Compound Precipitation and Wind Extremes in the Eastern Part of the Baltic Sea Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Identification of Compound Precipitation and Wind Extremes (CPWEs)
2.4. Evaluation of Atmospheric Processes During CPWE Formation
- (a)
- Manual classification of daily large-scale circulation patterns by Hess–Brezowsky;
- (b)
- Freely available synoptic schemes over Europe from three different weather centres—United Kingdom Met Office (available from 1988), German Meteorological Service (available from 2003), and Royal Netherlands Meteorological Institute (available from 2003);
- (c)
- Global forecast system (GFS) analysis charts (available from 1979) and ERA5 post-processed daily statistics (available from 1940);
- (d)
- The archive of weather maps from the Lithuanian Hydrometeorological Service under the Ministry of Environment (available from 1946).
3. Results
3.1. Extremes of Precipitation and Maximum Wind Speed
3.2. Compound Precipitation and Wind Extremes (CPWEs)
3.3. Intensity of CPWEs
3.4. Atmospheric Conditions Leading to the Formation of CPWEs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Clarke, B.; Otto, F.; Stuart-Smith, R.; Harrington, L. Extreme weather impacts of climate change: An attribution perspective. Environ. Res. Clim. 2022, 1, 012001. [Google Scholar] [CrossRef]
- European Environment Agency Economic Losses from Weather- and Climate-Related Extremes in Europe. 2024. Available online: https://www.eea.europa.eu/en/analysis/indicators/economic-losses-from-climate-related (accessed on 14 January 2025).
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; Mc Innes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; Volume 3, pp. 109–230. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; Aghakouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Change 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Zscheischler, J.; Raymond, C.; Horton, R.M.; Ramos, A.M. A typology of compound weather. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Martius, O.; Pfahl, S.; Chevalier, C. A global quantification of compound precipitation and wind extremes. Geophys. Res. Lett. 2016, 43, 7709–7717. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Messmer, M.; Zhu, Y.; Feng, J.; Yin, B.; Bevacqua, E. Compound Wind and Precipitation Extremes Across the Indo-Pacific: Climatology, Variability, and Drivers. Geophys. Res. Lett. 2022, 49, e2022GL098594. [Google Scholar] [CrossRef]
- Xoplaki, E.; Ellsäßer, F.; Grieger, J.; Nissen, K.M.; Pinto, J.G.; Chen, T.-C.; Feldmann, H.; Friederichs, P.; Gliksman, D.; Haustein, K.; et al. Compound events in Germany in 2018: Drivers and case studies. EGUsphere 2023, 1–43. [Google Scholar] [CrossRef]
- Plavcová, E.; Urban, A. Intensified impacts on mortality due to compound winter extremes in the Czech Republic. Sci. Total Environ. 2020, 746, 141033. [Google Scholar] [CrossRef]
- Owen, L.E.; Catto, J.L.; Stephenson, D.B.; Dunstone, N.J. Compound precipitation and wind extremes over Europe and their relationship to extratropical cyclones. Weather Clim. Extrem. 2021, 33, 100342. [Google Scholar] [CrossRef]
- Messmer, M.; Simmonds, I. Global analysis of cyclone-induced compound precipitation and wind extreme events. Weather Clim. Extrem. 2021, 32, 100324. [Google Scholar] [CrossRef]
- Ridder, N.N.; Ukkola, A.M.; Pitman, A.J.; Perkins-Kirkpatrick, S.E. Increased occurrence of high impact compound events under climate change. Npj Clim. Atmos. Sci. 2022, 5, 3. [Google Scholar] [CrossRef]
- Alvarez, I.; Pereira, H.; Picado, A.; Sousa, M.C.; Lorenzo, M.N.; Dias, J.M. Projection of Compound Wind and Precipitation Extreme Events in the Iberian Peninsula Based on CMIP6. Earth Syst. Environ. 2024, 8, 801–814. [Google Scholar] [CrossRef]
- Johansson, E. Compound Extreme Wind and Precipitation Events in Europe. Bachelor’s Thesis, Uppsala University, Uppsala, Sweden, 2021. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446009 (accessed on 25 February 2024).
- Ridder, N.N.; Pitman, A.J.; Ukkola, A.M. High impact compound events in Australia. Weather. Clim. Extrem. 2022, 36, 100457. [Google Scholar] [CrossRef]
- Tilloy, A.; Malamud, B.D.; Joly-Laugel, A. A methodology for the spatiotemporal identification of compound hazards: Wind and precipitation extremes in Great Britain (1979–2019). Earth Syst. Dyn. 2022, 13, 993–1020. [Google Scholar] [CrossRef]
- Zscheischler, J.; Naveau, P.; Martius, O.; Engelke, S.; C. Raible, C. Evaluating the dependence structure of compound precipitation and wind speed extremes. Earth Syst. Dyn. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Catto, J.L.; Dowdy, A. Understanding compound hazards from a weather system perspective. Weather Clim. Extrem. 2021, 32, 100313. [Google Scholar] [CrossRef]
- Yaddanapudi, R.; Mishra, A.; Huang, W.; Chowdhary, H. Compound Wind and Precipitation Extremes in Global Coastal Regions Under Climate Change. Geophys. Res. Lett. 2022, 49, e2022GL098974. [Google Scholar] [CrossRef]
- Li, D.; Zscheischler, J.; Chen, Y.; Yin, B.; Feng, J.; Freund, M.; Qi, J.; Zhu, Y.; Bevacqua, E. Intensification and Poleward Shift of Compound Wind and Precipitation Extremes in a Warmer Climate. Geophys. Res. Lett. 2024, 51, e2024GL110135. [Google Scholar] [CrossRef]
- Messori, G.; Caballero, R. On double Rossby wave breaking in the North Atlantic. J. Geophys. Res. Atmos. 2015, 120, 11,129–11,150. [Google Scholar] [CrossRef]
- Müller, M.; Kašpar, M.; Bližňák, V. Central European wind and precipitation compound events are not just due to winter storms. Nat. Hazards Earth Syst. Sci. 2022, 1–19. [Google Scholar] [CrossRef]
- De Luca, P.; Messori, G.; Pons FM, E.; Faranda, D. Dynamical systems theory sheds new light on compound climate extremes in Europe and Eastern North America. Q. J. R. Meteorol. Soc. 2020, 146, 1636–1650. [Google Scholar] [CrossRef]
- Leeding, R.; Riboldi, J.; Messori, G. On Pan-Atlantic cold, wet and windy compound extremes. Weather Clim. Extrem. 2023, 39, 100524. [Google Scholar] [CrossRef]
- Avotniece, Z.; Klavins, M.; Rodinovs, V. Changes of extreme climate events in Latvia. Environ. Clim. Technol. 2012, 9, 4–11. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R.; Ramis, C. Future extremes of temperature and precipitation in Europe derived from a combination of dynamical and statistical approaches. Int. J. Climatol. 2020, 40, 4800–4827. [Google Scholar] [CrossRef]
- Dyrrdal, A.V.; Olsson, J.; Médus, E.; Arnbjerg-Nielsen, K.; Post, P.; Aņiskeviča, S.; Thorndahl, S.; Førland, E.; Wern, L.; Mačiulytė, V.; et al. Observed changes in heavy daily precipitation over the Nordic-Baltic region. J. Hydrol. Reg. Stud. 2021, 38, 100965. [Google Scholar] [CrossRef]
- Lizuma, L.; Briede, A.; Klavins, M. Long-term changes of precipitation in Latvia. Hydrol. Res. 2010, 41, 241–252. [Google Scholar] [CrossRef]
- Nikulin, G.; Kjellström, E.; Hansson, U.; Strandberg, G.; Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2011, 63, 41–55. [Google Scholar] [CrossRef]
- Ramanauskas, E.; Bukantis, A.; Dringelis, L.; Kaveckis, G.; Jonkutė-Vilkė, G. Climate Change and Cities of Lithuania: Threats, Problems and Prerequisites for Solution. Urban Sci. 2024, 8, 186. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Laurila, T.K. Winds and Windstorms in Northern Europe and Finland. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2022. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Minola, L.; Zhang, F.; Azorin-Molina, C.; Pirooz, A.A.S.; Flay, R.G.J.; Hersbach, H.; Chen, D. Near-surface mean and gust wind speeds in ERA5 across Sweden: Towards an improved gust parametrization. Clim. Dyn. 2020, 55, 887–907. [Google Scholar] [CrossRef]
- Hassler, B.; Lauer, A. Comparison of reanalysis and observational precipitation datasets including ERA5 and WFDE5. Atmosphere 2021, 12, 1462. [Google Scholar] [CrossRef]
- Wu, L.; Su, H.; Zeng, X.; Posselt, D.J.; Wong, S.; Chen, S.; Stoffelen, A. Uncertainty of Atmospheric Winds in Three Widely Used Global Reanalysis Datasets. J. Appl. Meteorol. Climatol. 2024, 63, 165–180. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Ridder, N.N.; Pitman, A.J.; Westra, S.; Ukkola, A.; Do, H.X.; Bador, M.; Hirsch, A.L.; Evans, J.P.; Di Luca, A.; Zscheischler, J. Global hotspots for the occurrence of compound events. Nat. Commun. 2020, 11, 15. [Google Scholar] [CrossRef]
- Bevacqua, E.; Vousdoukas, M.I.; Zappa, G.; Hodges, K.; Shepherd, T.G.; Maraun, D.; Mentaschi, L.; Feyen, L. More meteorological events that drive compound coastal flooding are projected under climate change. Commun. Earth Environ. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Lücke, L.J.; Dent, C.J.; Hegerl, G.C.; Wilson, A.L.; Schurer, A.P. Severe compound events of low wind and cold temperature for the British power system. Meteorol. Appl. 2024, 31, 1–22. [Google Scholar] [CrossRef]
- Ranjan, R.; Karmakar, S. Compound hazard mapping for tropical cyclone-induced concurrent wind and rainfall extremes over India. Npj Nat. Hazards 2024, 1, 1–12. [Google Scholar] [CrossRef]
- Sanuy, M.; Rigo, T.; Jiménez, J.A.; Llasat, M.C. Classifying compound coastal storm and heavy rainfall events in the north-western Spanish Mediterranean. Hydrol. Earth Syst. Sci. 2021, 25, 3759–3781. [Google Scholar] [CrossRef]
- James, P.M. An Objective Classification Method for Hess and Brezowsky Grosswetterlagen over Europe. Theor. Appl. Climatol. 2007, 88, 17–42. [Google Scholar] [CrossRef]
- Gerstengarbe, F.; Werner, P. Katalog der Großwetterlagen Europas (1881–2004). In Nach Paul Hess und Helmuth Brezowsky—6. Verbesserte und Ergänzte Auflage; PIK Report 100; Potsdam Institute For Climate Impact Research (PIK): Potsdam, Germany, 2005. [Google Scholar]
- Kučerová, M.; Beck, C.; Philipp, A.; Huth, R. Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications. Int. J. Clim. 2017, 37, 2502–2521. [Google Scholar] [CrossRef]
- Rimkus, E.; Kažys, J.; Butkutė, S.; Gečaitė, I. Snow cover variability in Lithuania over the last 50 years and its relationship with large-scale atmospheric circulation. Boreal Environ. Res. 2014, 19, 337–357. [Google Scholar]
- Quénol, H.; Corgne, S.; Planchon, O. Assessing Precipitation and Large-Scale Weather Situations in Brittany: The Usefulness of the Hess-Brezowsky Classification. Die Erde 2009, 140, 195–217. [Google Scholar]
- Werner, P.C. Katalog der Großwetterlagen Europas (1881–2009). In Nach Paul Hess und Helmut Brezowsky; Potsdam Institute for Climate Impact Research (PIK): Potsdam, Germany, 2010. [Google Scholar]
- Hänsel, S.; Hoy, A.; Brendel, C.; Maugeri, M. Record summers in Europe: Variations in drought and heavy precipitation during 1901–2018. Int. J. Climatol. 2022, 42, 6235–6257. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.; Feng, H.; Yin, Y.; Chen, W.; Cheng, B. Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 144244. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The future intensification of hourly precipitation extremes. Nat. Clim. Change 2017, 7, 48–52. [Google Scholar] [CrossRef]
- Tradowsky, J.S.; Philip, S.Y.; Kreienkamp, F.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; De Cruz, L.; et al. Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021. Clim. Change 2023, 176, 90. [Google Scholar] [CrossRef]
- Rajczak, J.; Schär, C. Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations. J. Geophys. Res. Atmos. 2017, 122, 10,773–10,800. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation Extremes Under Climate Change. Curr. Clim. Change Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef]
- Rutgersson, A.; Kjellström, E.; Haapala, J.; Stendel, M.; Danilovich, I.; Drews, M.; Jylhä, K.; Kujala, P.; Larsén, X.G.; Halsnæs, K.; et al. Natural hazards and extreme events in the Baltic Sea region. Earth Syst. Dyn. 2022, 13, 251–301. [Google Scholar] [CrossRef]
- Kumar, D.; Mishra, V.; Ganguly, A.R. Evaluating wind extremes in CMIP5 climate models. Clim. Dyn. 2015, 45, 441–453. [Google Scholar] [CrossRef]
- Laurila, T.K.; Sinclair, V.A.; Gregow, H. Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979–2018 based on ERA5. Int. J. Climatol. 2021, 41, 2253–2278. [Google Scholar] [CrossRef]
- Meier, H.E.M.; Kniebusch, M.; Dieterich, C.; Gröger, M.; Zorita, E.; Elmgren, R.; Myrberg, K.; Ahola, M.P.; Bartosova, A.; Bonsdorff, E.; et al. Climate change in the Baltic Sea region: A summary. Earth Syst. Dyn. 2022, 13, 457–593. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Clausen, N.E.; Drews, M.; MacKellar, N.; Kjellström, E. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios. Clim. Dyn. 2012, 38, 189–208. [Google Scholar] [CrossRef]
- He, W.; Chen, X.; Zhang, Y.; Duan, W.; Deng, H. Spatio-temporal variations of compound precipitation and wind-speed extreme events in Fujian and Jiangxi Provinces, Southeast China. Meteorol. Atmos. Phys. 2025, 137, 7. [Google Scholar] [CrossRef]
- Hénin, R.; Ramos, A.M.; Pinto, J.G.; Liberato, M.L.R. A ranking of concurrent precipitation and wind events for the Iberian Peninsula. Int. J. Climatol. 2021, 41, 1421–1437. [Google Scholar] [CrossRef]
- Kendon, E.; Roberts, N.; Fowler, H.; Roberts, M.; Chan, S.; Senior, C. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 2014, 4, 570–576. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.T.; Brooks, H.E.; Pilguj, N.; Czernecki, B. Differing Trends in United States and European Severe Thunderstorm Environments in a Warming Climate. Bull. Amer. Meteor. Soc. 2021, 102, E296–E322. [Google Scholar] [CrossRef]
- Ye, H.; Fetzer, E.J.; Wong, S.; Lambrigtsen, B.H. Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century. Sci. Adv. 2017, 3, e1600944. [Google Scholar] [CrossRef]
- Mändla, K.; Jaagus, J.; Sepp, M. Climatology of cyclones with southern origin in northern Europe during 1948–2010. Theor. Appl. Climatol. 2015, 120, 75–86. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, J.; Yang, Y. Assessment and Projection of Compound Wind and Precipitation Extremes in EC-Earth3 of CMIP6 Simulations. Asia-Pac. J. Atmos. Sci. 2024, 60, 81–93. [Google Scholar] [CrossRef]
- Manning, C.; Kendon, E.J.; Fowler, H.J.; Catto, J.L.; Chan, S.C.; Sansom, P.G. Compound wind and rainfall extremes: Drivers and future changes over the UK and Ireland. Weather. Clim. Extrem. 2024, 44, 100673. [Google Scholar] [CrossRef]
- Rädler, A.T.; Groenemeijer, P.H.; Faust, E.; Sausen, R.; Púčik, T. Frequency of severe thunderstorms across Europe expected to increase in the 21st century due to rising instability. Npj Clim. Atmos. Sci. 2019, 2, 3–7. [Google Scholar] [CrossRef]
- Tippett, M.K.; Allen, J.T.; Gensini, V.A.; Brooks, H.E. Climate and Hazardous Convective Weather. Curr. Clim. Change Rep. 2015, 1, 60–73. [Google Scholar] [CrossRef]
- Lepore, C.; Abernathey, R.; Henderson, N.; Allen, J.T.; Tippett, M.K. Future Global Convective Environments in CMIP6 Models. Earth’s Future 2021, 9, 1–21. [Google Scholar] [CrossRef]
- Soci, C.; Hersbach, H.; Simmons, A.; Poli, P.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; et al. The ERA5 global reanalysis from 1940 to 2022. Q. J. R. Meteorol. Soc. 2024, 150, 4014–4048. [Google Scholar] [CrossRef]
- Chen, T.C.; Collet, F.; Di Luca, A. Evaluation of ERA5 precipitation and 10-m wind speed associated with extratropical cyclones using station data over North America. Int. J. Climatol. 2024, 44, 729–747. [Google Scholar] [CrossRef]
- Gaska, J. Climate change and windstorm losses in Poland in the twenty-first century. Environ. Hazards 2023, 22, 99–115. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present; Copernicus Climate Change Service (C3S); Climate Data Store (CDS): Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
Circulation Pattern | Type | Cold Season (October–March) | Warm Season (April–September) | ||||||
---|---|---|---|---|---|---|---|---|---|
D − 2 | D − 1 | D0 | D + 1 | D − 2 | D − 1 | D0 | D + 1 | ||
Zonal (westerly) | WA, WZ, WS, WW | 57.1 | 60.7 | 60.7 | 67.9 | 18.8 | 18.8 | 18.8 | 37.5 |
Southerly | SWA, SWZ, SA, SZ, TB, TRW, SEA, SEZ | 17.9 | 17.9 | 14.3 | 7.1 | 12.5 | 6.3 | 6.3 | 6.3 |
Northwesterly and northerly | NWA, NWZ, NA, NZ, HNA, HNZ, HB, TRM | 14.3 | 10.7 | 21.4 | 17.9 | 43.8 | 43.8 | 31.3 | 18.8 |
Northeasterly and easterly | NEA, NEZ, HFA, HFZ, HNFA, HNFZ | 0 | 0 | 0 | 0 | 6.3 | 12.5 | 12.5 | 12.5 |
High/low-pressure area over Central Europe | HM, TM, BM | 10.7 | 10.7 | 3.6 | 7.1 | 18.8 | 18.8 | 31.3 | 25.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimavičius, L.; Rimkus, E.; Stankūnavičius, G. Compound Precipitation and Wind Extremes in the Eastern Part of the Baltic Sea Region. Atmosphere 2025, 16, 276. https://doi.org/10.3390/atmos16030276
Klimavičius L, Rimkus E, Stankūnavičius G. Compound Precipitation and Wind Extremes in the Eastern Part of the Baltic Sea Region. Atmosphere. 2025; 16(3):276. https://doi.org/10.3390/atmos16030276
Chicago/Turabian StyleKlimavičius, Laurynas, Egidijus Rimkus, and Gintautas Stankūnavičius. 2025. "Compound Precipitation and Wind Extremes in the Eastern Part of the Baltic Sea Region" Atmosphere 16, no. 3: 276. https://doi.org/10.3390/atmos16030276
APA StyleKlimavičius, L., Rimkus, E., & Stankūnavičius, G. (2025). Compound Precipitation and Wind Extremes in the Eastern Part of the Baltic Sea Region. Atmosphere, 16(3), 276. https://doi.org/10.3390/atmos16030276