A Multi-Model Approach to Pollen Season Estimations: Case Study for Olea and Quercus in Thessaloniki, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Pollen and Meteorological Data
2.3. Predictive Models of MPS
2.3.1. Cumulative Temperature Approaches
2.3.2. Distribution Method (DM)
2.3.3. Machine Learning Techniques (MLTs)
2.3.4. Logistic Models (LM)
3. Results
3.1. Pollen Season Analysis
3.2. Performance of Predictive Models for MPS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MPS | Main Pollen Season |
LM | Logistic Models |
DM | Distribution Method |
MLTs | Machine Learning Techniques |
DT | Double Threshold |
LSTMs | Long Short-Term Memory models |
AIT | Allergic ImmunoTherapy |
AAP | Annual Available Pollen |
ECMWF | European Center for Medium-Range Weather Forecasts |
MAE | Mean Absolute Error |
DOY | Day Of Year |
sDOY | start Day Of Year |
eDOY | end Day Of Year |
PYAAT | Previous-Year Annual Average Temperature |
RMSE | Root Mean Squared Error |
MAE | Mean Absolute Error |
ANNs | Artificial Neural Networks |
MLP | Multi-Linear Perceptron |
NB | Naïve Bayes |
RF | Random Forest |
LDA | Linear Discriminant Analysis |
LightGBM | Light Gradient-Boosting Machine |
GA | Genetic Algorithm |
DFNN | Deep Feedforward Neural Network |
SGD | Stochastic Gradient Descent |
ReLU | Rectified Linear Unit |
XGBoost | eXtreme Gradient Boosting |
References
- Barber, D.; De La Torre, F.; Feo, F.; Florido, F.; Guardia, P.; Moreno, C.; Quiralte, J.; Lombardero, M.; Villalba, M.; Salcedo, G.; et al. Understanding Patient Sensitization Profiles in Complex Pollen Areas: A Molecular Epidemiological Study. Allergy 2008, 63, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.E.; Jacobson, K.W.; House, J.M.; Glovsky, M.M. Links between Pollen, Atopy and the Asthma Epidemic. Int. Arch. Allergy Immunol. 2007, 144, 162–170. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic Pollen and Pollen Allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Vitale, C.; Sanduzzi, A.; Molino, A.; Vatrella, A.; D’Amato, M. Allergenic Pollen and Pollen Allergy in Europe. In Allergy and Allergen Immunotherapy; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 287–306. [Google Scholar]
- Bousquet, J.; Schünemann, H.J.; Samolinski, B.; Demoly, P.; Baena-Cagnani, C.E.; Bachert, C.; Bonini, S.; Boulet, L.P.; Bousquet, P.J.; Brozek, J.L.; et al. Allergic Rhinitis and Its Impact on Asthma (ARIA): Achievements in 10 Years and Future Needs. J. Allergy Clin. Immunol. 2012, 130, 1049–1062. [Google Scholar] [CrossRef]
- Blaiss, M.S. Pediatric Allergic Rhinitis: Physical and Mental Complications. In Proceedings of the Allergy and Asthma Proceedings, Seattle, WA, USA, 6–11 November 2008; Volume 29, pp. 1–6. [Google Scholar]
- Thien, F.; Beggs, P.J.; Csutoros, D.; Darvall, J.; Hew, M.; Davies, J.M.; Bardin, P.G.; Bannister, T.; Barnes, S.; Bellomo, R.; et al. The Melbourne Epidemic Thunderstorm Asthma Event 2016: An Investigation of Environmental Triggers, Effect on Health Services, and Patient Risk Factors. Lancet Planet. Health 2018, 2, e255–e263. [Google Scholar] [CrossRef]
- Meltzer, E.O.; Nathan, R.; Derebery, J.; Stang, P.E.; Campbell, U.B.; Yeh, W.-S.; Corrao, M.; Stanford, R. Sleep, Quality of Life, and Productivity Impact of Nasal Symptoms in the United States: Findings from the Burden of Rhinitis in America Survey. In Allergy and Asthma Proceedings; OceanSide Publications, Inc.: Providence, RI, USA, 2009; Volume 30. [Google Scholar]
- Gioulekas, D.; Papakosta, D.; Damialis, A.; Spieksma, F.; Giouleka, P.; Patakas, D. Allergenic Pollen Records (15 Years) and Sensitization in Patients with Respiratory Allergy in Thessaloniki, Greece. Allergy 2004, 59, 174–184. [Google Scholar] [CrossRef]
- Spieksma, F.T.M. Pollinosis in Europe: New Observations and Developments. Rev. Palaeobot. Palynol. 1990, 64, 35–40. [Google Scholar] [CrossRef]
- Pereira, C.; Valero, A.; Loureiro, C.; Davila, I.; Martinez-Cócera, C.; Murio, C.; Rico, P.; Palomino, R. Iberian Study of Aeroallergens Sensitisation in Allergic Rhinitis. Eur. Ann. Allergy Clin. Immunol. 2006, 38, 186. [Google Scholar]
- Cebrino, J.; de la Cruz, S.; Barasona, M.J.; Alcázar, P.; Moreno, C.; Domínguez-Vilches, E.; Galán, C. Airborne Pollen in Córdoba City (Spain) and Its Implications for Pollen Allergy. Aerobiologia 2017, 33, 281–291. [Google Scholar] [CrossRef]
- Egger, C.; Focke, M.; Bircher, A.J.; Scherer, K.; Mothes-Luksch, N.; Horak, F.; Valenta, R. The Allergen Profile of Beech and Oak Pollen. Clin. Exp. Allergy 2008, 38, 1688–1696. [Google Scholar] [CrossRef]
- Jato, V.; Rodriguez-Rajo, F.J.; Fernandez-González, M.; Aira, M.J. Assessment of Quercus Flowering Trends in NW Spain. Int. J. Biometeorol. 2015, 59, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Ianovici, N.; Juhasz, M.; Kofol-Seliger, A.; Sikoparija, B. Comparative Analysis of Some Vernal Pollen Concentrations in Timisoara (Romania), Szeged (Hungary), Novi Sad (Serbia) and Ljubljana (Slovenia). Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 49–56. [Google Scholar]
- Ross, A.M.; Corden, J.M.; Fleming, D.M. The Role of Oak Pollen in Hay Fever Consultations in General Practice and the Factors Influencing Patients’ Decisions to Consult. Br. J. Gen. Pract. 1996, 46, 451–455. [Google Scholar] [PubMed]
- Jato, V.; Rodriguez-Rajo, F.J.; Aira, M.J. Use of Quercus Ilex Subsp. Ballota Phenological and Pollen-Production Data for Interpreting Quercus Pollen Curves. Aerobiologia 2007, 23, 91–105. [Google Scholar] [CrossRef]
- Ickovic, M.R.; Thibaudon, M. Allergenic Significance of Fagaceae Pollen. In Allergenic Pollen and Pollinosis in Europe; Blackwell Scientific Publications: Oxford, UK, 1991; pp. 36–44. [Google Scholar]
- Recio, M.; Picornell, A.; Trigo, M.M.; Gharbi, D.; García-Sánchez, J.; Cabezudo, B. Intensity and Temporality of Airborne Quercus Pollen in the Southwest Mediterranean Area: Correlation with Meteorological and Phenoclimatic Variables, Trends and Possible Adaptation to Climate Change. Agric. For. Meteorol. 2018, 250–251, 308–318. [Google Scholar] [CrossRef]
- Garcia-Mozo, H.; Galán, C.; Jato, V.; Belmonte, J.; Fernandez, D.; Gutierrez, M.; Aira, M.J.; Roure, J.M.; Ruiz, L.; Trigo, M.M.; et al. Quercus Pollen Season Dynamics in the Iberian Peninsula: Response to Meteorological Parameters and Possible Consequences of Climate Change. Ann. Agric. Environ. Med. 2006, 13, 209–224. [Google Scholar]
- Rojo, J.; Pérez-Badia, R. Models for Forecasting the Flowering of Cornicabra Olive Groves. Int. J. Biometeorol. 2015, 59, 1547–1556. [Google Scholar] [CrossRef]
- Ben Dhiab, A.; Ben Mimoun, M.; Oteros, J.; Garcia-Mozo, H.; Domínguez-Vilches, E.; Galán, C.; Abichou, M.; Msallem, M. Modeling Olive-Crop Forecasting in Tunisia. Theor. Appl. Climatol. 2017, 128, 541–549. [Google Scholar] [CrossRef]
- Barranco Navero, D.; Fernández Escobar, R.; Rallo Romero, L. El Cultivo del Olivo, 7th ed.; Ediciones Mundi-Prensa: Madrid, Spain, 2017. [Google Scholar]
- Galán, C.; García-Mozo, H.; Vázquez, L.; Ruiz, L.; Díaz De La Guardia, C.; Domínguez-Vilches, E. Modeling Olive Crop Yield in Andalusia, Spain. Agron. J. 2008, 100, 98–104. [Google Scholar] [CrossRef]
- Beggs, P.J.; Šikoparija, B.; Smith, M. Aerobiology in the International Journal of Biometeorology, 1957–2017. Int. J. Biometeorol. 2017, 61, 51–58. [Google Scholar] [CrossRef]
- Rodriguez-Rajo, F.J.; Méndez, J.; Jato, V. Factors Affecting Pollination Ecology of Quercus Anemophilous Species in North-West Spain. Bot. J. Linn. Soc. 2005, 149, 283–297. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European Phenological Response to Climate Change Matches the Warming Pattern. Glob. Change Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Rojo, J.; Picornell, A.; Oteros, J.; Werchan, M.; Werchan, B.; Bergmann, K.K.; Smith, M.; Weichenmeier, I.; Schmidt-Weber, C.B.; Buters, J. Consequences of Climate Change on Airborne Pollen in Bavaria, Central Europe. Reg. Environ. Change 2021, 21, 9. [Google Scholar] [CrossRef]
- Ramos, A.; Rapoport, H.F.; Cabello, D.; Rallo, L. Chilling Accumulation, Dormancy Release Temperature, and the Role of Leaves in Olive Reproductive Budburst: Evaluation Using Shoot Explants. Sci. Hortic. 2018, 231, 241–252. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Abatzoglou, J.T.; Anderegg, L.D.L.; Bielory, L.; Kinney, P.L.; Ziska, L. Anthropogenic Climate Change Is Worsening North American Pollen Seasons. Proc. Natl. Acad. Sci. USA 2021, 118, e2013284118. [Google Scholar] [CrossRef]
- Aguilera, F.; Valenzuela, L.R. Microclimatic-Induced Fluctuations in the Flower and Pollen Production Rate of Olive Trees (Olea europaea L.). Grana 2012, 51, 228–239. [Google Scholar] [CrossRef]
- Beggs, P.J. Climate Change, Aeroallergens, and the Aeroexposome. Environ. Res. Lett. 2021, 16, 35006. [Google Scholar] [CrossRef]
- Lake, I.R.; Jones, N.R.; Agnew, M.; Goodess, C.M.; Giorgi, F.; Hamaoui-Laguel, L.; Semenov, M.A.; Solomon, F.; Storkey, J.; Vautard, R.; et al. Climate Change and Future Pollen Allergy in Europe. Environ. Health Perspect. 2017, 125, 385–391. [Google Scholar] [CrossRef]
- Damialis, A.; Traidl-Hoffmann, C.; Treudler, R. Climate Change and Pollen Allergies. In Biodiversity and Health in the Face of Climate Change; Springer: Cham, Switzerland, 2019; pp. 47–66. [Google Scholar]
- Weber, R.W. Meteorologic Variables in Aerobiology. Immunol. Allergy Clin. 2003, 23, 411–422. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; Cook, B.I.; Allen, J.M.; Crimmins, T.M.; Betancourt, J.L.; Travers, S.E.; Pau, S.; Regetz, J.; Davies, T.J.; Kraft, N.J.B.; et al. Warming Experiments Underpredict Plant Phenological Responses to Climate Change. Nature 2012, 485, 494–497. [Google Scholar] [CrossRef]
- Orlandi, F.; Garcia-Mozo, H.; Ben Dhiab, A.; Galán, C.; Msallem, M.; Romano, B.; Abichou, M.; Dominguez-Vilches, E.; Fornaciari, M. Climatic Indices in the Interpretation of the Phenological Phases of the Olive in Mediterranean Areas during Its Biological Cycle. Clim. Change 2013, 116, 263–284. [Google Scholar] [CrossRef]
- Bonofiglio, T.; Orlandi, F.; Sgromo, C.; Romano, B.; Fornaciari, M. Evidences of Olive Pollination Date Variations in Relation to Spring Temperature Trends. Aerobiologia 2009, 25, 227–237. [Google Scholar] [CrossRef]
- Erkan, P.; Biçakçi, A.; Aybeke, M. Analysis of Airborne Pollen Fall in Tekirdag, Turkey. Asthma Allergy Immunol. 2010, 8, 46–54. [Google Scholar]
- Damialis, A.; Halley, J.M.; Gioulekas, D.; Vokou, D. Long-Term Trends in Atmospheric Pollen Levels in the City of Thessaloniki, Greece. Atmos. Environ. 2007, 41, 7011–7021. [Google Scholar] [CrossRef]
- Zhang, Y.; Bielory, L.; Georgopoulos, P.G. Climate Change Effect on Betula (Birch) and Quercus (Oak) Pollen Seasons in the United States. Int. J. Biometeorol. 2014, 58, 909–919. [Google Scholar] [CrossRef]
- Osborne, C.P.; Chuine, I.; Viner, D.; Woodward, F.I. Olive Phenology as a Sensitive Indicator of Future Climatic Warming in the Mediterranean. Plant Cell Environ. 2000, 23, 701–710. [Google Scholar] [CrossRef]
- Moriondo, M.; Trombi, G.; Ferrise, R.; Brandani, G.; Dibari, C.; Ammann, C.M.; Lippi, M.M.; Bindi, M. Olive Trees as Bio-Indicators of Climate Evolution in the Mediterranean Basin. Glob. Ecol. Biogeogr. 2013, 22, 818–833. [Google Scholar] [CrossRef]
- Orlandi, F.; Garcia-Mozo, H.; Ben Dhiab, A.; Galán, C.; Msallem, M.; Fornaciari, M. Olive Tree Phenology and Climate Variations in the Mediterranean Area over the Last Two Decades. Theor. Appl. Climatol. 2014, 115, 207–218. [Google Scholar] [CrossRef]
- Fernández-González, M.; González-Fernández, E.; Ribeiro, H.; Abreu, I.; Rodríguez-Rajo, F.J. Pollen Production of Quercus in the North-Western Iberian Peninsula and Airborne Pollen Concentration Trends during the Last 27 Years. Forests 2020, 11, 702. [Google Scholar] [CrossRef]
- Tormo-Molina, R.; Gonzalo-Garijo, M.A.; Silva-Palacios, I.; Muñoz-Rodríguez, A.F. 5 General Trends in Airborne Pollen Production and Pollination Periods at a Mediterranean Site (Badajoz, Southwest Spain). J. Investig. Allergol. Clin. Immunol. 2010, 20, 567–574. [Google Scholar]
- Gómez-Casero, M.T.; Galán, C.; Vilches, E.D. Flowering Phenology of Mediterranean “Quercus” Species in Different Locations (Córdoba, SW Iberian Peninsula). Acta Bot. Malacit. 2007, 32, 127–146. [Google Scholar] [CrossRef]
- Jato, V.; Rodríguez-Rajo, F.J.; Méndez, J.; Aira, M.J. Phenological Behaviour of Quercus in Ourense (NW Spain) and Its Relationship with the Atmospheric Pollen Season. Int. J. Biometeorol. 2002, 46, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.; Santos, L.; Abreu, I.; Cunha, M. Influence of Meteorological Parameters on Olea Flowering Date and Airborne Pollen Concentration in Four Regions of Portugal. Grana 2006, 45, 115–121. [Google Scholar] [CrossRef]
- Voukantsis, D.; Niska, H.; Karatzas, K.; Riga, M.; Damialis, A.; Vokou, D. Forecasting Daily Pollen Concentrations Using Data-Driven Modeling Methods in Thessaloniki, Greece. Atmos. Environ. 2010, 44, 5101–5111. [Google Scholar] [CrossRef]
- Kontos, S.; Papadogiannaki, S.; Parliari, D.; Steiner, A.L.; Melas, D. High Resolution Modeling of Quercus Pollen with an Eulerian Modeling System: A Case Study in Greece. Atmos. Environ. 2022, 268, 118816. [Google Scholar] [CrossRef]
- Sofiev, M.; Ritenberga, O.; Albertini, R.; Arteta, J.; Belmonte, J.; Bernstein, C.G.; Bonini, M.; Celenk, S.; Damialis, A.; Douros, J.; et al. Multi-Model Ensemble Simulations of Olive Pollen Distribution in Europe in 2014: Current Status and Outlook. Atmos. Chem. Phys. 2017, 17, 12341–12360. [Google Scholar] [CrossRef]
- Galán, C.; García-Mozo, H.; Cariñanos, P.; Alcázar, P.; Domínguez-Vilches, E. The Role of Temperature in the Onset of the Olea europaea L. Pollen Season in Southwestern Spain. Int. J. Biometeorol. 2001, 45, 8–12. [Google Scholar] [CrossRef]
- Galán, C.; Garcia-Mozo, H.; Vázquez, L.; Ruiz, L.; De La Guardia, C.D.; Trigo, M.M. Heat Requirement for the Onset of the Olea europaea L. Pollen Season in Several Sites in Andalusia and the Effect of the Expected Future Climate Change. Int. J. Biometeorol. 2005, 49, 184–188. [Google Scholar] [CrossRef]
- Cunha, M.; Ribeiro, H.; Costa, P.; Abreu, I. A Comparative Study of Vineyard Phenology and Pollen Metrics Extracted from Airborne Pollen Time Series. Aerobiologia 2015, 31, 45–56. [Google Scholar] [CrossRef]
- Garcia-Mozo, H.; Chuine, I.; Aira, M.J.; Belmonte, J.; Bermejo, D.; de la Guardia, C.D.; Elvira, B.; Gutiérrez, M.; Rodriguez-Rajo, J.; Ruiz, L.; et al. Regional Phenological Models for Forecasting the Start and Peak of the Quercus Pollen Season in Spain. Agric. For. Meteorol. 2008, 148, 372–380. [Google Scholar] [CrossRef]
- Navares, R.; Aznarte, J.L. Predicting the Poaceae Pollen Season: Six Month-Ahead Forecasting and Identification of Relevant Features. Int. J. Biometeorol. 2017, 61, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Kubik-Komar, A.; Piotrowska-Weryszko, K.; Weryszko-Chmielewska, E.; Kaszewski, B.M. Analysis of Fraxinus Pollen Seasons and Forecast Models Based on Meteorological Factors. Ann. Agric. Environ. Med. 2018, 25, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Grewling, Ł.; Jackowiak, B.; Smith, M. Variations in Quercus Sp. Pollen Seasons (1996–2011) in Poznań, Poland, in Relation to Meteorological Parameters. Aerobiologia 2014, 30, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Pfaar, O.; Bastl, K.; Berger, U.; Buters, J.; Calderon, M.A.; Clot, B.; Darsow, U.; Demoly, P.; Durham, S.R.; Galán, C.; et al. Defining Pollen Exposure Times for Clinical Trials of Allergen Immunotherapy for Pollen-Induced Rhinoconjunctivitis—An EAACI Position Paper. Allergy Eur. J. Allergy Clin. Immunol. 2017, 72, 713–722. [Google Scholar] [CrossRef]
- Tasioulis, T.; Karatzas, K.; Charalampopoulos, A.; Damialis, A.; Vokou, D. Five Ways to Define a Pollen Season: Exploring Congruence and Disparity in Its Attributes and Their Long-Term Trends. Aerobiologia 2022, 38, 71–83. [Google Scholar] [CrossRef]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended Terminology for Aerobiological Studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Linkosalo, T.; Ranta, H.; Oksanen, A.; Siljamo, P.; Luomajoki, A.; Kukkonen, J.; Sofiev, M. A Double-Threshold Temperature Sum Model for Predicting the Flowering Duration and Relative Intensity of Betula Pendula and B. Pubescens. Agric. For. Meteorol. 2010, 150, 1579–1584. [Google Scholar] [CrossRef]
- Sofiev, M.; Siljamo, P.; Ranta, H.; Linkosalo, T.; Jaeger, S.; Rasmussen, A.; Rantio-Lehtimaki, A.; Severova, E.; Kukkonen, J. A Numerical Model of Birch Pollen Emission and Dispersion in the Atmosphere. Description of the Emission Module. Int. J. Biometeorol. 2013, 57, 45–58. [Google Scholar] [CrossRef]
- Cordero, J.M.; Rojo, J.; Gutiérrez-Bustillo, A.M.; Narros, A.; Borge, R. Predicting the Olea Pollen Concentration with a Machine Learning Algorithm Ensemble. Int. J. Biometeorol. 2021, 65, 541–554. [Google Scholar] [CrossRef]
- Rodriguez-Rajo, F.J.; Frenguelli, G.; Jato, V. The Influence of Air Temperature on the Starting Date of Quercus Pollination in the South of Europe. Grana 2003, 42, 145–152. [Google Scholar] [CrossRef]
- Wozniak, M.C.; Steiner, A.L. A Prognostic Pollen Emissions Model for Climate Models (PECM1.0). Geosci. Model Dev. 2017, 10, 4105–4127. [Google Scholar] [CrossRef]
- Laaidi, M.; Thibaudon, M.; Besancenot, J.-P. Two Statistical Approaches to Forecasting the Start and Duration of the Pollen Season of Ambrosia in the Area of Lyon (France). Int. J. Biometeorol. 2003, 48, 65–73. [Google Scholar] [CrossRef]
- García-Mozo, H.; Yaezel, L.; Oteros, J.; Galán, C. Statistical Approach to the Analysis of Olive Long-Term Pollen Season Trends in Southern Spain. Sci. Total Environ. 2014, 473–474, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.; Cunha, M.; Abreu, I. Definition of Main Pollen Season Using Logistic Model. Ann. Agric. Environ. Med. 2007, 14, 259–264. [Google Scholar] [PubMed]
- Karatzas, K.D.; Kaltsatos, S. Air Pollution Modelling with the Aid of Computational Intelligence Methods in Thessaloniki, Greece. Simul. Model. Pract. Theory 2007, 15, 1310–1319. [Google Scholar] [CrossRef]
- Karatzas, K.; Voukantsis, D. Studying and Predicting Quality of Life Atmospheric Parameters with the Aid of Computational Intelligence Methods. In Proceedings of the International Congress on Environmental Modelling and Software, Barcelona, Spain, 7–10 July 2008. [Google Scholar]
- Zewdie, G.K.; Lary, D.J.; Levetin, E.; Garuma, G.F. Applying Deep Neural Networks and Ensemble Machine Learning Methods to Forecast Airborne Ambrosia Pollen. Int. J. Environ. Res. Public Health 2019, 16, 1992. [Google Scholar] [CrossRef]
- Voukantsis, D.; Karatzas, K.D.; Damialis, A.; Vokou, D. Forecasting Airborne Pollen Concentration of Poaceae (Grass) and Oleaceae (Olive), Using Artificial Neautral Networks and Genetic Algorithms, in Thessaloniki, Greece. In Proceedings of the The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–6. [Google Scholar]
- Myszkowska, D.; Majewska, R. Pollen Grains as Allergenic Environmental Factors—New Approach to the Forecasting of the Pollen Concentration during the Season. Ann. Agric. Environ. Med. 2014, 21, 681–688. [Google Scholar] [CrossRef]
- Novo-Lourés, M.; Fernández-González, M.; Pavón, R.; Espinosa, K.C.S.; Laza, R.; Guada, G.; Méndez, J.R.; Fdez-Riverola, F.; Rodriguez-Rajo, F.J. Alnus Airborne Pollen Trends during the Last 26 Years for Improving Machine Learning-Based Forecasting Methods. Forests 2023, 14, 1586. [Google Scholar] [CrossRef]
- Muzalyova, A.; Brunner, J.O.; Traidl-Hoffmann, C.; Damialis, A. Forecasting Betula and Poaceae Airborne Pollen Concentrations on a 3-Hourly Resolution in Augsburg, Germany: Toward Automatically Generated, Real-Time Predictions. Aerobiologia 2021, 37, 425–446. [Google Scholar] [CrossRef]
- Mancuso, S.; Pasquali, G.; Fiorino, P. Phenology Modelling and Forecasting in Olive (Olea europaea L.) Using Artificial Neural Networks. Adv. Hortic. Sci. 2002, 16, 155–164. [Google Scholar]
- Shokouhi, B.V.; de Hoogh, K.; Gehrig, R.; Eeftens, M. Spatiotemporal Modelling of Airborne Birch and Grass Pollen Concentration across Switzerland: A Comparison of Statistical, Machine Learning and Ensemble Methods. Environ. Res. 2024, 263, 119999. [Google Scholar]
- Laaidi, M. Forecasting the Start of the Pollen Season of Poaceae: Evaluation of Some Methods Based on Meteorological Factors. Int. J. Biometeorol. 2001, 45, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk, I. Forecasting the Start of Quercus Pollen Season Using Several Methods—The Evaluation of Their Efficiency. Int. J. Biometeorol. 2009, 53, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Snyder, R.L. Hand Calculating Degree Days. Agric. For. Meteorol. 1985, 35, 353–358. [Google Scholar] [CrossRef]
- Vyzantiadou, M.M.; Selevista, M. Protection of Cultural Heritage in Thessaloniki: A Review of Designation Actions. Heritage 2019, 2, 717–731. [Google Scholar] [CrossRef]
- Theofanis, M. Reviewing the Strategic Role of the Port of Thessaloniki for the Economic Development in South-Eastern Europe: A Qualitative and Quantitative Research of the Port of Thessaloniki and Its Impact on the Growth of the Region Involved. In Proceedings of the9th ASECU Youth International Conference and Summer School & 10TH Jubilee Summer School of the Faculty of Economics, Skopje, North Macedonia, 12–19 September 2020; ASECU: Thessaloniki, Greece, 2021. [Google Scholar]
- Hellenic Statistical Authority. Data on Estimated Population (1.1.2023) and Migration Flows. 2022. Available online: https://www.statistics.gr/documents/20181/b248e72c-2917-bdae-1d15-98d22787adb7 (accessed on 8 January 2025).
- Evers, D.; Katurić, I.; van der Wouden, R. Urbanization in Europe 2000–2018: Amount, Density, and Form. In Urbanization in Europe: Past Developments and Pathways to a Sustainable Future; Springer: Cham, Switzerland, 2024; pp. 15–52. [Google Scholar]
- Heristanidis, S. Study of the Effect of Grazing in Suburban Areas of Thessaloniki by Use of Geographical Information Systems (GIS). Ph.D. Thesis, Aristotle University, Thessaloniki, Greece, 2001. (In Greek with English Summary). [Google Scholar]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R. Mediterranean Climate Variability; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Giannaros, T.M.; Melas, D. Study of the Urban Heat Island in a Coastal Mediterranean City: The Case Study of Thessaloniki, Greece. Atmos. Res. 2012, 118, 103–120. [Google Scholar] [CrossRef]
- Krigas, N.; Kokkini, S. The Indigenous Vascular Flora of the Urban and Suburban Area of Thessaloniki (N Greece). Bot. Chron 2005, 18, 29–84. [Google Scholar]
- Damialis, A.; Charalampopoulos, A.; Lazarina, M.; Diamanti, E.; Almpanidou, V.; Maraidoni, A.M.; Symeonidou, A.; Staikidou, E.; Syropoulou, E.; Leontidou, K.; et al. Plant Flowering Mirrored in Airborne Pollen Seasons? Evidence from Phenological Observations in 14 Woody Taxa. Atmos. Environ. 2020, 240, 117708. [Google Scholar] [CrossRef]
- Charalampopoulos, A.; Lazarina, M.; Tsiripidis, I.; Vokou, D. Quantifying the Relationship between Airborne Pollen and Vegetation in the Urban Environment. Aerobiologia 2018, 34, 285–300. [Google Scholar] [CrossRef]
- Ziello, C.; Sparks, T.H.; Estrella, N.; Belmonte, J.; Bergmann, K.C.; Bucher, E.; Brighetti, M.A.; Damialis, A.; Detandt, M.; Galán, C.; et al. Changes to Airborne Pollen Counts across Europe. PLoS ONE 2012, 7, e34076. [Google Scholar] [CrossRef]
- Damialis, A.; Gioulekas, D.; Lazopoulou, C.; Balafoutis, C.; Vokou, D. Transport of Airborne Pollen into the City of Thessaloniki: The Effects of Wind Direction, Speed and Persistence. Int. J. Biometeorol. 2005, 49, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Damialis, A.; Fotiou, C.; Halley, J.M.; Vokou, D. Effects of Environmental Factors on Pollen Production in Anemophilous Woody Species. Trees 2011, 25, 253–264. [Google Scholar] [CrossRef]
- Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.-J.; Gunia, K. Statistical Mapping of Tree Species over Europe. Eur. J. For. Res. 2012, 131, 145–157. [Google Scholar] [CrossRef]
- Hirst, J.M. An Automatic Volumetric Spore Trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Charalampopoulos, A.; Damialis, A.; Lazarina, M.; Halley, J.M.; Vokou, D. Spatiotemporal Assessment of Airborne Pollen in the Urban Environment: The Pollenscape of Thessaloniki as a Case Study. Atmos. Environ. 2021, 247, 118185. [Google Scholar] [CrossRef]
- ΕΝ 16868:2019; Ambient Air—Sampling and Analysis of Airbone Pollen Grains and Fungal Spores for Networks Related to Allergy—Volumetric Hirst Method. VDI/DIN-Kommission Reinhaltung der Luft (KRdL)—Normenausschuss: Düsseldorf, Germany, 2019.
- Galán, C.; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R. Pollen Monitoring: Minimum Requirements and Reproducibility of Analysis. Aerobiologia 2014, 30, 385–395. [Google Scholar] [CrossRef]
- Andersen, T.B. A Model to Predict the Beginning of the Pollen Season. Grana 1991, 30, 269–275. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B.; et al. From ERA-Interim to ERA5: The Considerable Impact of ECMWF’s next-Generation Reanalysis on Lagrangian Transport Simulations. Atmos. Chem. Phys. 2019, 19, 3097–3214. [Google Scholar] [CrossRef]
- Grange, S.K. Averaging Wind Speeds and Directions. 2024. Available online: https://www.researchgate.net/profile/Stuart-Grange/publication/262766424_Technical_note_Averaging_wind_speeds_and_directions/links/54f6184f0cf27d8ed71d5bd4/Technical-note-Averaging-wind-speeds-and-directions.pdf (accessed on 8 January 2025).
- Ligr, M.; Ron, C.; Natr, L. Calculation of the Photo Period Length. Bioinformatics 1995, 11, 133–139. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Sarvas, R. Investigations on the Annual Cycle of Development of Forest Trees. Active Period. Metsantutkimuslaitoksen Julk. 1972, 76, 110. [Google Scholar]
- Alcalá, A.R.; Barranco, D. Prediction of Flowering Time in Olive for the Cordoba Olive Collection. HortScience 1992, 27, 1205–1207. [Google Scholar] [CrossRef]
- Orlandi, F.; Lanari, D.; Romano, B.; Fornaciari, M. New Model to Predict the Timing of Olive (Olea europaea) Flowering: A Case Study in Central Italy. N. Z. J. Crop Hortic. Sci. 2006, 34, 93–99. [Google Scholar] [CrossRef]
- Hidalgo, P.J.; Mangin, A.; Galán, C.; Hembise, O.; Vázquez, L.M.; Sanchez, O. An Automated System for Surveying and Forecasting Olea Pollen Dispersion. Aerobiologia 2002, 18, 23–31. [Google Scholar] [CrossRef]
- Tesar, M.B. Physiological Basis of Crop Growth and Development; ASA, CSSA: Madison, WI, USA, 1984. [Google Scholar]
- Frenguelli, G.; Bricchi, E.; Romano, B.; Mincigrucci, G.; Spieksma, F.T.M. A Predictive Study on the Beginning of the Pollen Season for Gramineae and Olea europaea L. Aerobiologia 1989, 5, 64–70. [Google Scholar] [CrossRef]
- Alba, F.; Díaz De La Guardia, C. The Effect of Air Temperature on the Starting Dates of the Ulmus, Platanus and Olea Pollen Seasons in the SE Iberian Peninsula. Aerobiologia 1998, 14, 191–194. [Google Scholar] [CrossRef]
- Garcia-Mozo, H.; Galán, C.; Gomez-Casero, M.T.; Dominguez, E. A Comparative Study of Different Temperature Accumulation Methods for Predicting the Start of the Quercus Pollen Season in Córdoba (South West Spain). Grana 2000, 39, 194–199. [Google Scholar] [CrossRef]
- Garcia-Mozo, H.; López-Orozco, R.; Oteros, J.; Galán, C. Factors Driving Autumn Quercus Flowering in a Thermo-Mediterranean Area. Agronomy 2022, 12, 2596. [Google Scholar] [CrossRef]
- Tan, J.; Yang, J.; Wu, S.; Chen, G.; Zhao, J. A Critical Look at the Current Train/Test Split in Machine Learning. arXiv 2021, arXiv:2106.04525. [Google Scholar]
- Chojnacki, K.; Ślepaczuk, R. Ensembled LSTM with Walk Forward Optimization in Algorithmic Trading; University of Warsaw: Warsaw, Poland, 2023. [Google Scholar]
- Mehtab, S.; Sen, J.; Dutta, A. Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models. In Proceedings of the Machine Learning and Metaheuristics Algorithms, and Applications: Second Symposium, SoMMA 2020, Chennai, India, 14–17 October 2020; Revised Selected Papers 2; Springer: Singapore, 2021; pp. 88–106. [Google Scholar]
- Wang, S.; Li, K.; Liu, Y.; Chen, Y.; Tang, X. VIX Constant Maturity Futures Trading Strategy: A Walk-Forward Machine Learning Study. PLoS ONE 2024, 19, e0302289. [Google Scholar] [CrossRef] [PubMed]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm-A Literature Review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384. [Google Scholar]
- Niska, H.; Hiltunen, T.; Karppinen, A.; Ruuskanen, J.; Kolehmainen, M. Evolving the Neural Network Model for Forecasting Air Pollution Time Series. Eng. Appl. Artif. Intell. 2004, 17, 159–167. [Google Scholar] [CrossRef]
- Niska, H.; Rantamäki, M.; Hiltunen, T.; Karppinen, A.; Kukkonen, J.; Ruuskanen, J.; Kolehmainen, M. Evaluation of an Integrated Modelling System Containing a Multi-Layer Perceptron Model and the Numerical Weather Prediction Model HIRLAM for the Forecasting of Urban Airborne Pollutant Concentrations. Atmos. Environ. 2005, 39, 6524–6536. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial Neural Networks (the Multilayer Perceptron)—A Review of Applications in the Atmospheric Sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Kukkonen, J.; Partanen, L.; Karppinen, A.; Ruuskanen, J.; Junninen, H.; Kolehmainen, M.; Niska, H.; Dorling, S.; Chatterton, T.; Foxall, R.; et al. Extensive Evaluation of Neural Network Models for the Prediction of NO2 and PM10 Concentrations, Compared with a Deterministic Modelling System and Measurements in Central Helsinki. Atmos. Environ. 2003, 37, 4539–4550. [Google Scholar] [CrossRef]
- Walczak, S. Artificial Neural Networks. In Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction; IGI Global: Hershey, PA, USA, 2019; pp. 40–53. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Oteros, J.; García-Mozo, H.; Hervás-Martínez, C.; Galán, C. Year Clustering Analysis for Modelling Olive Flowering Phenology. Int. J. Biometeorol. 2013, 57, 545–555. [Google Scholar] [CrossRef]
- Berrar, D. Bayes’ Theorem and Naive Bayes Classifier. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Boldeanu, M.; Burileanu, C.; Cucu, H.; Marmureanu, L. Pollen Classification Using Classical ML Algorithms on Fluorescence and Scattering Data. UPB Sci. Bull. Ser. C 2022, 84, 123–136. [Google Scholar]
- Dhawale, V.R.; Tidke, J.A.; Dudul, S. V Efficient Classification of Pollen Grains Using Computational Intelligence Approach. In Proceedings of the International Conference for Convergence for Technology, Pune, India, 6–8 April 2014; pp. 1–6. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. In Ensemble Machine Learning; Springer: New York, NY, USA, 2012; pp. 157–175. [Google Scholar]
- Lo, F.; Bitz, C.M.; Hess, J.J. Development of a Random Forest Model for Forecasting Allergenic Pollen in North America. Sci. Total Environ. 2021, 773, 145590. [Google Scholar] [CrossRef]
- Navares, R.; Aznarte, J.L. Forecasting Plantago Pollen: Improving Feature Selection through Random Forests, Clustering, and Friedman Tests. Theor. Appl. Climatol. 2020, 139, 163–174. [Google Scholar] [CrossRef]
- Fisher, R.A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Sánchez Mesa, J.A.; Galán, C.; Hervás, C. The Use of Discriminant Analysis and Neural Networks to Forecast the Severity of the Poaceae Pollen Season in a Region with a Typical Mediterranean Climate. Int. J. Biometeorol. 2005, 49, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Alba, F.; De La Guardia, C.D.; Comtois, P. The Effect of Meteorological Parameters on Diurnal Patterns of Airborne Olive Pollen Concentration. Grana 2000, 39, 200–208. [Google Scholar] [CrossRef]
- Papadogiannaki, S.; Kontos, S.; Parliari, D.; Melas, D. Pollen Phenology Distributions and Modeled Concentrations in Thessaloniki, Greece. In Proceedings of the 11th International Conference of the Balkan Physical Union (BPU11), Belgrade, Serbia, 28 August–1 September 2022. [Google Scholar]
Variable Name | Unit | |
---|---|---|
Meteorological | 2 m mean, minimum, and maximum temperature | °C |
2 m dew point temperature | °C | |
10 m U wind component | ms−1 | |
10 m V wind component | ms−1 | |
Total precipitation | mm | |
Soil temperature level 1 | °C | |
Total cloud cover | 0–1 | |
Total column water | kg m−2 | |
Surface air pressure | Pa | |
Mean surface downward short-wave radiation flux | Wm−2 | |
Cyclical | Season | 1, 2, 3, 4 |
Month | 1, 2, …, 11, 12 | |
Week | 1, 2, …, 52, 53 | |
Day of Year | 1, 2, …, 365, 366 |
MPS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2019 | 2020 | 2021 | 2022 | ||||||||
Start | Ol. | Quer. | Ol. | Quer. | Ol. | Quer. | Ol. | Quer. | Ol. | Quer. | Ol. | Quer. | |
Obs. | 94 | 83 | 100 | 95 | 99 | 102 | 98 | 105 | 89 | 97 | 92 | 111 | |
DTa | 88 | 91 | 101 | 104 | 99 | 98 | 102 | 104 | 95 | 100 | 110 | 113 | |
DTb | 85 | 84 | 100 | 99 | 102 | 98 | 101 | 100 | 93 | 93 | 108 | 108 | |
DTc | 97 | 83 | 105 | 89 | 116 | 116 | 120 | 102 | 119 | 93 | 99 | 98 | |
DM | 92 | 86 | 95 | 100 | 96 | 103 | 96 | 103 | 95 | 101 | 95 | 97 | |
LMa | 90 | 81 | 97 | 94 | 95 | 95 | 97 | 103 | 90 | 105 | 91 | 108 | |
LMb | 95 | 96 | 107 | 96 | 114 | 104 | 97 | 109 | 90 | 115 | 96 | 111 | |
End | |||||||||||||
Obs. | 142 | 138 | 155 | 133 | 157 | 150 | 154 | 149 | 151 | 147 | 161 | 158 | |
DTa | 145 | 138 | 153 | 147 | 155 | 149 | 157 | 149 | 152 | 146 | 156 | 151 | |
DTb | 140 | 140 | 151 | 132 | 155 | 148 | 153 | 152 | 150 | 143 | 158 | 159 | |
DTc | 153 | 135 | 151 | 144 | 156 | 150 | 160 | 145 | 154 | 149 | 157 | 146 | |
DM | 144 | 139 | 154 | 146 | 156 | 148 | 156 | 148 | 155 | 147 | 152 | 145 | |
LMa | 145 | 140 | 159 | 135 | 157 | 152 | 152 | 149 | 148 | 146 | 158 | 160 | |
LMb | 144 | 133 | 151 | 135 | 154 | 156 | 150 | 147 | 154 | 150 | 163 | 148 |
Parameters Estimates | IP | ||||||
---|---|---|---|---|---|---|---|
Taxon | Year | α | β | γ | R2 | x | y |
Olea | 2016 | 354.89 | −20.59 | 0.15 | 0.99 | 130 | 177 |
2017 | 250.01 | −27.38 | 0.20 | 0.99 | 140 | 125 | |
2019 | 500.52 | −34.58 | 0.24 | 0.99 | 144 | 250 | |
2020 | 353.24 | −14.23 | 0.11 | 0.99 | 129 | 177 | |
2021 | 270.28 | −13.72 | 0.10 | 0.99 | 132 | 135 | |
2022 | 288.22 | −13.85 | 0.09 | 0.98 | 141 | 144 | |
Quercus | 2016 | 4647.77 | −23.62 | 0.22 | 0.99 | 107 | 2324 |
2017 | 4104.12 | −21.57 | 0.19 | 0.99 | 108 | 2052 | |
2019 | 2681.33 | −15.20 | 0.12 | 0.99 | 123 | 1341 | |
2020 | 2026.19 | −25.29 | 0.21 | 0.99 | 121 | 1013 | |
2021 | 5916.88 | −30.06 | 0.24 | 0.99 | 125 | 2958 | |
2022 | 1145.02 | −25.82 | 0.21 | 0.99 | 121 | 573 |
Taxon | MPS | ||||||||
---|---|---|---|---|---|---|---|---|---|
Start | Obs. | DFNN | MLP | NB | RF | LDA | Ensemble | ||
Olea | ‘22 | 92 | +3 | +5 | −2 | +3 | +2 | −1 | |
sin ‘22 | +1 | −2 | −1 | −1 | +1 | 0 | |||
Walk-Forward | |||||||||
‘19 | 99 | −3 | 0 | 0 | 0 | +8 | +1 | ||
sin ‘19 | +9 | 0 | −7 | −5 | +5 | −7 | |||
‘22 | 92 | −2 | −2 | −2 | 0 | −5 | −2 | ||
sin ‘22 | +1 | −3 | +2 | −4 | −1 | −1 | |||
Quercus | ‘22 | 111 | −5 | −4 | −6 | +3 | +11 | −4 | |
sin ‘22 | +6 | +3 | +1 | +5 | −9 | +1 | |||
Walk-Forward | |||||||||
‘19 | 102 | −2 | −5 | −4 | −6 | −10 | −6 | ||
sin ‘19 | −2 | −3 | −3 | −10 | −8 | −5 | |||
‘22 | 111 | −1 | +2 | −6 | −1 | −2 | −4 | ||
sin ‘22 | −3 | +2 | −3 | +3 | −10 | −2 | |||
End | Obs. | DFNN | MLP | NB | RF | LDA | Ensemble | ||
Olea | ‘22 | 161 | +4 | +1 | −8 | −5 | −1 | −2 | |
sin ‘22 | −3 | −5 | −10 | −7 | 0 | −5 | |||
Walk-Forward | |||||||||
‘19 | 157 | −1 | −7 | −3 | −5 | −5 | −4 | ||
sin ‘19 | −1 | +3 | −6 | −8 | −2 | −3 | |||
‘22 | 161 | +6 | −1 | −5 | −7 | +2 | −1 | ||
sin ‘22 | −2 | 0 | −8 | −1 | −2 | −3 | |||
Quercus | ‘22 | 158 | −7 | +8 | −10 | −7 | −12 | −9 | |
sin ‘22 | +5 | −7 | −7 | −9 | −9 | −6 | |||
Walk-Forward | |||||||||
‘19 | 150 | −4 | −1 | −5 | −6 | −9 | −5 | ||
sin ‘19 | −4 | −1 | −4 | −9 | −7 | −5 | |||
‘22 | 158 | −4 | +2 | −4 | −2 | −11 | −4 | ||
sin ‘22 | −5 | −3 | −3 | −7 | −9 | −6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadogiannaki, S.; Karatzas, K.; Kontos, S.; Poupkou, A.; Melas, D. A Multi-Model Approach to Pollen Season Estimations: Case Study for Olea and Quercus in Thessaloniki, Greece. Atmosphere 2025, 16, 454. https://doi.org/10.3390/atmos16040454
Papadogiannaki S, Karatzas K, Kontos S, Poupkou A, Melas D. A Multi-Model Approach to Pollen Season Estimations: Case Study for Olea and Quercus in Thessaloniki, Greece. Atmosphere. 2025; 16(4):454. https://doi.org/10.3390/atmos16040454
Chicago/Turabian StylePapadogiannaki, Sofia, Kostas Karatzas, Serafim Kontos, Anastasia Poupkou, and Dimitrios Melas. 2025. "A Multi-Model Approach to Pollen Season Estimations: Case Study for Olea and Quercus in Thessaloniki, Greece" Atmosphere 16, no. 4: 454. https://doi.org/10.3390/atmos16040454
APA StylePapadogiannaki, S., Karatzas, K., Kontos, S., Poupkou, A., & Melas, D. (2025). A Multi-Model Approach to Pollen Season Estimations: Case Study for Olea and Quercus in Thessaloniki, Greece. Atmosphere, 16(4), 454. https://doi.org/10.3390/atmos16040454