Evaluation of the Contributions of Year-Specific Climate Anomaly, Nationwide Warming, and Urban Warming to Hot Summers in Japan
Abstract
:1. Introduction
2. Data and Procedure of Analysis
2.1. Data and Homogenization
0 (after relocation).
2.2. Evaluation of Urbanness Around Each Station
2.3. Indices of Hotness During Summer
- 〈T●〉: Average of T● for the 62 days in July and August.
- T●(10): Average of the top 10 T● values among 122 days from June to September.
- T●(30): Average of the top 30 T● values among 122 days from June to September.
- T●(50): Average of the top 50 T● values among 122 days from June to September.
2.4. Analysis of Interannual Variation in Summer Heat Index
3. Results
3.1. Separation of Year-Specific Components and Non-Urban and Urban Changes
3.2. Climatological Aspects of Each Component
3.2.1. Year-Specific Components
3.2.2. Non-Urban and Urban Trends
4. Discussion
4.1. Sensitivity of Results to the Procedure of Calculating the Non-Urban Component
- C1: The smoothed time series was calculated using a weight exp {−[(t − t0)/τ]2} that was defined by τ = 5 years instead of τ = 10 years and was applied to the 21 years from 10 years before t0 to 10 years after t0.
- C2: The smoothed time series was calculated from a weighted least-squares method including a linear trend term, applying a weight exp {−[(t − t0)/τ]2} with τ = 20 years to the 81 years from 40 years before t0 to 40 years after t0.
- C3: The non-urban time series was defined from the data at stations with P < 1000 km−2, instead of those with P < 600 km−2.
4.2. Complications Arising from Coupled Changes in the Atmosphere–Ocean System and the Climate
5. Summary
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AO | Arctic Oscillation |
IPCC | Intergovernmental Panel on Climate Change |
JMA | Japan Meteorological Agency |
PDO | Pacific Decadal Oscillation |
SD | Standard deviation |
SO | Southern Oscillation |
References
- Ng, C.F.; Ueda, K.; Ono, M.; Nitta, H.; Takami, A. Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan. Int. J. Biometeorol. 2014, 58, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Fujibe, F. Climatological Study of Urban Climate and Heat and Cold Mortalities in Japan; Springer Nature: Singapore, 2023; 203p, ISBN 978-981-99-4385-2. [Google Scholar] [CrossRef]
- Zeng, M.; Baptista, E.A.; Kakinuma, K. Heat impacts on an aging society: A spatio-temporal analysis of heatstroke deaths in Japan. Environ. Res. Commun. 2024, 6, 115003. [Google Scholar] [CrossRef]
- Iizumi, T.; Hayashi, Y.; Kimura, F. Influence on rice production in Japan from cool and hot summers after global warming. J. Agric. Meteorol. 2007, 63, 11–23. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kuwagata, T.; Yoshimoto, M.; Yokozawa, M. The hot summers and rice in Japan. J. Agric. Meteorol. 2011, 67, 205–207. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Sakai, H.; Ishigooka, Y.; Kuwagata, T.; Ishimaru, T.; Nakagawa, H.; Maruyama, A.; Ogiwara, H.; Nagata, K. Field survey on rice spikelet sterility in an extremely hot summer of 2018 in Japan. J. Agric. Meteorol. 2021, 77, 262–269. [Google Scholar] [CrossRef]
- Ogasawara, T.; Kawamura, R. Effects of combined teleconnection patterns on the East Asian summer monsoon circulation: Remote forcing from low- and high-latitude regions. J. Meteorol. Soc. Jpn. 2008, 86, 491–504. [Google Scholar] [CrossRef]
- Nishii, K.; Taguchi, B.; Nakamura, H. An atmospheric general circulation model assessment of oceanic impacts on extreme climatic events over Japan in July 2018. J. Meteorol. Soc. Jpn. 2020, 98, 801–820. [Google Scholar] [CrossRef]
- Hasegawa, A.; Imada, Y.; Shiogama, H.; Mori, M.; Tatebe, H.; Watanabe, M. Impact of air-sea coupling on the probability of occurrence of heat waves in Japan. Prog. Earth Planet. Sci. 2020, 7, 78. [Google Scholar] [CrossRef]
- Inoue, M.; Ugajin, A.; Kiguchi, O.; Yamashita, Y.; Komine, M.; Yamakawa, S. Effects of the Tibetan High and the North Pacific High on the occurrence of hot or cool summers in Japan. Atmosphere 2021, 12, 307. [Google Scholar] [CrossRef]
- Noh, E.; Kim, J.; Jun, S.-Y.; Cha, D.-H.; Park, M.-S.; Kim, J.-H.; Kim, H.-G. The role of the Pacific-Japan pattern in extreme heatwaves. Geophys. Res. Lett. 2021, 48, e2021GL093990. [Google Scholar] [CrossRef]
- Mogi, A.; Watanabe, M. Qualifying contributions of teleconnection patterns to extremely hot summers in Japan. J. Meteorol. Soc. Jpn. 2022, 100, 509–522. [Google Scholar] [CrossRef]
- Takemura, K.; Sato, H.; Ito, A.; Umeda, T.; Maeda, S.; Hirai, M.; Tamaki, Y.; Murai, H.; Nakamigawa, H.; Takayabu, Y.N.; et al. Preliminary diagnosis of primary factors for an unprecedented heatwave over Japan in 2023 summer. SOLA 2024, 20, 69–78. [Google Scholar] [CrossRef]
- Sato, H.; Takemura, K.; Ito, A.; Umeda, T.; Maeda, S.; Tanimoto, Y.; Nonaka, M.; Nakamura, H. Impact of an unprecedented marine heatwave on extremely hot summer over Northern Japan in 2023. Sci. Rep. 2024, 14, 16100. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; 2391p. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Climate Change Monitoring Report 2023; Japan Meteorological Agency: Tokyo, Japan, 2024; 94p. Available online: https://www.jma.go.jp/jma/en/NMHS/indexe_ccmr.html (accessed on 9 February 2025).
- Imada, Y.; Shiogama, H.; Watanabe, M.; Mori, M.; Ishii, M.; Kimoto, M. The contribution of anthropogenic forcing to the Japanese heat waves of 2013. In “Explaining Extreme Events of 2013 from a Climate Perspective”. Bull. Am. Meteorol. Soc. 2014, 95, S52–S54. [Google Scholar] [CrossRef]
- Imada, Y.; Shiogama, H.; Takahashi, C.; Watanabe, M.; Mori, M.; Kamae, Y.; Shuhei, M. Climate change increased the likelihood of the 2016 heat extremes in Asia. Bull. Am. Meteorol. Soc. 2018, 99, S97–S101. [Google Scholar] [CrossRef]
- Imada, Y.; Watanabe, M.; Kawase, H.; Shiogama, H.; Arai, M. The July 2018 high temperature event in Japan could not have happened without human-induced global warming. SOLA 2019, 15A, 8–12. [Google Scholar] [CrossRef]
- Statistics Bureau of Japan. Statistical Geographic Information System. Available online: https://www.e-stat.go.jp/gis/statmap-search?page=1&type=1&toukeiCode=00200521 (accessed on 9 February 2025).
- Statistics Bureau of Japan. What is a Densely Inhabited District? Available online: https://www.stat.go.jp/english/data/chiri/did/1-1.html (accessed on 14 March 2025).
- Landsberg, H.E. The Urban Climate; Academic Press: New York, NY, USA, 1981; 275p, ISBN 978-0-12-435960-4. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; 546p, ISBN 978-11-074-2953-6. [Google Scholar] [CrossRef]
- Kanda, M. Progress in urban meteorology: A review. J. Meteorol. Soc. Jpn. 2007, 85B, 363–383. [Google Scholar] [CrossRef]
- Kusaka, H. Recent progress on urban climate study in Japan. Geogr. Rev. Jpn. 2008, 81, 361–374. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Yokoyama, H.; Ando, H.; Ichino, M.; Ishii, K.; Mikami, T. Spatial distribution of summer temperature in Tokyo wards: Observation results of METROS. Geogr. Rev. Tokyo Metrop. Univ. 2008, 43, 77–81. Available online: https://tokyo-metro-u.repo.nii.ac.jp/record/3052/files/20005-43-014.pdf (accessed on 14 March 2025).
- Yamato, H.; Mikami, T.; Takahashi, H. Impact of sea breeze penetration over urban areas on midsummer temperature distributions in the Tokyo metropolitan area. Int. J. Climatol. 2017, 37, 5154–5169. [Google Scholar] [CrossRef]
- Aoyagi, T.; Seino, N. A square prism urban canopy scheme for the NHM and its evaluation on summer conditions in the Tokyo metropolitan area, Japan. J. Appl. Meteorol. Climatol. 2011, 50, 1476–1496. [Google Scholar] [CrossRef]
- Kusaka, H.; Chen, F.; Tewari, M.; Dudhia, J.; Gill, D.O.; Duda, M.G.; Wang, W.; Miya, Y. Numerical simulation of urban heat island effect by the WRF model with 4-km grid increment: An inter-comparison study between the urban canopy model and slab model. J. Meteorol. Soc. Jpn. 2012, 90, 33–45. [Google Scholar] [CrossRef]
- Vitanova, L.L.; Kusaka, H.; Doan, V.Q.; Nishi, A. Numerical study of the urban heat island in Sendai City with potential natural vegetation and the 1850s and 2000s land-use data. J. Meteorol. Soc. Jpn. 2019, 97, 227–252. [Google Scholar] [CrossRef]
- Katata, G.; Connolly, R.; O’Neill, P. Evidence of urban blending in homogenized temperature records in Japan and in the United States: Implications for the reliability of global land surface air temperature data. J. Appl. Meteorol. Climatol. 2023, 62, 1095–1114. [Google Scholar] [CrossRef]
- Shen, P.; Zhao, S.; Xu, Z.; Zhang, X.; Lu, B.; Han, Z.; Han, Z.; Si, M.; Yuan, J.; Song, L.; et al. Comprehensive evidence that detecting urban signals in large-scale warming is highly uncertain. Geophys. Res. Lett. 2025, 52, e2025GL115032. [Google Scholar] [CrossRef]
- Cao, L.; Zhu, Y.; Tang, G.; Yuan, F.; Yan, Z. Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol. 2016, 36, 4384–4392. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Monthly Global-Mean Temperatures. Available online: https://www.data.jma.go.jp/cpdinfo/temp/index.html (accessed on 9 February 2025).
- Fujibe, F. Detection of urban warming in recent temperature trends in Japan. Int. J. Climatol. 2009, 29, 1811–1822. [Google Scholar] [CrossRef]
- Fujibe, F. Urban warming in Japanese cities and its relation to climate change monitoring. Int. J. Climatol. 2011, 31, 162–173. [Google Scholar] [CrossRef]
- Fujibe, F. Evaluation of background and urban warming trends based on centennial temperature data in Japan. Pap. Meteorol. Geophys. 2012, 63, 43–56. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Guidelines of Meteorological Observations. Available online: https://www.jma.go.jp/jma/kishou/know/kansoku_guide/tebiki.pdf (accessed on 14 March 2025).
- Japan Meteorological Agency. Outline of Surface Observation and Station List. Available online: https://www.data.jma.go.jp/stats/data/mdrr/man/kansoku_gaiyou.html (accessed on 9 February 2025).
- Ohno, H.; Yoshimatsu, K.; Kobayashi, K.; Wakayama, I.; Morooka, H.; Oikawa, Y.; Hirahara, S.; Ikeda, Y.; Saitou, H. On the method of correcting for site changes in temperature time series. Weather Serv. Bull. JMA 2011, 78, 31–41. Available online: https://www.jma.go.jp/jma/kishou/books/sokkou/78/vol78p031.pdf (accessed on 9 February 2025). (In Japanese).
- Peterson, T.C. Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. J. Clim. 2003, 16, 2941–2959. [Google Scholar] [CrossRef]
- Pielke, R.A.; Davey, C.A.; Niyogi, D.; Fall, S.; Steinweg-Woods, J.; Hubbard, K.K.; Lin, X.; Cai, M.; Lim, Y.-K.; Li, H. Unresolved issues with the assessment of multidecadal global land surface temperature trends. J. Geophys. Res. Atmos. 2007, 112, D24S08. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Sugawara, H.; Shimizu, S.; Takahashi, H.; Hagiwara, S.; Narita, K.; Mikami, T.; Hirano, T. Thermal influence of a large green space on a hot urban environment. J. Environ. Qual. 2016, 45, 125–133. [Google Scholar] [CrossRef]
- Sugawara, H.; Kondo, J. Microscale warming due to poor ventilation at surface observation stations. J. Atmos. Ocean. Technol. 2019, 36, 1237–1254. [Google Scholar] [CrossRef]
- Ninomiya, K.; Mizuno, H. Anomalously cold spell in summer over northeastern Japan caused by northeasterly wind from polar maritime air-mass. Part 1. EOF analysis of temperature variation in relation to the large-scale situation causing the cold summer. J. Meteorol. Soc. Jpn. 1985, 63, 845–857. [Google Scholar] [CrossRef]
- Nishi, A.; Kusaka, H. Effect of foehn wind on record-breaking high temperature event (41.1 °C) at Kumagaya on 23 July 2018. SOLA 2019, 15, 17–21. [Google Scholar] [CrossRef]
- Fujibe, F. Long-term surface wind changes in the Tokyo metropolitan area in the afternoon of sunny days in the warm season. J. Meteorol. Soc. Jpn. 2003, 81, 141–149. [Google Scholar] [CrossRef]
- Zhao, L.; Oppenheimer, M.; Zhu, Q.; Baldwin, J.W.; Ebi, K.L.; Bou-Zeid, E.; Guan, K.; Liu, X. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 2018, 13, 034003. [Google Scholar] [CrossRef]
- Kong, J.; Zhao, Y.; Carmeliet, J.; Lei, C. Urban heat island and its interaction with heatwaves: A review of studies on mesoscale. Sustainability 2021, 13, 10923. [Google Scholar] [CrossRef]
- Xue, L.; Doan, Q.-V.; Kusaka, H.; He, C.; Chen, F. Insights into urban heat island and heat waves synergies revealed by a land-surface-physics-based downscaling method. J. Geophys. Res. Atmos. 2024, 129, e2023JD040531. [Google Scholar] [CrossRef]
- Fujibe, F. Recent decelerating trends of urban warming in Japan. SOLA 2024, 20, 94–98. [Google Scholar] [CrossRef]
- Kusaka, H.; Hara, M.; Takane, Y. Urban climate projection by the WRF model at 3-km horizontal grid increment: Dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya metropolises. J. Meteorol. Soc. Jpn. 2012, 90B, 47–63. [Google Scholar] [CrossRef]
- Adachi, S.A.; Kimura, F.; Kusaka, H.; Inoue, T.; Ueda, H. Comparison of the impact of global climate changes and urbanization on summertime future climate in the Tokyo metropolitan area. J. Appl. Meteorol. Clim. 2012, 51, 1441–1454. [Google Scholar] [CrossRef]
- Kusaka, H.; Suzuki-Parker, A.; Aoyagi, T.; Adachi, S.A.; Yamagata, Y. Assessment of RCM and urban scenarios uncertainties in the climate projections for August in the 2050s in Tokyo. Clim. Change 2016, 137, 427–438. [Google Scholar] [CrossRef]
- Matsumura, S.; Sugimoto, S.; Sato, T. Recent intensification of the western Pacific subtropical high associated with the East Asian summer monsoon. J. Clim. 2015, 28, 2873–2883. [Google Scholar] [CrossRef]
- Matsumura, S.; Horinouchi, T. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high. Sci. Rep. 2016, 6, 37765. [Google Scholar] [CrossRef]
- National Centers for Environmental Information. Pacific Decadal Oscillation (PDO). Available online: https://www.ncei.noaa.gov/access/monitoring/pdo/ (accessed on 9 February 2025).
- Climatic Research Unit, University of East Anglia. Southern Oscillation Index (SOI) Data. Available online: https://crudata.uea.ac.uk/cru/data/soi/ (accessed on 9 February 2025).
- Climate Prediction Center. National Centers for Environmental Prediction. In Arctic Oscillation (AO). Available online: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml (accessed on 9 February 2025).
- Urabe, Y.; Maeda, S. The relationship between Japan’s recent temperature and decadal variability. SOLA 2014, 10, 176–179. [Google Scholar] [CrossRef]
- England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmermann, A.; Cai, W.; Gupta, A.S.; McPhaden, M.J.; Purich, A.; Santoso, A. recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 2014, 4, 222–227. [Google Scholar] [CrossRef]
- Johnson, N.C.; Xie, S.-P.; Kosaka, Y.; Li, X. Increasing occurrence of cold and warm extremes during the recent global warming slowdown. Nat. Commun. 2018, 9, 1724. [Google Scholar] [CrossRef]
- Amano, M.; Tachibana, Y.; Ando, Y. Consideration of whether a climatic regime shift has prevented the occurrence of a cold summer in northeast Eurasia since 2010. J. Clim. 2023, 36, 8059–8071. [Google Scholar] [CrossRef]
- Ose, T.; Endo, H.; Nakaegawa, T. Emergence of future sea-level pressure patterns in recent summertime East Asia. J. Meteorol. Soc. Jpn. 2024, 102, 265–283. [Google Scholar] [CrossRef]
Tave(30) | Tmax(30) | Tmin(30) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C0 | C1 | C2 | C3 | C0 | C1 | C2 | C3 | C0 | C1 | C2 | C3 | |
Year-specific (°C) | 1.00 | 0.70 | 0.73 | 1.00 | 1.12 | 0.79 | 0.82 | 1.12 | 1.02 | 0.73 | 0.74 | 1.02 |
Non-urban (°C) | 1.01 | 1.29 | 1.21 | 1.24 | 0.99 | 1.30 | 1.25 | 1.22 | 1.26 | 1.56 | 1.46 | 1.47 |
Urban (°C) | 1.03 | 1.06 | 1.09 | 0.81 | 0.78 | 0.84 | 0.79 | 0.55 | 1.19 | 1.19 | 1.27 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujibe, F. Evaluation of the Contributions of Year-Specific Climate Anomaly, Nationwide Warming, and Urban Warming to Hot Summers in Japan. Atmosphere 2025, 16, 435. https://doi.org/10.3390/atmos16040435
Fujibe F. Evaluation of the Contributions of Year-Specific Climate Anomaly, Nationwide Warming, and Urban Warming to Hot Summers in Japan. Atmosphere. 2025; 16(4):435. https://doi.org/10.3390/atmos16040435
Chicago/Turabian StyleFujibe, Fumiaki. 2025. "Evaluation of the Contributions of Year-Specific Climate Anomaly, Nationwide Warming, and Urban Warming to Hot Summers in Japan" Atmosphere 16, no. 4: 435. https://doi.org/10.3390/atmos16040435
APA StyleFujibe, F. (2025). Evaluation of the Contributions of Year-Specific Climate Anomaly, Nationwide Warming, and Urban Warming to Hot Summers in Japan. Atmosphere, 16(4), 435. https://doi.org/10.3390/atmos16040435