
Correlation |
| ||
Alarm performance | FAR |
| |
POD |
| ||
ACC |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Lee, J.-H.; Lee, T. Independent Component Analysis-Based Composite Drought Index Development for Hydrometeorological Analysis. Atmosphere 2025, 16, 688. https://doi.org/10.3390/atmos16060688
Kong Y, Lee J-H, Lee T. Independent Component Analysis-Based Composite Drought Index Development for Hydrometeorological Analysis. Atmosphere. 2025; 16(6):688. https://doi.org/10.3390/atmos16060688
Chicago/Turabian StyleKong, Yejin, Joo-Heon Lee, and Taesam Lee. 2025. "Independent Component Analysis-Based Composite Drought Index Development for Hydrometeorological Analysis" Atmosphere 16, no. 6: 688. https://doi.org/10.3390/atmos16060688
APA StyleKong, Y., Lee, J.-H., & Lee, T. (2025). Independent Component Analysis-Based Composite Drought Index Development for Hydrometeorological Analysis. Atmosphere, 16(6), 688. https://doi.org/10.3390/atmos16060688