Low-Cost Monitoring of Airborne Heavy Metals Using Lichen Bioindicators: Insights from Opole, Southern Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Lichen Identyfication and Analytical Measurements
2.3. Data Processing
3. Results and Discussion
3.1. Heavy Metal Accumulation and Correlation
3.2. Lichen Pollution Indicators
3.3. Spatial Distribution of Pollution in the City
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ristic, S.; Kosanic, M.; Rankovic, B.; Stamenkovic, S. Lichens as Biological Indicators of Air Quality in the Urban Area of Kursumlija (Southern Serbia). Kragujev. J. Sci. 2017, 39, 165–175. [Google Scholar] [CrossRef]
- Kostryukova, A.M.; Krupnova, T.G.; Mashkova, I.V.; Schelkanova, E.E. Monitoring Air Quality Using Lichens in Chelyabinsk, Russian Federation. Int. J. GEOMATE 2017, 12, 101–106. [Google Scholar] [CrossRef]
- Klimek, B.; Tarasek, A.; Hajduk, J. Trace Element Concentrations in Lichens Collected in the Beskidy Mountains, the Outer Western Carpathians. Bull. Environ. Contam. Toxicol. 2015, 94, 532–536. [Google Scholar] [CrossRef]
- Zakrzewska, M.; Klimek, B. Trace Element Concentrations in Tree Leaves and Lichen Collected Along a Metal Pollution Gradient Near Olkusz (Southern Poland). Bull. Environ. Contam. Toxicol. 2018, 100, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Bhardwaj, S.; Kumar, V.; Rodrigo-Comino, J. Lichens as Effective Bioindicators for Monitoring Environmental Changes: A Comprehensive Review. Total Environ. Adv. 2024, 9, 200085. [Google Scholar] [CrossRef]
- Stojanowska, A.; Rybak, J.; Bożym, M.; Olszowski, T.; Bihałowicz, J.S. Spider Webs and Lichens as Bioindicators of Heavy Metals: A Comparison Study in the Vicinity of a Copper Smelter (Poland). Sustainability 2020, 12, 8066. [Google Scholar] [CrossRef]
- Niepsch, D.; Clarke, L.J.; Newton, J.; Tzoulas, K.; Cavan, G. High Spatial Resolution Assessment of Air Quality in Urban Centres Using Lichen Carbon, Nitrogen and Sulfur Contents and Stable-Isotope-Ratio Signatures. Environ. Sci. Pollut. Res. 2023, 30, 58731–58754. [Google Scholar] [CrossRef]
- Maslać Mikulec, M.; Likić, S.; Antonić, O.; Tkalec, M. Any Way the Wind Blows Does Really Matter in Lichen Response to Air Pollution from an Oil Refinery. Toxics 2025, 13, 160. [Google Scholar] [CrossRef]
- Liu, H.J.; Wang, J.G.; Xia, Y.; Yang, M.J.; Liu, S.W.; Zhao, L.C.; Guo, X.P.; Jiang, Y.J.; Li, X.; Wu, Q.F.; et al. Elemental Compositions of Lichens from Duolun County, Inner Mongolia, China: Origin, Road Effect and Species Difference. Sci. Rep. 2017, 7, 5598. [Google Scholar] [CrossRef]
- Bukabayeva, Z.; Abiyev, S.; Silybayeva, B.; Assanova, U.; Sharipkhanova, A.; Sagdatkyzy, B. Epiphytic and Epigeal Lichens as Bioindicators of Air Pollution in the Burabay National Park, Kazakhstan. Biodiversitas 2023, 24, 2701–2709. [Google Scholar] [CrossRef]
- Correa-Ochoa, M.A.; Vélez-Monsalve, L.C.; Saldarriaga-Molina, J.C. Spatial Distribution of Lichen Communities and Air Pollution Mapping in a Tropical City: Medellín, Colombia. Rev. Biol. Trop. 2021, 69, 1107–1123. [Google Scholar] [CrossRef]
- Paoli, L.; Bandoni, E.; Sanità di Toppi, L. Lichens and Mosses as Biomonitors of Indoor Pollution. Biology 2023, 12, 1248. [Google Scholar] [CrossRef]
- Galhardi, J.A.; García-Tenorio, R.; Díaz Francés, I.; Bonotto, D.M.; Marcelli, M.P. Natural Radionuclides in Lichens, Mosses and Ferns in a Thermal Power Plant and in an Adjacent Coal Mine Area in Southern Brazil. J. Environ. Radioact. 2017, 167, 43–53. [Google Scholar] [CrossRef]
- Fitriyyah, P.N. Accumulation of Heavy Metals in Parmeliaceae Lichens and Mahogany Bark in Multiple Locations within Bandung City, Indonesia. Acta Biochim. Indones. 2023, 6, 1–8. [Google Scholar]
- Vannini, A.; Pagano, L.; Bartoli, M.; Fedeli, R.; Malcevschi, A.; Sidoli, M.; Magnani, G.; Pontiroli, D.; Riccò, M.; Marmiroli, M.; et al. Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring. Toxics 2024, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Ciani, F.; Fornasaro, S.; Benesperi, R.; Bianchi, E.; Cabassi, J.; Di Nuzzo, L.; Grifoni, L.; Venturi, S.; Costagliola, P.; Rimondi, V. Mercury Accumulation Efficiency of Different Biomonitors in Indoor Environments: The Case Study of the Central Italian Herbarium (Florence, Italy). Environ. Sci. Pollut. Res. Int. 2023, 30, 124232–124244. [Google Scholar] [CrossRef] [PubMed]
- Prado, T.; Degrave, W.M.S.; Duarte, G.F. Lichens and Health—Trends and Perspectives for the Study of Biodiversity in the Antarctic Ecosystem. J. Fungi 2025, 11, 198. [Google Scholar] [CrossRef]
- Coufalík, P.; Zvěřina, O. Accurate Determination of Trace Gallium in Antarctic Terrestrial Flora Using Electrothermal Atomic Absorption Spectrometry. At. Spectrosc. 2024, 45, 409–414. [Google Scholar] [CrossRef]
- Jafarova, M.; Grifoni, L.; Aherne, J.; Loppi, S. Comparison of Lichens and Mosses as Biomonitors of Airborne Microplastics. Atmosphere 2023, 14, 1007. [Google Scholar] [CrossRef]
- Osyczka, P.; Boroń, P.; Lenart-Boroń, A.; Rola, K. Modifications in the Structure of the Lichen Cladonia Thallus in the Aftermath of Habitat Contamination and Implications for Its Heavy-Metal Accumulation Capacity. Environ. Sci. Pollut. Res. 2018, 25, 1950–1961. [Google Scholar] [CrossRef]
- Protano, C.; Owczarek, M.; Fantozzi, L.; Guidotti, M.; Vitali, M. Transplanted Lichen Pseudovernia Furfuracea as a Multi-Tracer Monitoring Tool Near a Solid Waste Incinerator in Italy: Assessment of Airborne Incinerator-Related Pollutants. Bull. Environ. Contam. Toxicol. 2015, 95, 644–653. [Google Scholar] [CrossRef]
- Niepsch, D.; Clarke, L.J.; Jones, R.G.; Tzoulas, K.; Cavan, G. Lichen Biomonitoring to Assess Spatial Variability, Potential Sources and Human Health Risks of Polycyclic Aromatic Hydrocarbons (PAHs) and Airborne Metal Concentrations in Manchester (UK). Environ. Monit. Assess. 2024, 196, 379. [Google Scholar] [CrossRef] [PubMed]
- Viso, S.; Rivera, S.; Martinez-Coronado, A.; Esbrí, J.M.; Moreno, M.M.; Higueras, P. Biomonitoring of Hg0, Hg2+ and Particulate Hg in a Mining Context Using Tree Barks. Int. J. Environ. Res. Public Health 2021, 18, 5191. [Google Scholar] [CrossRef] [PubMed]
- Gagic-Serdar, R.; Markovic, M.; Rakonjac, L. Lichens As the Biological Indicators of Air Pollution in the Bio-Monitoring System Used on Icp Sample Plots Level II in Serbia. Agric. For. 2023, 69, 223–235. [Google Scholar] [CrossRef]
- Cernat Popa, M.M.; Rusănescu, C.O. The Efficiency of Lichens in Air Biomonitoring in Teleorman County. Atmosphere 2023, 14, 1287. [Google Scholar] [CrossRef]
- Yıldız, A.; Işık, V.; Aydın, S.S. Heavy Metal Biomonitoring Study Using Transplanted Lichen, Pseudevernia furfuracea (L.) Zopf, in Kirikkale, Turkey. MOJ Ecol. Environ. Sci. 2023, 8, 192–200. [Google Scholar] [CrossRef]
- Moya, P.; Chiva, S.; Catalá, M.; Garmendia, A.; Casale, M.; Gomez, J.; Pazos, T.; Giordani, P.; Calatayud, V.; Barreno, E. Lichen Biodiversity and Near-Infrared Metabolomic Fingerprint as Diagnostic and Prognostic Complementary Tools for Biomonitoring: A Case Study in the Eastern Iberian Peninsula. J. Fungi 2023, 9, 1064. [Google Scholar] [CrossRef]
- Rivera, M.S.; Perez Catan, S.; Di Fonzo, C.; Dopchiz, L.; Arribere, M.A.; Ansaldo, M.; Messuti, M.I.; Bubach, D.F. Lichen as Biomonitor of Atmospheric Elemental Composition from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Ann. Mar. Sci. 2018, 2, 9–15. [Google Scholar] [CrossRef]
- Zuzaan, P.; Batsuren, Z.; Enkhtuya, O.; Sosorburam, E.; Damdinsuren, B. Analysis of Lichen and Moss Samples by the EDXRF Method. X-Ray Spectrom. 2025, 54, 127–132. [Google Scholar] [CrossRef]
- Mardiani, T.; Khoiron, N.; Meilinda, M. The Utilization of Lichen As Biomonitoring NO2 Gas Emission in The City of Palembang. Al-Kauniyah J. Biol. 2024, 17, 278–285. [Google Scholar] [CrossRef]
- Belguidoum, A.; Haichour, R.; Lograda, T.; Ramdani, M. Biomonitoring of Air Pollution by Lichen Diversity in the Urban Area of Setif, Algeria. Biodiversitas 2022, 23, 970–981. [Google Scholar] [CrossRef]
- Di Biase, L.; Di Lisio, P.; Pace, L.; Arrizza, L.; Fattorini, S. Use of Lichens to Evaluate the Impact of Post-Earthquake Reconstruction Activities on Air Quality: A Case Study from the City of L’Aquila. Biology 2022, 11, 1199. [Google Scholar] [CrossRef]
- Abas, A.; Rasli, F.N.; Juhari, M.L. Lichen as the Biological Indicator for Detection of Environmental Tobacco Smoke (ETS) at the Public Office Building in Selangor, Malaysia. Front. Environ. Sci. 2024, 12, 1–9. [Google Scholar] [CrossRef]
- Root, H.T.; Geiser, L.H.; Jovan, S.; Neitlich, P. Epiphytic Macrolichen Indication of Air Quality and Climate in Interior Forested Mountains of the Pacific Northwest, USA. Ecol. Indic. 2015, 53, 95–105. [Google Scholar] [CrossRef]
- Agnan, Y.; Probst, A.; Séjalon-Delmas, N. Evaluation of Lichen Species Resistance to Atmospheric Metal Pollution by Coupling Diversity and Bioaccumulation Approaches: A New Bioindication Scale for French Forested Areas. Ecol. Indic. 2017, 72, 99–110. [Google Scholar] [CrossRef]
- Mamo, D.A.; Chaubey, A.K.; Hailu, A.T.; Hibstie, A.Y. Analysis of Atmospheric Air Pollutants Using Lichens as a Bio-Monitor by Calibration Free-Laser Induced Breakdown Spectroscopy Technique. Eur. J. Appl. Phys. 2023, 5, 52–61. [Google Scholar] [CrossRef]
- Yildiz, A.; Vardar, Ç.; Aksoy, A.; Ünal, E. Biomonitoring of Heavy Metals Deposition with Pseudevernia furfuracea (L.) Zopf in Çorum City, Turkey. Health Sci. Q. 2018, 2, 9–22. [Google Scholar] [CrossRef]
- Petrova, S.P.; Yurukova, L.D.; Velcheva, I.G. Lichen-Bags as a Biomonitoring Technique in an Urban Area. Appl. Ecol. Environ. Res. 2015, 13, 915–923. [Google Scholar] [CrossRef]
- McMullin, R.T.; Bennett, L.L.; Bjorgan, O.J.; Bourque, D.A.; Burke, C.J.; Clarke, M.A.; Gutgesell, M.K.; Krawiec, P.L.; Malyon, R.; Mantione, A.; et al. Relationships between Air Pollution, Population Density, and Lichen Biodiversity in the Niagara Escarpment World Biosphere Reserve. Lichenologist 2016, 48, 593–605. [Google Scholar] [CrossRef]
- Frati, L.; Brunialti, G. Recent Trends and Future Challenges for Lichen Biomonitoring in Forests. Forests 2023, 14, 647. [Google Scholar] [CrossRef]
- Mekuria, G. Air Pollution: A Review of Its Impacts on Health and Ecosystems, and Analytical Techniques for Their Measurement and Modeling. J. Environ. Inform. Lett. 2023, 10, 115–131. [Google Scholar] [CrossRef]
- Hernández-Gordillo, A.; Ruiz-Correa, S.; Robledo-Valero, V.; Hernández-Rosales, C.; Arriaga, S. Recent Advancements in Low-Cost Portable Sensors for Urban and Indoor Air Quality Monitoring. Air Qual. Atmos. Health 2021, 14, 1931–1951. [Google Scholar] [CrossRef]
- Opole City Hall About the City. Available online: https://www.opole.pl/dla-inwestora/o-miescie (accessed on 2 May 2025).
- Wiatkowska, B.; Słodczyk, J.; Stokowska, A. Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland. Geosciences 2021, 11, 312. [Google Scholar] [CrossRef]
- Leśniański, G.Z. The Lichen Biota of Opole Silesia (South Poland) Part 1. The List of Lichen Species; University of Opole Publishing House: Opole, Poland, 2010; ISBN 978-83-7395-383-3. [Google Scholar]
- Kozłowski, R.; Ludew, M. Possibilities of Using Lichen Hypogymnia physodes (L.) Nyl. to Assess the Impact of the Cement Industry on the Natural Environment of Białe Zagłębie. Przegląd Geogr. 2025, 97, 87–103. [Google Scholar] [CrossRef]
- Adžemović, S.; Aliefendić, S.; Mehić, E.; Ranica, A.; Vehab, I.; Alagić, N.; Delibašić, Š.; Herceg, K.; Karić, M.; Hadžić, B.; et al. Estimation of Atmospheric Deposition Utilizing Lichen Hypogymnia Physodes, Moss Hypnum Cupressiforme and Soil in Bosnia and Herzegovina. Int. J. Environ. Sci. Technol. 2023, 20, 1905–1918. [Google Scholar] [CrossRef]
- Xu, M.; Heidmarsson, S.; Olafsdottir, E.S.; Buonfiglio, R.; Kogej, T.; Omarsdottir, S. Secondary Metabolites from Cetrarioid Lichens: Chemotaxonomy, Biological Activities and Pharmaceutical Potential. Phytomedicine 2016, 23, 441–459. [Google Scholar] [CrossRef]
- Fałtynowicz, W. Porosty w Lasach. Przewodnik Terenowy Dla Leśników i Taksatorów; Dominiewska, A., Ed.; Centrum Informacyjne Lasów Państwowych: Warszawa, Poland, 2012; ISBN 9788361633822. [Google Scholar]
- Fink, B. How to Collect and Study Lichens. Bryologist 1905, 8, 22–27. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific Inc. ICE 3000 Series AA Spectrometers Operator’s Manual; Thermo Fisher Scientific Inc.: Waltham, MA, USA, 2011; Volume 44, pp. 1–1, 7–18. [Google Scholar]
- Świsłowski, P.; Nowak, A.; Rajfur, M. Is Your Moss Alive during Active Biomonitoring Study? Plants 2021, 10, 2389. [Google Scholar] [CrossRef]
- Isinkaralar, O.; Isinkaralar, K.; Bayraktar, E.P. Monitoring the Spatial Distribution Pattern According to Urban Land Use and Health Risk Assessment on Potential Toxic Metal Contamination via Street Dust in Ankara, Türkiye. Environ. Monit. Assess. 2023, 195, 1085. [Google Scholar] [CrossRef]
- Isinkaralar, O.; Isinkaralar, K.; Sevik, H. Health for the Future: Spatiotemporal CA-MC Modeling and Spatial Pattern Prediction via Dendrochronological Approach for Nickel and Lead Deposition. Air Qual. Atmos. Health 2025, 1–13. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Bocianowski, J.; Wrońska-Pilarek, D.; Krysztofiak-Kaniewska, A.; Matusiak, K.; Wiatrowska, B. Comparison of Pearson’s and Spearman’s Correlation Coefficients Values for Selected Traits of Pinus sylvestris L. Biom. Lett. 2024, 61, 115–135. [Google Scholar] [CrossRef]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Jiang, Y.; Fan, M.; Hu, R.; Zhao, J.; Wu, Y. Mosses Are Better than Leaves of Vascular Plants in Monitoring Atmospheric Heavy Metal Pollution in Urban Areas. Int. J. Environ. Res. Public Health 2018, 15, 1105. [Google Scholar] [CrossRef]
- Fernández, J.A.; Carballeira, A. Evaluation of Contamination, by Different Elements, in Terrestrial Mosses. Arch. Environ. Contam. Toxicol. 2001, 40, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Markert, B. Establishing of “Reference Plant” for Inorganic Characterization of Different Plant Species by Chemical Fingerprinting. Water Air Soil Pollut. 1992, 64, 533–538. [Google Scholar] [CrossRef]
- Wu, W.; Wu, P.; Yang, F.; Sun, D.L.; Zhang, D.X.; Zhou, Y.K. Assessment of Heavy Metal Pollution and Human Health Risks in Urban Soils around an Electronics Manufacturing Facility. Sci. Total Environ. 2018, 630, 53–61. [Google Scholar] [CrossRef]
- Parzych, A.; Zduńczyk, A.; Astel, A. Epiphytic Lichens as Bioindicators of Air Pollution by Heavy Metals in an Urban Area (Northern Poland). J. Elem. 2016, 21, 781–795. [Google Scholar] [CrossRef]
- Galanty, A.; Węgrzyn, M.; Wietrzyk-Pełka, P.; Fołta, M.; Krośniak, M.; Podolak, I.; Zagrodzki, P. Quantitative Variations of Usnic Acid and Selected Elements in Terricolous Lichen Cladonia Mitis Sandst., with Respect to Different Environmental Factors—A Chemometric Approach. Phytochemistry 2021, 192, 112948. [Google Scholar] [CrossRef]
- Sawicka-Kapusta, K.; Zakrzewska, M.; Gdula-Argasińska, J.; Bydłoń, G. Air Pollution in the Base Stations of the Environmental Integrated Monitoring System in Poland. WIT Trans. Ecol. Environ. 2005, 82, 465–475. [Google Scholar]
- Ramić, E.; Huremović, J.; Muhić-Šarac, T.; Đug, S.; Žero, S.; Olovčić, A. Biomonitoring of Air Pollution in Bosnia and Herzegovina Using Epiphytic Lichen Hypogymnia Physodes. Bull. Environ. Contam. Toxicol. 2019, 102, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, Y.; Revunkov, V. Air Pollution Monitoring in the South-East Baltic Using the Epiphytic Lichen Hypogymnia Physodes. Atmosphere 2017, 8, 119. [Google Scholar] [CrossRef]
- Wu, L.; Isley, C.F.; Handley, H.K.; Taylor, M.P. Atmospheric Sources of Anthropogenic and Geogenic Trace Metals in Australian Lichen and Fungi. Anthropocene 2021, 33, 100279. [Google Scholar] [CrossRef]
- Meghanathan, N. Assortativity Analysis of Real-World Network Graphs Based on Centrality Metrics. Comput. Inf. Sci. 2016, 9, 7. [Google Scholar] [CrossRef]
- Dörter, M.; Karadeniz, H.; Saklangıç, U.; Yenisoy-Karakaş, S. The Use of Passive Lichen Biomonitoring in Combination with Positive Matrix Factor Analysis and Stable Isotopic Ratios to Assess the Metal Pollution Sources in Throughfall Deposition of Bolu Plain, Turkey. Ecol. Indic. 2020, 113, 106212. [Google Scholar] [CrossRef]
- El Rhzaoui, G.; Divakar, P.K.; Crespo, A.; Tahiri, H. Biomonitoring of Air Pollutants by Using Lichens (Evernia prunastri) in Areas between Kenitra and Mohammedia Cities in Morocco. Lazaroa 2015, 36, 21–30. [Google Scholar] [CrossRef]
- Varrica, D.; Lo Medico, F.; Alaimo, M.G. Air Quality Assessment by the Determination of Trace Elements in Lichens (Xanthoria calcicola) in an Industrial Area (Sicily, Italy). Int. J. Environ. Res. Public Health 2022, 19, 9746. [Google Scholar] [CrossRef]
- Rola, K.; Latkowska, E.; Ogar, W.; Osyczka, P. Towards Understanding the Effect of Heavy Metals on Mycobiont Physiological Condition in a Widespread Metal-Tolerant Lichen Cladonia Rei. Chemosphere 2022, 308, 136365. [Google Scholar] [CrossRef]
- Sadiku, M.; Kelmendi, M.; Kadriu, S. Assessment of Heavy Metal Pollution of Sedimentation in the Sitnica River Based on Pollution Indicators. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2021, 6, 129–136. [Google Scholar] [CrossRef]
- Mohamed, E.; Mohammed, L.; Abdelhay, E.G. Use of New Indices for the Assessment of Air Quality in the Safi Region (Morocco) Using Lichen Biomonitoring of Air Contamination by Trace Elements. Bull. Environ. Contam. Toxicol. 2023, 111, 24. [Google Scholar] [CrossRef]
- Winkler, A.; Caricchi, C.; Guidotti, M.; Owczarek, M.; Macrì, P.; Nazzari, M.; Amoroso, A.; Di Giosa, A.; Listrani, S. Combined Magnetic, Chemical and Morphoscopic Analyses on Lichens from a Complex Anthropic Context in Rome, Italy. Sci. Total Environ. 2019, 690, 1355–1368. [Google Scholar] [CrossRef]
- Banu, Z.; Chowdhury, M.S.A.; Hossain, M.D.; Nakagami, K. Contamination and Ecological Risk Assessment of Heavy Metal in the Sediment of Turag River, Bangladesh: An Index Analysis Approach. J. Water Resour. Prot. 2013, 5, 239–248. [Google Scholar] [CrossRef]
- Rakib, M.R.J.; Hossain, M.B.; Kumar, R.; Ullah, M.A.; Al Nahian, S.; Rima, N.N.; Choudhury, T.R.; Liba, S.I.; Yu, J.; Khandaker, M.U.; et al. Spatial Distribution and Risk Assessments Due to the Microplastics Pollution in Sediments of Karnaphuli River Estuary, Bangladesh. Sci. Rep. 2022, 12, 8581. [Google Scholar] [CrossRef]
- Zhu, Y. The Influence of Iron Oxides on Wheel–Rail Contact: A Literature Review. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 734–743. [Google Scholar] [CrossRef]
- Su, T.H.; Lin, C.S.; Lu, S.Y.; Lin, J.C.; Wang, H.H.; Liu, C.P. Effect of Air Quality Improvement by Urban Parks on Mitigating PM2.5 and Its Associated Heavy Metals: A Mobile-Monitoring Field Study. J. Environ. Manag. 2022, 323, 116283. [Google Scholar] [CrossRef]
- You, H.N.; Kwak, M.J.; Je, S.M.; Lee, J.K.; Lim, Y.J.; Kim, H.; Park, S.; Jeong, S.G.; Choi, Y.S.; Woo, S.Y. Morpho-Physio-Biochemical Attributes of Roadside Trees as Potential Tools for Biomonitoring of Air Quality and Environmental Health in Urban Areas. Land 2021, 10, 236. [Google Scholar] [CrossRef]
- Lopez, B.; Wang, X.; Chen, L.-W.A.; Ma, T.; Mendez-Jimenez, D.; Cobb, L.C.; Frederickson, C.; Fang, T.; Hwang, B.; Shiraiwa, M.; et al. Metal Contents and Size Distributions of Brake and Tire Wear Particles Dispersed in the Near-Road Environment. Sci. Total Environ. 2023, 883, 163561. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; Fang, S.B.; Liu, S.W.; Zhao, L.C.; Guo, X.P.; Jiang, Y.J.; Hu, J.S.; Liu, X.D.; Xia, Y.; Wang, Y.D.; et al. Lichen Elemental Composition Distinguishes Anthropogenic Emissions from Dust Storm Inputs and Differs among Species: Evidence from Xilinhot, Inner Mongolia, China. Sci. Rep. 2016, 6, 34694. [Google Scholar] [CrossRef]
- Rimondi, V.; Benesperi, R.; Beutel, M.W.; Chiarantini, L.; Costagliola, P.; Lattanzi, P.; Medas, D.; Morelli, G. Monitoring of Airborne Mercury: Comparison of Different Techniques in the Monte Amiata District, Southern Tuscany, Italy. Int. J. Environ. Res. Public Health 2020, 17, 2353. [Google Scholar] [CrossRef]
- Vannini, A.; Jamal, M.B.; Gramigni, M.; Fedeli, R.; Ancora, S.; Monaci, F.; Loppi, S. Accumulation and Release of Mercury in the Lichen Evernia prunastri (L.) Ach. Biology 2021, 10, 1198. [Google Scholar] [CrossRef]
- Kováčik, J.; Husáková, L.; Piroutková, M.; Babula, P. Mercury Content and Amelioration of Its Toxicity by Nitric Oxide in Lichens. Plants 2023, 12, 727. [Google Scholar] [CrossRef]
- Słaby, A.; Lisowska, M. Epiphytic Lichen Recolonization in the Centre of Cracow (Southern Poland) as a Result of Air Quality Improvement. Pol. J. Ecol. 2012, 60, 225–240. [Google Scholar]
- Matwiejuk, A.; Kałuska, A. Lichens of Sokółka (Podlasie, NE Poland) as Indicators of the State of Air Pollution. Ochr. Sr. Zasobów Nat. 2014, 25, 5–8. [Google Scholar] [CrossRef]
- Will-Wolf, S.; Jovan, S.; Amacher, M.C. Lichen Elemental Content Bioindicators for Air Quality in Upper Midwest, USA: A Model for Large-Scale Monitoring. Ecol. Indic. 2017, 78, 253–263. [Google Scholar] [CrossRef]
- Heiner, M.; Grimm, T.; Smith, H.; Leavitt, S.D.; Christensen, W.F.; Carling, G.T.; St. Clair, L.L. Multivariate Receptor Modeling with Widely Dispersed Lichens as Bioindicators of Air Quality. Environmetrics 2023, 34, e2785. [Google Scholar] [CrossRef]
- Taurozzi, D.; Gallitelli, L.; Cesarini, G.; Romano, S.; Orsini, M.; Scalici, M. Passive Biomonitoring of Airborne Microplastics Using Lichens: A Comparison between Urban, Natural and Protected Environments. Environ. Int. 2024, 187, 108707. [Google Scholar] [CrossRef] [PubMed]
- Gómez, S.; Vergara, M.; Rivadeneira, B.; Rodríguez, J.; Carpio, A. Use of Lichens as Bioindicators of Contamination by Agrochemicals and Metals. Environ. Sci. Pollut. Res. 2024, 31, 49214–49226. [Google Scholar] [CrossRef] [PubMed]
- Meysurova, A.F.; Notov, A.A.; Pungin, A.V.; Skrypnik, L.N. Application of Optical Spectroscopy for the Analysis of Physiological Characteristics and Elemental Composition of Lichens of the Genus Hypogymnia with Different Degrees of Anthropotolerance. J. Appl. Spectrosc. 2024, 91, 64–75. [Google Scholar] [CrossRef]
- Attanayaka, A.N.P.M.; Wijeyaratne, S.C. Corticolous Lichen Diversity, a Potential Indicator for Monitoring Air Pollution in Tropics. J. Natl. Sci. Found. Sri Lanka 2013, 41, 131–140. [Google Scholar] [CrossRef]
Metal | Factor 1 | Factor 2 |
---|---|---|
Mn | 0.249 | 0.832 |
Fe | 0.776 | 0.562 |
Ni | 0.666 | 0.485 |
Cu | 0.814 | 0.430 |
Zn | 0.710 | 0.545 |
Cd | 0.107 | 0.799 |
Pb | 0.795 | 0.401 |
Hg | 0.881 | −0.207 |
Variance (%) | 64.2 | 14.1 |
Sampling Site (CF) | Mn | Fe | Ni | Cu | Zn | Cd | Pb | Hg | PLI |
---|---|---|---|---|---|---|---|---|---|
1 | 0.329 | 11.7 | 2.01 | 1.88 | 1.38 | 43.2 | 3.15 | 0.600 | 1.85 |
2 | 0.426 | 20.1 | 4.08 | 2.36 | 1.92 | 39.2 | 0.523 | 0.900 | 1.96 |
3 | 0.690 | 21.3 | 3.95 | 2.42 | 2.61 | 47.8 | 0.802 | 0.630 | 2.22 |
4 | 0.353 | 18.3 | 4.54 | 1.71 | 1.54 | 32.0 | 0.931 | 0.380 | 1.76 |
5 | 0.381 | 9.45 | 1.35 | 1.43 | 1.37 | 28.6 | 1.91 | 0.530 | 1.60 |
6 | 0.242 | 11.9 | 1.43 | 1.62 | 1.73 | 36.4 | 0.610 | 0.700 | 1.54 |
7 | 0.347 | 14.7 | 2.13 | 2.09 | 1.80 | 42.0 | 1.05 | 0.820 | 1.84 |
8 | 0.321 | 20.5 | 3.40 | 2.37 | 1.87 | 38.6 | 0.584 | 0.800 | 1.87 |
9 | 0.327 | 13.7 | 2.36 | 2.59 | 1.70 | 38.4 | 0.384 | 0.850 | 1.70 |
10 | 0.365 | 18.5 | 5.47 | 1.86 | 1.82 | 31.0 | 4.31 | 0.870 | 2.22 |
11 | 0.389 | 17.8 | 3.37 | 2.09 | 1.99 | 37.8 | 0.830 | 0.900 | 1.93 |
12 | 0.281 | 14.9 | 2.78 | 1.90 | 1.89 | 24.2 | 3.39 | 1.05 | 1.98 |
13 | 0.448 | 28.0 | 4.90 | 3.96 | 2.70 | 42.6 | 0.630 | 1.03 | 2.26 |
14 | 0.233 | 17.3 | 3.09 | 2.78 | 1.71 | 27.6 | 0.491 | 0.900 | 1.73 |
15 | 0.539 | 34.2 | 6.67 | 5.79 | 3.45 | 46.8 | 0.352 | 0.980 | 2.42 |
16 | 0.555 | 23.7 | 4.53 | 2.63 | 1.95 | 30.0 | 0.820 | 0.820 | 2.07 |
17 | 0.175 | 10.9 | 1.51 | 1.70 | 1.50 | 33.6 | 0.894 | 0.560 | 1.49 |
18 | 0.316 | 13.2 | 2.41 | 2.59 | 2.46 | 28.4 | 0.572 | 0.710 | 1.73 |
Min-Max | 0.175–0.690 | 9.45–34.2 | 1.35–6.67 | 1.43–5.79 | 1.37–3.45 | 24.2–47.8 | 0.352–4.31 | 0.380–1.05 | 1.49–2.42 |
Mean | 0.373 | 17.8 | 3.33 | 2.43 | 1.97 | 36.0 | 1.23 | 0.779 | 1.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahinskyi, L.; Świsłowski, P.; Isinkaralar, O.; Isinkaralar, K.; Rajfur, M. Low-Cost Monitoring of Airborne Heavy Metals Using Lichen Bioindicators: Insights from Opole, Southern Poland. Atmosphere 2025, 16, 576. https://doi.org/10.3390/atmos16050576
Bahinskyi L, Świsłowski P, Isinkaralar O, Isinkaralar K, Rajfur M. Low-Cost Monitoring of Airborne Heavy Metals Using Lichen Bioindicators: Insights from Opole, Southern Poland. Atmosphere. 2025; 16(5):576. https://doi.org/10.3390/atmos16050576
Chicago/Turabian StyleBahinskyi, Liubomyr, Paweł Świsłowski, Oznur Isinkaralar, Kaan Isinkaralar, and Małgorzata Rajfur. 2025. "Low-Cost Monitoring of Airborne Heavy Metals Using Lichen Bioindicators: Insights from Opole, Southern Poland" Atmosphere 16, no. 5: 576. https://doi.org/10.3390/atmos16050576
APA StyleBahinskyi, L., Świsłowski, P., Isinkaralar, O., Isinkaralar, K., & Rajfur, M. (2025). Low-Cost Monitoring of Airborne Heavy Metals Using Lichen Bioindicators: Insights from Opole, Southern Poland. Atmosphere, 16(5), 576. https://doi.org/10.3390/atmos16050576