Global Response of Vertical Total Electron Content to Mother’s Day G5 Geomagnetic Storm of May 2024: Insights from IGS and GIM Observations
Abstract
:1. Introduction
2. Methodology and Data Analysis
2.1. Event Overview
2.2. Parameter Characteristics
2.3. Data Sources
2.4. Data Analysis
2.5. Processing of RINEX File Using IGS Data
3. Results
3.1. Temporal Variations in Ionospheric Distribution at Low Latitudes
- Strom-driven VTEC enhancements and depletions: Both the positive (increment) and negative (depletion) storm effects are observed in the VTEC variations [74,75,76,77]. For the positive storm effects, stations such as POHN0FSM, SOLO0SLB, WUH20CHN, and REUN0REU show a significant increase in VTEC during the storm (green curve (Day 132) is much higher than black (Day 129)). This is due to penetration electric fields (PEFs), which lift ionospheric plasma to higher altitudes where recombination rates are lower, leading to an increase in VTEC [78,79,80,81,82,83]. Some stations, including CYNED0GUF, CRO10VIR, and SCRZ0BOL, exhibit a decrease in VTEC (green curve lower than black). VTEC values across different stations varied markedly, with daytime peaks dropping from 60–90 TECU to as low as 10–20 TECU at depletion phases (a 60–80% decrease), while enhancements at certain locations reached 100–120 TECU (a 30–50% increase). These variations, corresponding to electron density changes of approximately – cm−3 in the F2 layer, reflect the combined effects of penetration electric fields, disturbance dynamo processes, and storm-induced thermospheric composition changes on ionospheric plasma redistribution. This is likely due to storm-driven equatorward neutral winds, which bring in molecular-rich air (N2, O2), enhancing recombination and reducing electron density [84,85,86,87,88].
- Variation based on local time dependency: The plots reveal a strong diurnal pattern, with VTEC peaking around local noon due to solar-driven ionization. Some stations (e.g., KOKB, THFG0PYF) show post-sunset VTEC enhancements, which are likely due to storm-driven plasma transport, penetration electric fields (PEFs), or storm-enhanced density (SED) [89,90,91,92]. These effects cause plasma redistribution, particularly at mid-latitudes and high-latitudes, leading to increased electron density in certain regions [93,94].
- Regional variability: The low-latitude stations (e.g., POHN0FSM, SOLO0SLB) show stronger positive storm effects due to the equatorial fountain effect [95,96,97,98,99,100,101,102,103,104], where plasma is lifted and redistributed, whereas high-latitude stations (e.g., CKIS0COK) exhibit more irregular fluctuations, likely caused by auroral precipitation [105,106] and ionospheric convection effects [107,108,109,110,111]. The overall variation can be explained through multiple solar-terrestrial phenomena that lead to upper ionospheric irregularities. At the storm’s onset (red curve, Day 131), strong interplanetary electric fields penetrate into the ionosphere, causing plasma redistribution; this results in increased VTEC at low latitudes due to upward plasma transport. In the post-storm period (blue curve, Day 136), ionospheric winds and currents are altered, leading to reduced VTEC at some locations due to disturbance dynamo effects (DDEs) in the recovery phase. Most importantly, the storm changes the thermoionic ratio, enhancing recombination in some regions and leading to localized VTEC depletion. Some stations clearly show wave-like oscillations in VTEC, which may indicate the generation of TIDs caused by storm-induced gravity waves [112,113].
3.2. Global VTEC Anomalies
- Pre-storm conditions (DoY 129): The VTEC distribution follows a diurnal pattern, where values increase during the daytime (12:00 UT) and decrease during nighttime (00:00 UT). The blue and red curves are relatively symmetric, indicating a balanced electron density distribution between hemispheres under quiet geomagnetic conditions. The VTEC peaks occur around equatorial and low-latitude regions, consistent with the equatorial ionization anomaly (EIA) [104,114,115], driven by the fountain effect [116]. The longitudinal variations are smooth and consistent, showing no major perturbations.
- Main storm phase (DoY 131–132):
- 1.
- Storm-induced longitudinal asymmetry: A significant longitudinal perturbation emerges during the storm, disrupting the usual smooth variation in VTEC. At 00:00 UT, the blue curves (Northern Hemisphere) show a sharp depletion in VTEC at specific longitudes, while the red curves (Southern Hemisphere) exhibit relative enhancement. At 12:00 UT, VTEC enhancements in the Northern Hemisphere become more pronounced, especially near 45° to 90° and ±180° longitude, suggesting storm-enhanced density (SED) formation. The longitudinal variability is more intense at mid-latitudes, where storm-driven electric fields and thermospheric winds play a dominant role in redistributing ionospheric plasma [117,118,119]. From Figure 12, at 06:00 UT, a noticeable depletion is observed in the Southern Hemisphere (red curves) compared to the Northern Hemisphere (blue curves). At 18:00 UT, the Northern Hemisphere shows an increase in VTEC, particularly at longitudes 45° to 90° and ±180°, indicative of storm-enhanced density (SED) regions. The sharp latitudinal and longitudinal gradients suggest the presence of penetration electric fields and TIDs [120,121,122].
- 2.
- Hemispheric differences in VTEC response: The blue (Northern Hemisphere) curves show a positive storm effect (VTEC enhancement), whereas the red (Southern Hemisphere) curves show a negative storm effect (VTEC depletion). This asymmetry is likely due to the combined impact of penetration electric fields, disturbance dynamo effects, and thermospheric composition changes [123]. At higher latitudes (30–40° in both hemispheres), the deviations are more pronounced, indicating a strong influence of storm-time ionospheric currents [124] and neutral wind effects [125]. At 06:00 UT and 18:00 UT, the Northern Hemisphere (blue) experiences a positive storm effect (VTEC enhancement) whereas the Southern Hemisphere (red) experiences a negative storm effect (VTEC depletion). This asymmetry possibly arises due to the penetration of electric fields, which redistribute ionospheric plasma, have disturbance dynamo effects, and alter plasma transport and thermospheric composition changes, affecting ionization–recombination balance [126,127].
- Post-storm recovery (DoY 136): The VTEC distribution begins to return to pre-storm levels, but some residual disturbances persist, particularly in the mid-longitude sectors (±90° and ±180°). The recovery process is latitude-dependent, with the equatorial and low-latitude regions recovering faster, while higher latitudes show delayed restoration. The asymmetry between the red and blue curves decreases, indicating a gradual re-establishment of hemispheric balance in electron density. At 06:00 UT and 18:00 UT, the VTEC starts returning to pre-storm levels, but residual perturbations persist, particularly around 45° to 90° and ±180° longitude. The hemispheric symmetry begins to re-establish, indicating gradual ionospheric stabilization. The VTEC for higher latitudes recovers more slowly, while low latitudes exhibit a faster return to normal conditions due to the equatorial fountain effect. The higher latitudes (30–40°) exhibit stronger deviations, showing the impact of storm-induced electric fields and neutral wind dynamics, whereas the lower latitudes (0–10°) maintain a relatively stable structure, dominated by equatorial plasma transport processes.
3.3. Overview of VTEC Variation Across Time
3.4. Outcomes of GIM Observation
3.4.1. Temporal Evolution of VTEC (Before, During, and After the Storm)
- Pre-storm condition (DoY 129): The VTEC follows a typical diurnal cycle with higher values at 12:00 UT and lower values at 00:00 UT. The VTEC variations at 06:00 UT show lower ionization levels as the ionosphere is still in the early morning phase. At 18:00 UT, the VTEC increases significantly due to peak daytime ionization from solar EUV radiation. The latitudinal variations show a nearly symmetrical distribution between the Northern and Southern Hemispheres. The longitudinal variations indicate smooth and predictable trends, with peak VTEC values centered near the equatorial regions. In the morning phase, the VTEC starts to increase in the Northern Hemisphere, especially around equatorial regions [104,114,115].
- Storm onset (DoY 131): The onset condition of the storm introduces a significant asymmetry between the hemispheres. A noticeable increase in VTEC is observed in the Northern Hemisphere, particularly around the equatorial anomaly regions. The Southern Hemisphere exhibits a reduction in VTEC due to ionospheric depletion, which may be linked to enhanced electrodynamic forcing and redistribution of plasma via storm-induced electric fields. In the evening, the ionospheric enhancement becomes more pronounced, particularly in the Northern Hemisphere, which suggests the onset of a positive storm effect (VTEC enhancement due to electric field penetration and disturbed dynamo effects). The Southern Hemisphere exhibits early signs of depletion, marking the beginning of a negative storm effect caused by increased recombination [117,118,119].
- Main storm phase (DoY 132): In the morning, the strongest perturbations occur, with a significant VTEC enhancement in the Northern Hemisphere and continued depletion in the Southern Hemisphere. In the evening, the positive storm effect becomes more evident in the Northern Hemisphere, reaching higher VTEC levels compared to the pre-storm period. Sharp longitudinal gradients develop, particularly at ±90° and ±180° longitude, indicating enhanced EIA driven by storm-time electric fields. The latitudinal asymmetry is further amplified, possibly due to differences in storm-time thermospheric winds and inter-hemispheric plasma transport [120,121,122].
- Post-storm recovery (DoY 136): The VTEC distribution begins to return to normal but retains residual storm effects. In the morning, VTEC starts to return to normal levels but still exhibits asymmetries due to lingering storm effects, while in the evening, the recovery is more evident in both hemispheres, though some perturbations persist, especially at certain longitudes where storm-induced anomalies take longer to dissipate. A slower recovery is observed in the Southern Hemisphere, while the Northern Hemisphere still exhibits slightly elevated VTEC levels. The longitudinal variations remain somewhat disturbed, indicating that complete recovery from the geomagnetic storm is still in progress.
3.4.2. Latitudinal Dependence of VTEC Variations
3.4.3. Longitudinal Variations and Storm-Time Impact
3.5. Spatiotemporal Evolution of Peak VTEC Globally
4. Discussion
- Key geomagnetic indices and their storm-time variations: The geomagnetic storm’s intensity and impact were characterized using various indices, as illustrated in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8. The Dst index reached a minimum of −412 nT, indicating an extremely severe geomagnetic event. This sharp drop in Dst reflects the intensification of the ring current due to enhanced energetic particle injection. Concurrently, the planetary Kp index peaked at 9, highlighting the widespread geomagnetic disturbance affecting the entire ionosphere. The auroral electrojet indices (AE, AL, AU) demonstrated substantial variations, with AE reaching peak values, signifying intense auroral currents driven by enhanced magnetospheric convection. The negative excursion of AL and the concurrent increase in AU confirm significant storm-time substorm activity, which contributed to irregular ionospheric plasma redistribution. Solar activity parameters such as sunspot numbers and X-ray flux (Figure 1 and Figure 2) exhibited noticeable fluctuations preceding the storm. The increased X-ray flux from active regions led to enhanced photoionization, contributing to pre-storm ionospheric variations. The solar wind parameters (Figure 3 and Figure 4) showed sharp increases in solar wind speed and density, with IMF Bz turning strongly southward, triggering reconnection and facilitating storm onset. Additionally, variations in the Lyman-alpha and F10.7 indices (Figure 5) suggest enhanced EUV radiation, further influencing the ionospheric response. The interplanetary magnetic field (IMF) components (Figure 6) showed strong fluctuations, with negative Bz values enhancing magnetospheric coupling. Finally, the planetary Ap index and Kp index (Figure 7 and Figure 8) provided further confirmation of extreme geomagnetic activity, correlating well with the observed ionospheric disturbances.
- Hemispheric asymmetry and geophysical drivers: One of the most striking observations in this study is the pronounced hemispheric asymmetry in ionospheric response. The Northern Hemisphere exhibited positive storm effects characterized by enhanced VTEC, whereas the Southern Hemisphere experienced significant depletion. This asymmetry is primarily attributed to the influence of PPEFs and DDEFs, which modulate plasma redistribution in the ionosphere. The dominance of PPEFs during the main phase of the storm led to increased plasma uplift in equatorial and mid-latitude regions, whereas DDEFs, active during the recovery phase, contributed to the prolonged depletion of VTEC in the Southern Hemisphere due to enhanced recombination processes facilitated by molecular nitrogen upwelling.
- Longitudinal variability and EIA disruptions: The study also revealed significant longitudinal variations, particularly at ±90° and ±180° longitudes, where the storm exerted the strongest impact. These regions exhibited highly amplified longitudinal gradients, disrupting the classical structure of the EIA. The severe modifications in the EIA can be linked to enhanced storm-time electric fields and thermospheric composition changes, which led to an uneven distribution of ionospheric plasma across different longitudinal sectors. These disruptions have profound implications for satellite-based navigation and communication systems as they introduce additional uncertainties in ionospheric delay corrections.
- Temporal evolution and recovery dynamics: The temporal evolution of the storm’s effects demonstrates a complex interplay between different geophysical mechanisms. The storm’s peak impact on day of the year (DoY) 132 was marked by the most intense VTEC disturbances, followed by a gradual recovery phase extending up to DoY 136. While low-latitude regions showed relatively rapid stabilization due to equatorial plasma fountain effects, high-latitude areas exhibited a prolonged recovery period, indicating the lingering influence of thermospheric wind-driven plasma transport. The persistence of post-storm VTEC anomalies suggests that storm-induced perturbations extend well beyond the main event and necessitate continued monitoring for several days.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VTEC | vertical total electron content |
STEC | slant total electron content |
TECU | total electron content unit |
CME | coronal mass ejection |
SEP | solar energetic particles |
RINEX | receiver independent exchange format |
TID | traveling ionospheric disturbances |
ASCII | American Standard Code for Information Interchange |
CDDIS | Crustal Dynamics Data Information System |
UTC | Coordinated Universal Time |
GIM | global ionospheric map |
IGS | International GNSS Service |
GNSS | Global Navigational Satellite System |
GUVI | Global Ultraviolet Imager |
SWPC | Space Weather Prediction Center |
EUV | extreme ultraviolet |
EIA | equatorial ionization anomaly |
PPEF | prompt penetration electric fields |
DDEF | disturbance dynamo electric fields |
SED | storm-enhanced density |
References
- Tsurutani, B.T.; Gonzalez, W.D. The Interplanetary Causes of Magnetic Storms: A Review. Geophys. Monogr. Ser. 1997, 98, 77–89. [Google Scholar] [CrossRef]
- Emslie, A.G.; Dennis, B.R.; Shih, A.Y.; Chamberlin, P.C.; Mewaldt, R.A.; Moore, C.S.; Share, G.H.; Vourlidas, A.; Welsch, B.T. Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 2012, 759, 71. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Pesnell, W.D.; Thompson, B.J.; Chamberlin, P.C. The Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 3–15. [Google Scholar] [CrossRef]
- Hudson, H.S. Global properties of solar flares. Space Sci. Rev. 2011, 158, 1–37. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Lakhina, G.S.; Alex, S. The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res. Space Phys. 2003, 108, 1268. [Google Scholar] [CrossRef]
- Howard, T. Coronal Mass Ejections: An Introduction; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Hundhausen, A.J. Coronal mass ejections and their implications for solar wind variability. J. Geophys. Res. Space Phys. 1993, 98, 283–296. [Google Scholar] [CrossRef]
- Iucci, N.; Levitin, A.E.; Belov, A.V.; Eroshenko, E.A.; Ptitsyna, N.G.; Villoresi, G.; Chizhenkov, G.V.; Dorman, L.I.; Gromova, L.I.; Parisi, M.; et al. Space weather conditions and spacecraft anomalies in different orbits. Space Weather 2005, 3. [Google Scholar] [CrossRef]
- Zurbuchen, T.H.; Richardson, I.G. In situ solar wind and cosmic ray observations in the inner heliosphere: A study of solar wind interactions. Space Sci. Rev. 2006, 123, 31–43. [Google Scholar] [CrossRef]
- Geiss, J.; Gloeckler, G.; Von Steiger, R. Origin of the solar wind from composition data. Space Sci Rev. 1995, 72, 49–60. [Google Scholar] [CrossRef]
- Hayakawa, H.; Ebihara, Y.; Cliver, E.W.; Hattori, K.; Toriumi, S.; Love, J.J.; Umemura, N.; Namekata, K.; Sakaue, T.; Takahashi, T.; et al. The extreme space weather event in September 1909. Mon. Not. R. Astron. Soc. 2019, 484, 4083–4099. [Google Scholar] [CrossRef]
- Chapman, S. The Aurora in Middle and Low Latitudes. Nature 1957, 179, 7–11. [Google Scholar] [CrossRef]
- Silverman, S.M. Low latitude auroras: The storm of 25 September 1909. J. Atmos. Terr. Phys. 1995, 57, 673–685. [Google Scholar] [CrossRef]
- Azcárate, D.T. Anales del Instituto y Observatorio de Marina de San Fernando, Sección 2, Observaciones Meteorológicas, Magnéticas y Sísmicas, Año 1909; Sección Tipográfica del Observatorio: San Fernando, Spain, 1910. [Google Scholar]
- Love, J.J.; Hayakawa, H.; Cliver, E.W. Intensity and Impact of the New York Railroad Superstorm of May 1921. Space Weather 2019, 17, 1281–1292. [Google Scholar] [CrossRef]
- Hazard, D.L. Results of Observations Made at the Coast and Geodetic Survey Magnetic Observatory at Vieques, Porto Rico, 1909 and 1910; Department of Commerce, Government Printing Office: Washington, DC, USA, 1912.
- Wegener, K. Ergebnisse der Arbeiten des Samoa-Observatoriums, IX. Die erdmagnetischen Beobachtungen im Jahre 1909 and 1910; Weidmannsche Buchhandlung: Berlin, Germany, 1914. [Google Scholar]
- Claxton, T.; Walter, A. Results of the Magnetical and Meteorological Observations Made at the Royal Alfred Observatory, Mauritius in the Year 1909; Government Printing Office: Port Louis, Mauritius, 1913.
- Lanyi, G.; Roth, T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 1998, 23, 483–492. [Google Scholar] [CrossRef]
- Feltens, J.; Schaer, S. IGS products for the ionosphere. In Proceedings of the IGS Workshop, ESOC, Darmstadt, Germany, 9–11 February 1998; pp. 225–232. Available online: http://gauss2.gge.unb.ca/IGS/drafts/PosPaper4B.pdf (accessed on 12 December 2024).
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Ph.D. Thesis, Astronomical Institutes, The University of Bern, Bern, Switzerland, 1999. [Google Scholar]
- Hernández-Pajares, M.; Juan, J.; Sanz, J.; Colombo, O. Feasibility of wide-area subdecimeter navigation with GALILEO and modernized GPS. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2128–2131. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Aragón-Àngel, À.; García-Rigo, A.; Salazar, D.; Escudero, M. The ionosphere: Effects, GPS modeling, and the benefits for space geodetic techniques. J. Geodesy 2011, 85, 887–907. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Xie, W.; Zhang, K.; Yuan, Y.; Li, X. Global ionospheric modeling using multi-GNSS: BeiDou, Galileo, GLONASS, and GPS. Sci. Rep. 2016, 6, 33499. [Google Scholar] [CrossRef]
- Ke, F.; Qi, X.; Wang, Y.; Liu, X. Statistics of ionospheric responses to Southeast Asia’s typhoons during 2006–2018 using the rate of change in the TEC index. Adv. Space Res. 2020, 66, 2763–2772. [Google Scholar] [CrossRef]
- Mukhtarov, P.; Pancheva, D.; Andonov, B.; Pashova, L. Global TEC maps based on GNSS data: 1. Empirical background TEC model. J. Geophys. Res. Space Phys. 2013, 118, 4594–4608. [Google Scholar] [CrossRef]
- Elmunim, N.A.; Mardina, A.; Siti, A.B. Evaluating the performance of IRI-2016 using GPS-TEC measurements over the equatorial region. Atmosphere 2021, 12, 1243. [Google Scholar] [CrossRef]
- Rama Rao, P.V.S.; Gopi Krishna, S.; Niranjan, K.; Prasad, D.S.V.V.D. Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Ann. Geophys. 2006, 24, 3279–3292. [Google Scholar] [CrossRef]
- Feltens, J. The International GPS Service (IGS) Ionosphere Working Group. Adv. Space Res. 2003, 31, 635–644. [Google Scholar] [CrossRef]
- Mannucci, A.J.; Wilson, B.D.; Edwards, C.D. A new method for monitoring the Earth’s ionospheric total electron content using the GPS global network. In Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, USA, 22–24 September 1993; pp. 1323–1332. Available online: https://www.ion.org/publications/abstract.cfm?articleID=4319 (accessed on 14 December 2024).
- Marsch, E. Kinetic physics of the solar wind. Living Rev. Sol. Phys. 2006, 3, 1. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G. Interplanetary Causes of Geomagnetic Storms. J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res.-Space 1991, 96, 7831–7839. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Foster, J.C.; Rideout, W. Midlatitude TEC enhancements during the October 2003 superstorm. Geophys. Res. Lett. 2005, 32, L12S04. [Google Scholar] [CrossRef]
- Baranyi, T.; Győri, L.; Ludmány, A. On-line Tools for Solar Data Compiled at the Debrecen Observatory and Their Extensions with the Greenwich Sunspot Data; Sunspot Number Recalibration. Sol. Phys. 2016, 291, 3081–3102. [Google Scholar] [CrossRef]
- Jones, H.S. Sunspot and Geomagnetic-Storm Data: Derived from Greenwich Observations, 1874–1954; H.M. Stationery Office: London, UK, 1955. [Google Scholar]
- Lockyer, W.J.S. The Magnetic Storm of September 25, 1909, and the associated Solar Disturbance. Mon. Not. R. Astron. Soc. 1909, 70, 12–19. [Google Scholar] [CrossRef]
- Dimitrova, S. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state. J. Atmos. Sol.-Terr. Phys. 2008, 70, 420–427. [Google Scholar] [CrossRef]
- Gulyaeva, T.L.; Stanislawska, I. Derivation of a planetary ionospheric storm index. Ann. Geophys. 2008, 26, 2645–2648. [Google Scholar] [CrossRef]
- Troshichev, O.A.; Lukianova, R.Y. Relation of PC index to the solar wind parameters and substorm activity in time of magnetic storms. J. Atmos. Sol.-Terr. Phys. 2002, 64, 585–591. [Google Scholar] [CrossRef]
- Wanliss, J.A.; Showalter, K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 2006, 111, A12S06. [Google Scholar] [CrossRef]
- Nikolaeva, N.S.; Yermolaev, Y.I.; Lodkina, I.G. Modeling the time behavior of the Dst index during the main phase of magnetic storms generated by various types of solar wind. Cosmic Res. 2013, 51, 401–412. [Google Scholar] [CrossRef]
- White, S.M.; Thomas, R.J.; Schwartz, R.A. Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements. Sol. Phys. 2005, 227, 231–248. [Google Scholar] [CrossRef]
- Aschwanden, M.J.; Stern, R.A.; Güdel, M. Scaling laws of solar and stellar flares. Astrophys. J. 2008, 672, 659–673. [Google Scholar] [CrossRef]
- Reep, J.W.; Knizhnik, K.J. What Determines the X-Ray Intensity and Duration of a Solar Flare? Astrophys. J. 2019, 874, 157. [Google Scholar] [CrossRef]
- Kane, R.P. How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms? J. Geophys. Res. Space Phys. 2005, 110, A02201. [Google Scholar] [CrossRef]
- Dubyagin, S.; Ganushkina, N.Y.; Sillanpää, I.; Runov, A. Solar wind-driven variations of electron plasma sheet densities and temperatures beyond geostationary orbit during storm times. J. Geophys. Res. Space Phys. 2016, 121, 8914–8928. [Google Scholar] [CrossRef]
- Yan, S.; Cui, Y.; Luo, B.; Shi, L.; Cai, Y. Research on F10.7 Index Prediction Based on Factor Decomposition and Feature Enhancement. Astrophys. J. Suppl. Ser. 2025, 276, 28. [Google Scholar] [CrossRef]
- Huang, C.; Liu, D.-D.; Wang, J.-S. Forecast daily indices of solar activity, F10.7, using support vector regression method. Res. Astron. Astrophys. 2009, 9, 694. [Google Scholar] [CrossRef]
- Santos, A.M.; Abdu, M.A.; Sobral, J.H.A.; Mascarenhas, M.; Nogueira, P.A.B. Equatorial evening prereversal vertical drift dependence on solar EUV flux and F10.7 index during quiet and disturbed periods over Brazil. J. Geophys. Res. Space Phys. 2013, 118, 4709–4718. [Google Scholar] [CrossRef]
- Milligan, R.O. Solar irradiance variability due to solar flares observed in Lyman-Alpha emission. Sol. Phys. 2021, 296, 51. [Google Scholar] [CrossRef]
- Greatorex, H.J.; Milligan, R.O.; Dammasch, I.E. On the Instrumental Discrepancies in Lyman-Alpha Observations of Solar Flares. Sol. Phys. 2024, 299, 162. [Google Scholar] [CrossRef]
- Verbanac, G.; Bandić, M. Origin and Characteristics of the Southward Component of the Interplanetary Magnetic Field. Sol. Phys. 2021, 296, 183. [Google Scholar] [CrossRef]
- Bandić, M.; Verbanac, G.; Živković, S. Geoeffective interplanetary magnetic field (IMF) from in situ data: Realistic versus idealized spiral IMF. Sci. Rep. 2023, 13, 9661. [Google Scholar] [CrossRef] [PubMed]
- Fairfield, D.H.; Cahill, L.J., Jr. Transition region magnetic field and polar magnetic disturbances. J. Geophys. Res. 1966, 71, 155–162. [Google Scholar] [CrossRef]
- Ness, N.F.; Wilcox, J.M. Solar origin of the interplanetary magnetic field. Phys. Rev. Lett. 1964, 13, 461–464. [Google Scholar] [CrossRef]
- Alexeev, I.I.; Belenkaya, E.S.; Bobrovnikov, S.Y.; Kalegaev, V.V. Modelling of the electromagnetic field in the interplanetary space and in the Earth’s magnetosphere. Space Sci. Rev. 2003, 107, 7–26. [Google Scholar] [CrossRef]
- Newell, P.T.; Gjerloev, J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. Space Phys. 2011, 116, A12310. [Google Scholar] [CrossRef]
- Menvielle, M.; Berthelier, A. The K-derived planetary indices: Description and availability. Rev. Geophys. 1991, 29, 1. [Google Scholar] [CrossRef]
- Imtiaz, N.; Younas, W.; Khan, M. Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017. Ann. Geophys. 2020, 38, 359–372. [Google Scholar] [CrossRef]
- Pandit, D.; Amory-Mazaudier, C.; Fleury, R.; Chapagain, N.P.; Adhikari, B. VTEC observations of intense geomagnetic storms above Nepal: Comparison with satellite data, CODE and IGSG models. Indian J. Phys. 2022, 97, 701–718. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Yang, S.; Wang, F. Characteristics of Low-Latitude Ionosphere Activity and Deterioration of TEC Model during the 7–9 September 2017 Magnetic Storm. Atmosphere 2022, 13, 1365. [Google Scholar] [CrossRef]
- Miteva, R.; Samwel, S.W. Catalog of Geomagnetic Storms with Dst Index ≤ −50 nT and Their Solar and Interplanetary Origin (1996–2019). Atmosphere 2023, 14, 1744. [Google Scholar] [CrossRef]
- Balan, N.; Otsuka, Y.; Nishioka, M.; Liu, J.Y.; Bailey, G.J. Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. Space Phys. 2013, 118, 2660–2669. [Google Scholar] [CrossRef]
- Seemala, G.K.; Valladares, C.E. Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 2011, 46, RS5019. [Google Scholar] [CrossRef]
- Gurtner, W. RINEX: The Receiver Independent Exchange Format, Version 3.00; Astronomical Institute, University of Bern: Bern, Switzerland, 2007; Available online: https://epic.awi.de/id/eprint/29985/1/Gur2007a.pdf (accessed on 14 December 2024).
- Langley, R.; Mariangel, F.; de Eurico, P.; Marcelo, S. Mapping the low latitude ionosphere with GPS. GPS World 2002, 13, 41–46. [Google Scholar]
- Kundu, S.; Chowdhury, S.; Palit, S.; Mondal, S.K.; Sasmal, S. Variation of ionospheric plasma density during the annular solar eclipse on December 26, 2019. Astrophys. Space Sci. 2022, 367, 44. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Design and characteristics of the GPS ionospheric time delay algorithm for single frequency users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- Kundu, S.; Sasmal, S.; Chakrabarti, S.K. Long-term ionospheric VTEC variation during solar cycle 24 as observed from Indian IGS GPS station. Int. J. Sci. Res. Phys. Appl. Sci. 2021, 94, 1–12. [Google Scholar] [CrossRef]
- Rama Rao, P.V.S.; Niranjan, K.; Prasad, D.S.V.V.D.; Gopi Krishna, S.; Uma, G. On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low-latitude sector. Ann. Geophys. 2006, 24, 2159–2168. [Google Scholar] [CrossRef]
- Tariq, M.A.; Shah, M.; Hernández-Pajares, M.; Iqbal, T. Ionospheric VTEC variations over Pakistan in the descending phase of solar activity during 2016–17. Astrophys. Space Sci. 2019, 364, 99. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S. Equatorial ionospheric TEC and scintillations under the space weather events of 4–9 September 2017: M-class solar flares and a G4 geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 2020, 208, 105421. [Google Scholar] [CrossRef]
- Fagundes, P.R.; Cardoso, F.A.; Fejer, B.G.; Venkatesh, K.; Ribeiro, B.A.G.; Pillat, V.G. Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J. Geophys. Res. Space Phys. 2016, 121, 5613–5625. [Google Scholar] [CrossRef]
- Mridula, N.; Manju, G.; Sijikumar, S.; Pant, T.K.; Choudhary, R.K. On the significant impact of the 17 March 2015 St. Patrick’s Day geomagnetic storm on the ionosphere over the Indian region. Adv. Space Res. 2022, 70, 3674–3685. [Google Scholar] [CrossRef]
- Huang, C.-S.; Sazykin, S.; Chau, J.L.; Maruyama, N.; Kelley, M.C. Penetration electric fields: Efficiency and characteristic time scale. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1135–1146. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Saito, A.; Araki, T.; Yumoto, K.; Tsuda, T.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.D.; et al. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. Space Phys. 2008, 113, A05311. [Google Scholar] [CrossRef]
- Huang, C.; Sazykin, I.; Spiro, R.; Goldstein, J.; Crowley, G.; Ruohoniemi, J.M. Storm-time penetration electric fields and their effects. Eos Trans. AGU 2011, 92, 109–110. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, B.; Li, G.; Wan, W. Electric field penetration into Earth’s ionosphere: A brief review for 2000–2013. Sci. Bull. 2015, 60, 748–761. [Google Scholar] [CrossRef]
- Maruyama, N.; Richmond, A.D.; Fuller-Rowell, T.J.; Codrescu, M.V.; Sazykin, S.; Toffoletto, F.R.; Spiro, R.W.; Millward, G.H. Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 2005, 32, L17105. [Google Scholar] [CrossRef]
- Tu, J.; Song, P.; Reinisch, B.W. On the concept of penetration electric field. AIP Conf. Proc. 2008, 974, 81–85. [Google Scholar] [CrossRef]
- Foster, J.C. Storm time plasma transport at middle and high latitudes. J. Geophys. Res. Space Phys. 1993, 98, 1675–1689. [Google Scholar] [CrossRef]
- Gan, Q.; Eastes, R.W.; Wu, Y.-J.; Qian, L.; Cai, X.; Wang, W.; England, S.L.; McClintock, W.E. Thermospheric responses to the 3 and 4 November 2021 geomagnetic storm during the main and recovery phases as observed by NASA’s GOLD and ICON missions. Geophys. Res. Lett. 2023, 50, e2023GL106529. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Nakamura, T.; Zhao, B.; Ning, B.; Yoshikawa, A. A case study of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm. J. Geophys. Res. Space Phys. 2014, 119, 10375–10390. [Google Scholar] [CrossRef]
- Astafyeva, E.; Bagiya, M.S.; Förster, M.; Nishitani, N. Unprecedented hemispheric asymmetries during a surprise ionospheric storm: A game of drivers. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027261. [Google Scholar] [CrossRef]
- Rajesh, P.K.; Lin, C.H.; Lin, C.Y.; Chen, C.H.; Liu, J.Y.; Matsuo, T.; Chen, S.P.; Yeh, W.H.; Huang, C.Y. Extreme positive ionosphere storm triggered by a minor magnetic storm in deep solar minimum revealed by FORMOSAT-7/COSMIC-2 and GNSS observations. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028261. [Google Scholar] [CrossRef]
- Vaishnav, R.; Jacobi, C.; Berdermann, J. Long-term trends in the ionospheric response to solar extreme-ultraviolet variations. Ann. Geophys. 2019, 37, 1141–1153. [Google Scholar] [CrossRef]
- Singh, A.K.; Das, R.M.; Saini, S. Variations of total electron content over high latitude region during the ascending phase of 24th solar cycle. Adv. Space Res. 2019, 63, 3558–3567. [Google Scholar] [CrossRef]
- Patari, A.; De, B.K.; Guha, A.; Paul, B. Conjugate hemispheric response of Earth’s ionosphere due to geomagnetic storms occurred during two equinox periods. J. Phys. Conf. Ser. 2019, 1330, 012004. [Google Scholar] [CrossRef]
- Hafteh, M.V.; Mahmoudian, A.; Yoshikawa, A.; Girgis, K. Mid-latitude study of ionospheric variation over Iran associated with equatorial ionization anomaly (EIA), and artificial neural networks model development. Space Weather 2024, 22, e2024SW004032. [Google Scholar] [CrossRef]
- Moffett, R.J.; Quegan, S. The mid-latitude trough in the electron concentration of the ionospheric F-layer: A review of observations and modelling. J. Atmos. Terr. Phys. 1983, 45, 315–343. [Google Scholar] [CrossRef]
- Huang, C.-S. Long-Lasting Penetration Electric Fields during Geomagnetic Storms: Observations and Mechanisms. J. Geophys. Res. Space Phys. 2019, 124, 9640–9664. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J. Equatorial plasma fountain and its effects: Possibility of an additional layer. J. Geophys. Res. Space Phys. 1995, 100, 21615–21622. [Google Scholar] [CrossRef]
- Rishbeth, H. Dynamics of the equatorial F-region. J. Atmos. Terr. Phys. 1977, 39, 1159–1168. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J.; Abdu, M.A.; Oyama, K.I.; Richards, P.G.; MacDougall, J.; Batista, I.S. Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer. J. Geophys. Res. Space Phys. 1997, 102, 2619–2625. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J. Modeling studies of equatorial plasma fountain and equatorial anomaly. Adv. Space Res. 1996, 18, 107–116. [Google Scholar] [CrossRef]
- England, S.L.; Immel, T.J.; Sagawa, E.; Henderson, S.B.; Hagan, M.E.; Mende, S.B.; Frey, H.U.; Swenson, C.M.; Paxton, L.J. Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J. Geophys. Res. Space Phys. 2006, 111, A10310. [Google Scholar] [CrossRef]
- Rishbeth, H. The equatorial F-layer: Progress and puzzles. Ann. Geophys. 2000, 18, 730–739. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J.; Subbarao, K.S.V.; Abdu, M.A.; Rao, P.B. Model comparisons of equatorial plasma fountain and equatorial anomaly at three locations. Adv. Space Res. 1996, 18, 69–78. [Google Scholar] [CrossRef]
- Yadav, S.; Choudhary, R.K.; Kumari, J.; Sunda, S.; Shreedevi, P.R.; Pant, T.K. Reverse Fountain and the Nighttime Enhancement in the Ionospheric Electron Density Over the Equatorial Region: A Case Study. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027286. [Google Scholar] [CrossRef]
- Sridharan, R.; Sekar, R.; Gurubaran, S. Two-dimensional high-resolution imaging of the equatorial plasma fountain. J. Atmos. Terr. Phys. 1993, 55, 1661–1663, 1665. [Google Scholar] [CrossRef]
- Balan, N.; Souza, J.; Bailey, G.J. Recent developments in the understanding of equatorial ionization anomaly: A review. J. Atmos. Sol.-Terr. Phys. 2018, 171, 3–11. [Google Scholar] [CrossRef]
- Swift, D.W. Mechanisms for auroral precipitation: A review. Rev. Geophys. 1981, 19, 185–220. [Google Scholar] [CrossRef]
- Ni, B.; Thorne, R.M.; Zhang, X.; Bortnik, J.; Pu, Z.; Xie, L.; Hu, Z.-J.; Han, D.; Shi, R.; Zhou, C.; et al. Origins of the Earth’s Diffuse Auroral Precipitation. Space Sci. Rev. 2016, 200, 205–259. [Google Scholar] [CrossRef]
- Lu, G.; Cowley, S.W.H.; Milan, S.E.; Sibeck, D.G.; Greenwald, R.A.; Moretto, T. Solar wind effects on ionospheric convection: A review. J. Atmos. Sol.-Terr. Phys. 2002, 64, 145–157. [Google Scholar] [CrossRef]
- Heelis, R.A. The effects of interplanetary magnetic field orientation on dayside high-latitude ionospheric convection. J. Geophys. Res. Space Phys. 1984, 89, 2873–2880. [Google Scholar] [CrossRef]
- Wolf, R.A. Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. J. Geophys. Res. 1970, 75, 4677–4682. [Google Scholar] [CrossRef]
- Tanaka, T. Magnetosphere–Ionosphere Convection as a Compound System. Space Sci. Rev. 2007, 133, 1–72. [Google Scholar] [CrossRef]
- Hietala, H.; Partamies, N.; Laitinen, T.V.; Clausen, L.B.N.; Facskó, G.; Vaivads, A.; Koskinen, H.E.J.; Dandouras, I.; Rème, H.; Lucek, E.A. Supermagnetosonic subsolar magnetosheath jets and their effects: From the solar wind to the ionospheric convection. Ann. Geophys. 2012, 30, 33–48. [Google Scholar] [CrossRef]
- Burns, A.G.; Killeen, T.L.; Carignan, G.R.; Roble, R.G. Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms. J. Geophys. Res. Space Phys. 1995, 100, 15801–15814. [Google Scholar] [CrossRef]
- Zhai, C.; Cai, X.; Wang, W.; Coster, A.; Qian, L.; Solomon, S.C.; Yu, T.; He, M. Mid-Latitude Ionospheric Response to a Weak Geomagnetic Activity Event During Solar Minimum. J. Geophys. Res. Space Phys. 2023, 128, e2022JA030908. [Google Scholar] [CrossRef]
- Abdu, M.A.; Sobral, J.H.A.; de Paula, E.R.; Batista, I.S. Magnetospheric disturbance effects on the Equatorial Ionization Anomaly (EIA): An overview. J. Atmos. Terr. Phys. 1991, 53, 757–771. [Google Scholar] [CrossRef]
- Oluwadare, T.S.; Thai, C.N.; Akala, A.O.; Heise, S.; Alizadeh, M.; Schuh, H. Characterization of GPS-TEC over African equatorial ionization anomaly (EIA) region during 2009–2016. Adv. Space Res. 2019, 63, 282–301. [Google Scholar] [CrossRef]
- Lin, C.H.; Liu, J.Y.; Fang, T.W.; Chang, P.Y.; Tsai, H.F.; Chen, C.H.; Hsiao, C.C. Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophys. Res. Lett. 2007, 34, L19101. [Google Scholar] [CrossRef]
- Kelley, M.C.; Vlasov, M.N.; Foster, J.C.; Coster, A.J. A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys. Res. Lett. 2004, 31, L19809. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2015, 120, 727–744. [Google Scholar] [CrossRef]
- Coster, A.J.; Colerico, M.J.; Foster, J.C.; Rideout, W.; Rich, F. Longitude sector comparisons of storm-enhanced density. Geophys. Res. Lett. 2007, 34, L19103. [Google Scholar] [CrossRef]
- Zhang, S.R.; Coster, A.J.; Erickson, P.J.; Goncharenko, L.P.; Rideout, W.; Vierinen, J. Traveling ionospheric disturbances and ionospheric perturbations associated with solar flares in September 2017. J. Geophys. Res. Space Phys. 2019, 124, 7923–7936. [Google Scholar] [CrossRef]
- Jonah, O.F.; Zhang, S.; Coster, A.J.; Goncharenko, L.P.; Erickson, P.J.; Rideout, W.; de Paula, E.R.; de Jesus, R. Understanding inter-hemispheric traveling ionospheric disturbances and their mechanisms. Remote Sens. 2020, 12, 228. [Google Scholar] [CrossRef]
- Saha, S.; Pallamraju, D.; Kumar, S.; Narayanan, V.L.; Sunda, S. Cross-equatorial traveling ionospheric disturbances and changes in background ionospheric densities over Indian longitudes during the geomagnetic storm of 20–21 December 2015. Adv. Space Res. 2025; in press. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Alken, P. Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth Planets Space 2016, 68, 152. [Google Scholar] [CrossRef]
- Fejer, B.G. Low latitude storm time ionospheric electrodynamics. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1401–1408. [Google Scholar] [CrossRef]
- Anderson, D.N.; Roble, R.G. Neutral wind effects on the equatorial F-region ionosphere. J. Atmos. Terr. Phys. 1981, 43, 835–843. [Google Scholar] [CrossRef]
- Kalita, B.R.; Bhuyan, P.K.; Choudhary, M.; Chakrabarty, D.; Tiwari, R.C.; Huy, M.L.; Wang, K.; Hozumi, K.; Komolmis, T.; Nath, S.J. The differential conjugate hemisphere ionospheric response during solstice storms and the winter side maxima. Adv. Space Res. 2024, 73, 1893–1907. [Google Scholar] [CrossRef]
- Adimula, I.A.; Oladipo, O.A.; Adebiyi, S.J. Latitudinal and seasonal investigations of storm-time TEC variation. Pure Appl. Geophys. 2016, 173, 2521–2533. [Google Scholar] [CrossRef]
- Liou, K.; Newell, P.T.; Anderson, B.J.; Zanetti, L.; Meng, C.-I. Neutral composition effects on ionospheric storms at middle and low latitudes. J. Geophys. Res. Space Phys. 2005, 110, A05301. [Google Scholar] [CrossRef]
- Ahmed, O.; Badruddin, B.; Derouich, M. Dynamics and solar wind control of the recovery of strong geomagnetic storms. Astrophys. Space Sci. 2024, 369, 64. [Google Scholar] [CrossRef]
- Immel, T.J.; Mannucci, A.J. Ionospheric redistribution during geomagnetic storms. J. Geophys. Res. Space Phys. 2013, 118, 6402–6413. [Google Scholar] [CrossRef]
- Shen, C.-S.; Zi, M.-Y.; Wang, J.-S.; Xu, J.-Y.; Liu, S.-L. On the asymmetry of the storm-time current system in the ionosphere between southern and northern hemispheres. Chin. J. Geophys. 2013, 56, 1587–1594. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, S.; Liu, L.; Ren, J.; Aa, E. Hemispheric asymmetries in the mid-latitude ionosphere during the September 7–8, 2017 storm: Multi-instrument observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028829. [Google Scholar] [CrossRef]
- Ondoh, T.; Maeda, H. Geomagnetic-storm correlation between the northern and southern hemispheres. J. Geomagn. Geoelectr. 1962, 14, 22–32. [Google Scholar] [CrossRef]
- Jee, G.; Lee, H.-B.; Kim, Y.H.; Chung, J.-K.; Cho, J. Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J. Geophys. Res. Space Phys. 2010, 115, A10310. [Google Scholar] [CrossRef]
- Stanislawska, I.; Gulyaeva, T.L.; Grynyshyna-Poliuga, O.; Pustovalova, L.V. Ionospheric weather during five extreme geomagnetic superstorms since IGY deduced with the instantaneous global maps GIM-foF2. Space Weather 2018, 16, 1839–1855. [Google Scholar] [CrossRef]
- Lu, G.; Goncharenko, L.; Nicolls, M.J.; Maute, A.; Coster, A.; Paxton, L.J. Ionospheric and thermospheric variations associated with prompt penetration electric fields. J. Geophys. Res. Space Phys. 2012, 117, A08312. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L. Mid- and low-latitude prompt-penetration ionospheric zonal plasma drifts. Geophys. Res. Lett. 1998, 25, 3517–3520. [Google Scholar] [CrossRef]
- Li, H.; Xiao, C.; Li, K.; Wang, Z.; Wu, X.; Yu, Y.; Xiao, L. Exploring the Long-Term Relationship Between Thermospheric ΣO/N2 and Solar EUV Flux. Remote Sens. 2025, 17, 574. [Google Scholar] [CrossRef]
- Ratovsky, K.G.; Klimenko, M.V.; Yasyukevich, Y.V.; Klimenko, V.V.; Vesnin, A.M. Statistical Analysis and Interpretation of High-, Mid- and Low-Latitude Responses in Regional Electron Content to Geomagnetic Storms. Atmosphere 2020, 11, 1308. [Google Scholar] [CrossRef]
- Mokhtar, M.H.; Rahim, N.A.; Ismail, M.Y.; Buhari, S.M. Ionospheric Perturbation: A Review of Equatorial Plasma Bubble in the Ionosphere. In Proceedings of the 2019 6th International Conference on Space Science and Communication (IconSpace), Johor Bahru, Malaysia, 28–30 July 2019. [Google Scholar] [CrossRef]
- Liu, H.-L.; Richmond, A.D. Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity. J. Geophys. Res. Space Phys. 2013, 118, 2452–2465. [Google Scholar] [CrossRef]
- Fejer, J.A. Ionospheric modification and parametric instabilities. Rev. Geophys. 1979, 17, 135–153. [Google Scholar] [CrossRef]
- Pudovkin, M.I.; Lyatskaya, A.M.; Golovchanskaya, I.V. The influence of ionization and recombination processes on the dynamics of ionospheric plasma clouds. J. Atmos. Terres. Phys. 1987, 49, 1049–1057. [Google Scholar] [CrossRef]
- Paul, K.S.; Haralambous, H.; Moses, M.; Oikonomou, C.; Potirakis, S.M.; Bergeot, N.; Chevalier, J.-M. Investigation of the Ionospheric Response on Mother’s Day 2024 Geomagnetic Superstorm over the European Sector. Atmosphere 2025, 16, 180. [Google Scholar] [CrossRef]
- Carmo, C.S.; Dai, L.; Wrasse, C.M.; Barros, D.; Takahashi, H.; Figueiredo, C.A.O.B.; Wang, C.; Li, H.; Liu, Z. Ionospheric Response to the Extreme 2024 Mother’s Day Geomagnetic Storm Over the Latin American Sector. Space Weather 2024, 22, e2024SW004054. [Google Scholar] [CrossRef]
- Karan, D.K.; Martinis, C.R.; Daniell, R.E.; Eastes, R.W.; Wang, W.; McClintock, W.E.; Michell, R.G.; England, S. GOLD Observations of the Merging of the Southern Crest of the Equatorial Ionization Anomaly and Aurora During the 10 and 11 May 2024 Mother’s Day Super Geomagnetic Storm. Geophys. Res. Lett. 2024, 51, e2024GL110632. [Google Scholar] [CrossRef]
- Singh, R.; Scipión, D.E.; Kuyeng, K.; Condor, P.; De La Jara, C.; Velasquez, J.P.; Flores, R.; Ivan, E.; Souza, J.R.; Migliozzi, M. Ionospheric Disturbances Observed Over the Peruvian Sector During the Mother’s Day Storm (G5-Level) on 10–12 May 2024. J. Geophys. Res. Space Phys. 2024, 129, e2024JA033003. [Google Scholar] [CrossRef]
- Rout, D.; Kumar, A.; Singh, R.; Patra, S.; Karan, D.K.; Chakraborty, S.; Scipion, D.; Chakrabarty, D.; Riccobono, J. Evidence of Unusually Strong Equatorial Ionization Anomaly at Three Local Time Sectors During the Mother’s Day Geomagnetic Storm On 10–11 May 2024. Geophys. Res. Lett. 2025, 52, e2024GL111269. [Google Scholar] [CrossRef]
- Bojilova, R.; Mukhtarov, P.; Pancheva, D. Global Ionospheric Response During Extreme Geomagnetic Storm in May 2024. Remote Sens. 2024, 16, 4046. [Google Scholar] [CrossRef]
- Pierrard, V.; Winant, A.; Botek, E.; Péters de Bonhome, M. The Mother’s Day Solar Storm of 11 May 2024 and Its Effect on Earth’s Radiation Belts. Universe 2024, 10, 391. [Google Scholar] [CrossRef]
- Ram, S.T.; Veenadhari, B.; Dimri, A.P.; Bulusu, J.; Bagiya, M.; Gurubaran, S.; Parihar, N.; Remya, B.; Seemala, G.; Singh, R.; et al. Super-Intense Geomagnetic Storm on 10–11 May 2024: Possible Mechanisms and Impacts. Space Weather 2024, 22, e2024SW004126. [Google Scholar] [CrossRef]
Grid Point | Station Name | Longitude | Latitude |
---|---|---|---|
a | POHN00FSM | 158.2101 | 6.959944 |
b | SOLO00SLB | 159.9543 | −9.4349 |
c | WUH200CHN | 114.3573 | 30.5317 |
d | PERT00AUS | 115.8853 | −31.802 |
e | YIBL | 56.112 | 22.186 |
f | REUN00REU | 55.5716 | −21.2083 |
g | JEDY | 39.181 | 21.579 |
h | ABPO00MDG | 47.2292 | −19.0183 |
i | TOPL00BRA | −3.002 | 16.766 |
j | STHL00GBR | −5.6673 | −15.9425 |
k | CYNE00GUF | −52.3654 | 4.8221 |
l | IMPZ00BRA | −47.4972 | −5.4917 |
m | CRO100VIR | −64.5843 | 17.7569 |
n | SCRZ00BOL | −63.1597 | −17.7968 |
o | RDSD00DOM | −69.9113 | 18.4614 |
p | IQQE | −70.132 | −20.274 |
q | MKEA | −155.456 | 19.801 |
r | THTG00PYF | −149.606 | −17.577 |
s | KOKB | −159.665 | 22.126 |
t | CKIS00COK | −159.801 | −21.2009 |
UTC Epoch | Pre-Storm (DoY 129) | Main Storm Phase (DoY 131–132) | Recovery Phase (DoY 136) |
---|---|---|---|
00:00 UTC | Smooth VTEC distribution, peaking at 45° to 90° longitude. | Southern Hemisphere depletion; sharp gradients. | VTEC starts normalizing but still slightly depleted in the Southern Hemisphere. |
06:00 UTC | Low VTEC values, stable longitudinal pattern. | Significant drop in Southern Hemisphere VTEC; Northern Hemisphere shows storm-enhanced density (SED). | VTEC slowly recovering but still lower than pre-storm values. |
12:00 UTC | Peak ionization, symmetric VTEC between hemispheres. | Strong positive storm effects in the Northern Hemisphere (VTEC enhancement). | Diurnal pattern nearly restored, but residual perturbations at ±90° and ±180°. |
18:00 UTC | Maximum VTEC due to daytime solar effects. | Strongest perturbations: Northern Hemisphere enhancement, Southern Hemisphere depletion. | Asymmetry fading, but higher latitudes show delayed recovery. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pal, S.K.; Sarkar, S.; Nanda, K.; Sanyal, A.; Brawar, B.; Datta, A.; Potirakis, S.M.; Maurya, A.K.; Bhattacharya, A.; Panchadhyayee, P.; et al. Global Response of Vertical Total Electron Content to Mother’s Day G5 Geomagnetic Storm of May 2024: Insights from IGS and GIM Observations. Atmosphere 2025, 16, 529. https://doi.org/10.3390/atmos16050529
Pal SK, Sarkar S, Nanda K, Sanyal A, Brawar B, Datta A, Potirakis SM, Maurya AK, Bhattacharya A, Panchadhyayee P, et al. Global Response of Vertical Total Electron Content to Mother’s Day G5 Geomagnetic Storm of May 2024: Insights from IGS and GIM Observations. Atmosphere. 2025; 16(5):529. https://doi.org/10.3390/atmos16050529
Chicago/Turabian StylePal, Sanjoy Kumar, Soumen Sarkar, Kousik Nanda, Aritra Sanyal, Bhuvnesh Brawar, Abhirup Datta, Stelios M. Potirakis, Ajeet K. Maurya, Arnab Bhattacharya, Pradipta Panchadhyayee, and et al. 2025. "Global Response of Vertical Total Electron Content to Mother’s Day G5 Geomagnetic Storm of May 2024: Insights from IGS and GIM Observations" Atmosphere 16, no. 5: 529. https://doi.org/10.3390/atmos16050529
APA StylePal, S. K., Sarkar, S., Nanda, K., Sanyal, A., Brawar, B., Datta, A., Potirakis, S. M., Maurya, A. K., Bhattacharya, A., Panchadhyayee, P., Ray, S., & Sasmal, S. (2025). Global Response of Vertical Total Electron Content to Mother’s Day G5 Geomagnetic Storm of May 2024: Insights from IGS and GIM Observations. Atmosphere, 16(5), 529. https://doi.org/10.3390/atmos16050529