PM2.5 Speciation of Beta Attenuation Monitor Filters During Wildfire Smoke Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. ICP-MS Materials and Methods
2.4. SEM-EDS Materials and Methods
3. Results
4. Discussion
4.1. Method Development and Sampling
4.2. Analysis During Wildfire Smoke Events and Non-Wildfire Periods
4.3. Morphology of Individual Particulates on BAM Filter Tape by SEM-EDS
4.4. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EPA. List of Designated Reference and Equivalent Methods. Fed. Regist. 2023, 78, 67360. [Google Scholar]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Lee, Y.C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- EPA. Reconsideration of the National Ambient Air Quality Standards for Particulate Matter. Fed. Regist. 2024, 88, 5558–5719. [Google Scholar]
- Wang, Y.; Marshall, J.D.; Apte, J.S. U.S. Ambient Air Monitoring Network Has Inadequate Coverage under New PM2.5 Standard. Environ. Sci. Technol. Lett. 2024, 11, 1220–1226. [Google Scholar] [CrossRef]
- Roy, P.; Chen, L.W.A.; Gebreselassie, A.; Li, Y.; Chow, J.C.; Watson, J.G.; Chen, Y.-T. High time-resolution fenceline air quality sensing and dispersion modeling for environmental justice-centered source attribution. Atmos. Environ. 2023, 305, 119778. [Google Scholar] [CrossRef]
- Fos, P.J.; Honoré, P.A.; Honore, R.L.; Patterson, K. Health Status in Fence-Line Communities: The Impact of Air Pollution. Int. J. Family Med. Prim. Care 2021, 2, 1040. [Google Scholar]
- Sanchez, N.P.; Saffari, A.; Barczyk, S.; Coleman, B.K.; Naufal, Z.; Rabideau, C.; Pacsi, A.P. Results of Three Years of Ambient Air Monitoring Near a Petroleum Refinery in Richmond, California, USA. Atmosphere 2019, 10, 385. [Google Scholar] [CrossRef]
- Tehrani, M.W.; Fortner, E.C.; Robinson, E.S.; Chiger, A.A.; Sheu, R.; Werden, B.S.; Gigot, C.; Yacovitch, T.; Van Bramer, S.; Burke, T.; et al. Characterizing metals in particulate pollution in communities at the fenceline of heavy industry: Combining mobile monitoring and size-resolved filter measurements. Environ. Sci. Process. Impacts 2023, 25, 1491–1504. [Google Scholar] [CrossRef]
- Goldman, G.T.; Desikan, A.; Morse, R.; Kalman, C.; MacKinney, T.; Cohan, D.S.; Reed, G.; Parras, J. Assessment of Air Pollution Impacts and Monitoring Data Limitations of a Spring 2019 Chemical Facility Fire. Environ. Justice 2021, 15, 362–372. [Google Scholar] [CrossRef]
- Weitkamp, E.A.; Lipsky, E.M.; Pancras, P.J.; Ondov, J.M.; Polidori, A.; Turpin, B.J.; Robinson, A.L. Fine particle emission profile for a large coke production facility based on highly time-resolved fence line measurements. Atmos. Environ. 2005, 39, 6719–6733. [Google Scholar] [CrossRef]
- BAM 1022 Particulate Monitor Operation Manual. In BAM 1022-9805 Rev C; Met One Instruments, Inc.: Grants Pass, OR, USA, 2020.
- Anand, A.; Kompalli, S.; Ajiboye, E.; Presto, A.A. Estimation of hourly black carbon aerosol concentrations from glass fiber filter tapes using image reflectance-based method. Environ. Sci. Atmos. 2023, 3, 842–854. [Google Scholar] [CrossRef]
- Furger, M.; Minguillón, M.C.; Yadav, V.; Slowik, J.G.; Hüglin, C.; Fröhlich, R.; Petterson, K.; Baltensperger, U.; Prévôt, A.S.H. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer. Atmos. Meas. Tech. 2017, 10, 2061–2076. [Google Scholar] [CrossRef]
- Asano, H.; Aoyama, T.; Mizuno, Y.; Shiraishi, Y. Highly Time-Resolved Atmospheric Observations Using a Continuous Fine Particulate Matter and Element Monitor. ACS Earth Space Chem. 2017, 1, 580–590. [Google Scholar] [CrossRef]
- Li, H.; Mazzei, L.; Wallis, C.D.; Davari, S.A.; Wexler, A.S. The performance of an inexpensive spark-induced breakdown spectroscopy instrument for near real-time analysis of toxic metal particles. Atmos. Environ. 2021, 264, 118666. [Google Scholar] [CrossRef]
- Raja, S.; Chandrasekaran, S.R.; Lin, L.; Xia, X.; Hopke, P.K.; Valsaraj, K.T. Analysis of Beta Attenuation Monitor Filter Rolls for Particulate Matter Speciation. Aerosol Air Qual. Res. 2017, 17, 14–23. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Chen, L.W.A.; Kohl, S.D.; Casuccio, G.S.; Lersch, T.L.; Langston, R. Elemental and morphological analyses of filter tape deposits from a beta attenuation monitor. Atmos. Res. 2012, 106, 181–189. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Qin, J.; Zhang, Y.; Chen, X.; Jia, J.; Feng, F.; Wu, H.; Bai, Y. Facile and fast elemental analysis using glass fiber filter by X-ray fluorescence. Spectrochim. Acta Part B At. Spectrosc. 2024, 216, 106951. [Google Scholar] [CrossRef]
- EPA. Compendium Method IO-3.1: Selection, Preparation and Extraction of Filter Material; EPA: Cincinnati, OH, USA, 1999. [Google Scholar]
- Wang, C.F.; Chin, C.J.; Chiang, P.-C. Multielement Analysis of Suspended Particulates Collected with a Beta-Gauge Monitoring System by ICP Atomic Emission Spectrometry and Mass Spectrometry. Anal. Sci. 1998, 14, 763–768. [Google Scholar] [CrossRef]
- Castilho, I.N.B.; Welz, B.; Vale, M.G.R.; de Andrade, J.B.; Smichowski, P.; Shaltout, A.A.; Colares, L.; Carasek, E. Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters. Talanta 2012, 88, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Roper, C.; Delgado, L.S.; Barrett, D.; Massey Simonich, S.L.; Tanguay, R.L. PM2.5 Filter Extraction Methods: Implications for Chemical and Toxicological Analyses. Environ. Sci. Technol. 2019, 53, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Pietrogrande, M.C.; Bacco, D.; Trentini, A.; Russo, M. Effect of filter extraction solvents on the measurement of the oxidative potential of airborne PM2.5. Environ. Sci. Pollut. Res. 2021, 28, 29551–29563. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, A.; Siegel, J.A. Extraction of dust collected in HVAC filters for quantitative filter forensics. Aerosol Sci. Technol. 2020, 54, 1282–1292. [Google Scholar] [CrossRef]
- Sanchez, C.; Ericsson, M.; Carlsson, H.; Colmsjö, A. Determination of organophosphate esters in air samples by dynamic sonication-assisted solvent extraction coupled on-line with large-volume injection gas chromatography utilizing a programmed-temperature vaporizer. J. Chromatogr. A 2003, 993, 103–110. [Google Scholar] [CrossRef]
- Current Emergency Incidents. Available online: https://www.fire.ca.gov/incidents (accessed on 12 August 2023).
- NOAA Regional Climate Centers (RCCs), ACISA. Available online: http://xmacis.rcc-acis.org/ (accessed on 23 February 2025).
- EPA. Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry; EPA: Cincinnati, OH, USA, 1994. [Google Scholar]
- EPA. Determination and Procedure for the Determination of the Method Detection Limit, Revision 2; EPA: Cincinnati, OH, USA, 2016. [Google Scholar]
- EPA. Determination of Attainment for the San Francisco Bay Area Nonattainment Area for the 2006 Fine Particle Standard; California; Determination Regarding Applicability of Clean Air Act Requirements; EPA: Cincinnati, OH, USA, 2013; 40 CFR 52, 3. [Google Scholar]
- Sober, M.; Nikolin, B. Determination of the extraction efficiency of polycyclic aromatic hydrocarbons from airborne particulate matter. Biomol. Biomed. 2003, 3, 40–43. [Google Scholar] [CrossRef]
- OEHHA. Air Toxics Hot Spots Program; Office of Environmental Health Hazard Assessment: Oakland, CA, USA, 2015. [Google Scholar]
- Wang, Z.-M.; Wang, P.; Wagner, J.; Kumagai, K. Impacts on Urban VOCs and PM2.5 during a Wildfire Episode. Environments 2024, 11, 63. [Google Scholar] [CrossRef]
- Liu, J.; Banerjee, S.; Oroumiyeh, F.; Shen, J.; del Rosario, I.; Lipsitt, J.; Paulson, S.; Ritz, B.; Su, J.; Weichenthal, S.; et al. Co-kriging with a low-cost sensor network to estimate spatial variation of brake and tire-wear metals and oxidative stress potential in Southern California. Environ. Int. 2022, 168, 107481. [Google Scholar] [CrossRef]
- Shin, D.Y.; Lee, S.M.; Jang, Y.; Lee, J.; Lee, C.M.; Cho, E.M.; Seo, Y.R. Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int. J. Mol. Sci. 2023, 24, 3410. [Google Scholar] [CrossRef]
- González-Rocha, S.N.; Pérez, E.S.; Bermúdez, R.E.C.; Velasco, L.R.; Mendez, I.P.; Baca, R.A.; Quiroz, J.J.S.; Cortés, R.R. Elemental chemical characterization and morphology of PM10 using SEM/EDS in air quality monitoring station filters in Poza Rica, Veracruz, Mexico. Braz. Appl. Sci. Rev. 2023, 7, 2–20. [Google Scholar] [CrossRef]
- BAM 1020 Particulate Monitor Operation Manual. In BAM 1022-9800 Rev W; Met One Instruments, Inc.: Grants Pass, OR, USA, 2016.
- E-BAM Particulate Monitor Operation Manual. In E-BAM-9805 Rev B; Met One Instruments, Inc.: Grants Pass, OR, USA, 2019.
- BAM 1022 PLUS Particulate Monitor Operation Manual. In BAM 1022 PLUS-9800 Rev A; Met One Instruments, Inc.: Grants Pass, OR, USA, 2023.
- Camilleri, R.; Stark, C.; Vella, A.J.; Harrison, R.M.; Aquilina, N.J. Validation of an optimised microwave-assisted acid digestion method for trace and ultra-trace elements in indoor PM2.5 by ICP-MS analysis. Heliyon 2023, 9, e12844. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-A.; Koh, B. Utilization of road dust chemical profiles for source identification and human health impact assessment. Sci. Rep. 2020, 10, 14259. [Google Scholar] [CrossRef]
V | Cr | Mn | Co | Ni | Cu | As | Cd | Sb | Pb | |
---|---|---|---|---|---|---|---|---|---|---|
R2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Internal Standard | Sc | Sc | Sc | Ge | Sc | Ge | Ge | In | In | Bi |
V | Cr | Mn | Co | Ni | Cu | As | Cd | Sb | Pb | |
---|---|---|---|---|---|---|---|---|---|---|
MDL (µg) | 0.029 | 0.028 | 0.030 | 0.026 | 0.029 | 0.034 | 0.021 | 0.018 | 0.019 | 0.021 |
MDL (µg/m3) * | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Average % Recovery # | 107 | 109 | 111 | 104 | 107 | 121 | 103 | 88 | 82 | 107 |
Standard Deviation (µg) | 0.009 | 0.009 | 0.010 | 0.008 | 0.009 | 0.011 | 0.007 | 0.006 | 0.006 | 0.007 |
Average % Relative Standard Deviation | 1.3 | 1.2 | 1.1 | 1.1 | 1.7 | 1.1 | 2.0 | 1.2 | 0.9 | 0.4 |
Collection Periods | CDPH BAM PM2.5 | V | Cr | Mn | Co | Ni | Cu | As | Cd | Sb | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
Concentrations in µg/m3 | |||||||||||
10–21 April 2023 Non-wildfire period | 0.9–4.9 | 0.001 | 0.001 | 0.001 | 0.001–0.002 | ND | 0.001–0.002 | 0.001 | ND | 0.001 | 0.001 |
12–29 August 2023 Happy Camp Complex | 0.1–12 * | 0.001–0.002 | 0.002–0.020 | 0.001–0.005 | ND | 0.005 | 0.002–0.010 | ND | ND | 0.002 | 0.001–0.002 |
19–25 September 2023 Smith River Complex | 1.2–36 * | 0.002–0.009 | 0.002–0.004 | 0.001–0.004 | 0.001–0.002 | 0.002 | 0.002–0.004 | 0.001–0.003 | 0.001–0.002 | 0.001–0.002 | 0.002–0.004 |
Spectrum ID | C | O | Na | Mg | Al | Si | S | Cl | K | Ca | Ti | Fe | Zn | Ba |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 31.62 | 46.77 | 0.26 | <0.01 | <0.01 | 2.63 | 1.28 | - | - | 4.74 | - | 12.70 | - | - |
2 | 41.95 | 54.86 | - | - | - | - | - | 0.58 | 0.48 | 0.33 | - | - | 0.77 | 1.04 |
3 | 26.13 | 62.42 | 0.16 | - | - | - | 1.18 | 1.51 | 0.98 | 2.92 | - | 0.67 | 1.58 | 2.45 |
4 | 40.80 | 48.51 | 0.17 | - | - | 0.43 | - | 1.22 | 1.14 | 1.43 | - | - | 3.15 | 3.15 |
5 | 51.33 | 40.46 | 0.19 | - | - | - | - | 2.16 | 1.63 | 1.88 | - | 2.34 | - | - |
6 | 55.93 | 39.34 | 0.10 | - | - | 0.25 | - | 0.91 | 0.85 | 0.64 | - | - | - | 1.98 |
7 | 25.40 | 50.25 | 0.39 | - | 0.82 | 9.13 | 1.85 | - | 2.82 | 0.82 | - | - | - | 8.51 |
8 | 28.03 | 45.03 | - | - | - | 2.15 | 1.26 | 1.69 | 1.95 | 2.38 | 1.36 | 8.99 | - | 7.15 |
9 | 23.78 | 44.33 | - | - | - | 0.47 | 0.13 | 0.27 | 0.48 | 0.39 | - | 2.30 | - | 27.86 |
10 | 49.29 | 41.81 | 0.13 | - | - | 0.38 | - | 1.62 | 1.09 | 1.14 | - | 0.78 | 1.40 | 2.36 |
Mean | 37.43 | 47.38 | 0.20 | <0.01 | 0.41 | 2.21 | 1.14 | 1.25 | 1.27 | 1.67 | 1.36 | 4.63 | 1.72 | 6.81 |
Sigma | 11.97 | 7.07 | 0.10 | <0.01 | 0.58 | 3.20 | 0.63 | 0.63 | 0.75 | 1.38 | <0.01 | 5.01 | 1.01 | 8.91 |
Sigma Mean | 3.78 | 2.24 | 0.03 | <0.01 | 0.18 | 1.01 | 0.20 | 0.20 | 0.24 | 0.44 | <0.01 | 1.58 | 0.32 | 2.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Wang, Z.-M.; Wagner, J.; Kumagai, K. PM2.5 Speciation of Beta Attenuation Monitor Filters During Wildfire Smoke Events. Atmosphere 2025, 16, 361. https://doi.org/10.3390/atmos16040361
Chen K, Wang Z-M, Wagner J, Kumagai K. PM2.5 Speciation of Beta Attenuation Monitor Filters During Wildfire Smoke Events. Atmosphere. 2025; 16(4):361. https://doi.org/10.3390/atmos16040361
Chicago/Turabian StyleChen, Kelly, Zhong-Min Wang, Jeff Wagner, and Kazukiyo Kumagai. 2025. "PM2.5 Speciation of Beta Attenuation Monitor Filters During Wildfire Smoke Events" Atmosphere 16, no. 4: 361. https://doi.org/10.3390/atmos16040361
APA StyleChen, K., Wang, Z.-M., Wagner, J., & Kumagai, K. (2025). PM2.5 Speciation of Beta Attenuation Monitor Filters During Wildfire Smoke Events. Atmosphere, 16(4), 361. https://doi.org/10.3390/atmos16040361