Effects of Leaf Trait Variability on PM Retention: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Screening
2.2. Data Analysis
3. Results
3.1. Geographical Scope
3.2. Interannual Trends in the Number of Publications and Hot Indicators
3.3. Main Species Involved in the Study of Selected Publications
4. Discussion
4.1. Macro-Morphology
4.1.1. Leaf Area
4.1.2. Leaf Shape
4.1.3. SLA
4.2. Micro-Morphology
4.2.1. Stomata
4.2.2. Trichomes/Hairs
4.2.3. Wax Layer
4.2.4. Roughness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PM | Particulate matter |
OS | Only species, papers solely focus on tree species without detailing specific leaf traits |
LS | Leaf shape |
LA | Leaf area |
SLA | Special leaf area, one-sided leaf area per unit of dry mass |
L, W, L–W R | Length of leaf, width of leaf, and length–width ratio |
SC | Stomatal conductance |
S | Stomata |
H | Hairs/trichomes |
WL | Wax layer of leaf surface |
R | Roughness of leaf surface |
References
- Corada, K.; Woodward, H.; Alaraj, H.; Collins, C.M.; de Nazelle, A. A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environ. Pollut. 2021, 269, 116104. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.D.; Xia, J.J.; Gao, Y.; Zheng, W. Additional focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution. Urban For. Urban Green. 2020, 48, 126559. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects 2018 Revison: Key Facts 2018. Available online: https://medbox.org/document/world-urbanization-prospects-the-2018-revision-key-facts (accessed on 2 October 2024).
- Maher, B.A.; Ahmed, I.A.M.; Davison, B.; Karloukovski, V.; Clarke, R. Impact of Roadside Tree Lines on Indoor Concentrations of Traffic-Derived Particulate Matter. Environ. Sci. Technol. 2013, 47, 13737–13744. [Google Scholar] [CrossRef]
- Chen, D.L.; Yin, S.; Zhang, X.Y.; Lyu, J.; Zhang, Y.R.; Zhu, Y.H.; Yan, J.L. A high-resolution study of PM2.5 accumulation inside leaves in leaf stomata compared with non-stomatal areas using three-dimensional X-ray microscopy. Sci. Total Environ. 2022, 852, 158543. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhang, Y.Z.; Gong, J.R.; Yang, B.; Zhang, Z.H.; Wang, B.; Zhu, C.C.; Shi, J.Y.; Yue, K.X. Comparison of the suitability of plant species for greenbelt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system. Environ. Pollut. 2020, 263, 114615. [Google Scholar] [CrossRef]
- Schwarze, P.E.; Ovrevik, J.; Låg, M.; Refsnes, M.; Nafstad, P.; Hetland, R.B.; Dybing, E. Particulate matter properties and health effects:: Consistency of epidemiological and toxicological studies. Hum. Exp. Toxicol. 2006, 25, 559–579. [Google Scholar] [CrossRef]
- Koch, K.; Wuyts, K.; Denys, S.; Samson, R. The influence of plant species, leaf morphology, height and season on PM capture efficiency in living wall systems. Sci. Total Environ. 2023, 905, 167808. [Google Scholar] [CrossRef]
- Sgrigna, G.; Baldacchini, C.; Dreveck, S.; Cheng, Z.; Calfapietra, C. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Sci. Total Environ. 2020, 718, 137310. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- Shi, J.N.; Zhang, G.; An, H.L.; Yin, W.L.; Xia, X.L. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmos. Pollut. Res. 2017, 8, 836–842. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Chiam, Z.Y.; Song, X.P.; Lai, H.R.; Tan, H.T.W. Particulate matter mitigation via plants: Understanding complex relationships with leaf traits. Sci. Total Environ. 2019, 688, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Grp, P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement (Reprinted from Annals of Internal Medicine). Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Xu, L.S.; Yan, Q.; He, P.; Zhen, Z.L.; Jing, Y.D.; Duan, Y.H.; Chen, X.X. Combined effects of different leaf traits on foliage dust-retention capacity and stability. Air Qual. Atmos. Health 2022, 15, 1263–1274. [Google Scholar] [CrossRef]
- Yan, Q.; Xu, L.S.; Duan, Y.H.; Pan, L.C.; Wu, Z.W.; Chen, X.L. Influence of leaf morphological characteristics on the dynamic changes of particulate matter retention and grain size distributions. Environ. Technol. 2024, 45, 108–119. [Google Scholar] [CrossRef]
- Xu, L.S.; Yan, Q.; Lin, Y.C.; Zhen, Z.L.; Liu, L.W.; Duan, Y.H. Selective retention of particulate matter by nine plant species in central Shanxi Province, China. Environ. Sci. Pollut. Res. 2021, 28, 35902–35910. [Google Scholar] [CrossRef]
- Xu, L.S.; He, P.; Duan, Y.H.; Yu, Z.T.; Yang, F. Synergy of different leaf traits determines the particulate matter retention capacity and its susceptibility to rain wash-off. Sci. Total Environ. 2024, 906, 167365. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.K.; Kwak, M.J.; Lim, Y.J.; Kim, H.; Jeong, S.G.; Son, J.A.; Oh, C.Y.; Je, S.M.; Chang, H.N.; et al. Relationship between Leaf Traits and PM-Capturing Capacity of Major Urban-Greening Species. Horticulturae 2022, 8, 1046. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, D.; Park, S.H.; Woo, S.Y.; Nie, H.; Kim, S.H. Particulate Matter (PM) Adsorption and Leaf Characteristics of Ornamental Sweet Potato (Ipomoea batatas L.) Cultivars and Two Common Indoor Plants (Hedera helix L. and Epipremnum aureum Lindl. & Andre). Horticulturae 2022, 8, 26. [Google Scholar] [CrossRef]
- Li, Y.M.; Wang, S.J.; Chen, Q.B. Potential of Thirteen Urban Greening Plants to Capture Particulate Matter on Leaf Surfaces across Three Levels of Ambient Atmospheric Pollution. Int. J. Environ. Res. Public Health 2019, 16, 402. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.S.; Xu, W.; Mo, L.; Heal, M.R.; Xu, X.W.; Yu, X.X. Quantifying particulate matter accumulated on leaves by 17 species of urban trees in Beijing, China. Environ. Sci. Pollut. Res. 2018, 25, 12545–12556. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Cui, K.D.; Duan, J.; Wu, X.Y.; Yan, P.B.; Rodriguez, C.; Fu, H.M.; Deng, T.; Zhang, S.W.; Liu, J.Q.; et al. The retention characteristics for water-soluble and water-insoluble particulate matter of five tree species along an air pollution gradient in Beijing, China. Sci. Total Environ. 2021, 767, 145497. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018, 30, 98–107. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef]
- Kwak, M.J.; Lee, J.; Kim, H.; Park, S.; Lim, Y.; Kim, J.E.; Baek, S.G.; Seo, S.M.; Kim, K.N.; Woo, S.Y. The Removal Efficiencies of Several Temperate Tree Species at Adsorbing Airborne Particulate Matter in Urban Forests and Roadsides. Forests 2019, 10, 960. [Google Scholar] [CrossRef]
- Kwak, M.J.; Lee, J.K.; Park, S.; Kim, H.; Lim, Y.J.; Lee, K.A.; Son, J.A.; Oh, C.Y.; Kim, I.; Woo, S.Y. Surface-Based Analysis of Leaf Microstructures for Adsorbing and Retaining Capability of Airborne Particulate Matter in Ten Woody Species. Forests 2020, 11, 946. [Google Scholar] [CrossRef]
- Li, Q.Y.; Liao, J.Y.; Zhu, Y.F.; Ye, Z.Q.; Chen, C.; Huang, Y.Q.; Liu, Y. A Study on the Leaf Retention Capacity and Mechanism of Nine Greening Tree Species in Central Tropical Asia Regarding Various Atmospheric Particulate Matter Values. Atmosphere 2024, 15, 394. [Google Scholar] [CrossRef]
- Huang, R.; Tian, Q.; Zhang, Y.; Chen, Z.N.; Wu, Y.H.; Li, Z.Z.; Wen, Z.B. Differences in particulate matter retention and leaf microstructures of 10 plants in different urban environments in Lanzhou City. Environ. Sci. Pollut. Res. 2023, 30, 103652–103673. [Google Scholar] [CrossRef]
- Elkaee, S.; Shirvany, A.; Moeinaddini, M.; Sabbagh, F. Assessment of Particulate Matter, Heavy Metals, and Carbon Deposition Capacities of Urban Tree Species in Tehran, Iran. Forests 2024, 15, 273. [Google Scholar] [CrossRef]
- Shao, F.; Wang, L.H.; Sun, F.B.; Li, G.; Yu, L.; Wang, Y.J.; Zeng, X.R.; Yan, H.; Dong, L.; Bao, Z.Y. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Sci. Total Environ. 2019, 652, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.K.; Zhang, Z.; Meng, H.; Zhang, T. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests 2018, 9, 681. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, M.; Liu, Y.; Yang, Z. Leaf Surface Micro-morphological Features and Its Retention Ability of Particulate Matters for 9 Plant Species at the Roadside of Beijing. Ecol. Environ. Sci. 2017, 26, 2126–2133. [Google Scholar]
- Santunione, G.; Barbieri, A.; Sgarbi, E. Analysis of particulate matter (PM) trapped by four different plant species in an urban forest: Quantification and characterization. Trees For. People 2024, 16, 100585. [Google Scholar] [CrossRef]
- Zhang, W.K.; Li, Y.; Wang, Q.C.; Zhang, T.; Meng, H.; Gong, J.L.; Zhang, Z. Particulate Matter and Trace Metal Retention Capacities of Six Tree Species: Implications for Improving Urban Air Quality. Sustainability 2022, 14, 13374. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Y.; Shu, D.; Yang, B.; Cui, Y.; Ding, F. Properties and Spatio-Temporal Variation of Leaf Retained Particulate Matters of the Main Tree Species Planted in Guiyang City. Sci. Silvae Sin. 2020, 56, 12–25. [Google Scholar]
- Tiwari, A.; Gajbhiye, T.; Pandey, M.; Tirkey, A.; Kim, K.H.; Pandey, S.K. A practical option for the selection of suitable plants for the management of airborne particulate matter (PM). Int. J. Environ. Sci. Technol. 2023, 20, 11537–11548. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Xie, B.; Shi, H.; Wang, Y. Accumulation of Particulate Matter on Leaves of Nine Urban Greening Plant Species with Different Micromorphological Structures in Beijing. Res. Environ. Sci. 2015, 28, 384–392. [Google Scholar]
- Chen, L.X.; Liu, C.M.; Zhang, L.; Zou, R.; Zhang, Z.Q. Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5). Sci. Rep. 2017, 7, 3206. [Google Scholar] [CrossRef]
- Xie, B.; Wang, H.; Yang, J.; Wang, Y.; Shi, H. Retention Capability of PM2.5 and It’s Explanation by Leaf Surface Micro-structure of Common Broad-leaved Plant Species in Beijing. Xibei Zhiwu Xuebao 2014, 34, 2432–2438. [Google Scholar] [CrossRef]
- Sæbo, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, J.; Wang, T.; Wang, Z.; Lei, Y.; He, D. Dust-retention Capability and Leaf Traits of Common Park Greening Plant Species in Zhengzhou City. J. Northwest For. Univ. 2021, 36, 123–129. [Google Scholar]
- Wang, Q.; Feng, J.; Huang, Y.; Wang, P.; Xie, M.; Wan, H.; Su, Z.; Wang, R.; Wang, Z.; Yu, L. Dust-retention capability and leaf surface micromorphology of 15 broad-leaved tree species in Wuhan. Acta Ecol. Sin. 2020, 40, 213–222. [Google Scholar]
- Li, X.L.; Zhang, T.R.; Sun, F.B.; Song, X.M.; Zhang, Y.K.; Huang, F.; Yuan, C.Y.; Yu, H.; Zhang, G.H.; Qi, F.; et al. The relationship between particulate matter retention capacity and leaf surface micromorphology of ten tree species in Hangzhou, China. Sci. Total Environ. 2021, 771, 144812. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, S.; Jiang, C.; Xiong, F.; Zhu, P.; Zhou, P. PM2.5 deposition velocity and impact factors on leaves of typical tree species in Shanghai. J. East China Norm. Univ. Nat. Sci. 2016, 6, 27–37. [Google Scholar]
- He, C.; Qiu, K.Y.; Pott, R. Reduction of urban traffic-related particulate matter-leaf trait matters. Environ. Sci. Pollut. Res. 2020, 27, 5825–5844. [Google Scholar] [CrossRef]
- Su, W.; Liu, Y.; Lai, S.; Gu, X.; Liu, Q.; Gong, P. Effects of Particulate Matter Retained by Eight Urban Tree Leaves and Their Relationships between Leaf Trait in Nanchang. J. Northwest For. Univ. 2020, 35, 61–67. [Google Scholar]
- Zampieri, M.C.T.; Sarkis, J.E.S.; Pestana, R.C.B.; Tavares, A.R.; Melo-de-Pinna, G.F.A. Characterization of Tibouchina granulosa (Desr.) Cong. (Melastomataceae) as a biomonitor of air pollution and quantification of particulate matter adsorbed by leaves. Ecol. Eng. 2013, 61, 316–327. [Google Scholar] [CrossRef]
- Popek, R.; Gawronska, H.; Wrochna, M.; Gawronski, S.W.; Sæbo, A. Particulate Matter on Foliage of 13 Woody Species: Deposition on Surfaces and Phytostabilisation in Waxes—A 3-Year Study. Int. J. Phytoremediation 2013, 15, 245–256. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Quantifying particulate matter reduction and their deposition on the leaves of green infrastructure. Environ. Pollut. 2020, 265, 114884. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Umut, H.; Munila, A.; Chen, H.; Aliya, B. Effects of leaf microstructure characteristics of urban trees on atmospheric particulates retention capacity. Acta Ecol. Sin. 2022, 42, 2228–2236. [Google Scholar]
- Blanusa, T.; Fantozzi, F.; Monaci, F.; Bargagli, R. Leaf trapping and retention of particles by holm oak and other common tree species in Mediterranean urban environments. Urban For. Urban Green. 2015, 14, 1095–1101. [Google Scholar] [CrossRef]
- Dzierzanowski, K.; Popek, R.; Gawronska, H.; Sæbo, A.; Gawronski, S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef]
- Muhammad, S.; Wuyts, K.; Samson, R. Atmospheric net particle accumulation on 96 plant species with contrasting morphological and anatomical leaf characteristics in a common garden experiment. Atmos. Environ. 2019, 202, 328–344. [Google Scholar] [CrossRef]
- Vásquez-Bedoya, M.; Arboleda-Restrepo, L.; Posada-Bermúdez, A.; Giraldo, L.; Mejía-Calderón, V.; Ramírez-Villa, A.; Jiménez-Londoño, D.; Quintero-Vallejo, E. Atmospheric particulate matter deposition in herbaceous species on a university campus in colombia. Rev. Int. Contam. Ambient. 2024, 40, 137–148. [Google Scholar] [CrossRef]
- Adhikari, S.; Struwig, M.; Siebert, S.J. Identifying Common Trees and Herbaceous Plants to Mitigate Particulate Matter Pollution in a Semi-Arid Mining Region of South Africa. Climate 2023, 11, 9. [Google Scholar] [CrossRef]
- Mikhailova, T.A.; Shergina, O.V. Diversity and negative effect of PM0.3–10.0 adsorbed by needles of urban trees in Irkutsk, Russia. Environ. Sci. Pollut. Res. 2023, 30, 119243–119259. [Google Scholar] [CrossRef]
- Zhang, W.K.; Wang, B.; Niu, X. Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing. Forests 2017, 8, 92. [Google Scholar] [CrossRef]
- Paull, N.J.; Krix, D.; Irga, P.J.; Torpy, F.R. Airborne particulate matter accumulation on common green wall plants. Int. J. Phytoremediation 2020, 22, 594–606. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Chelli, S.; Marignani, M.; Barni, E.; Petraglia, A.; Puglielli, G.; Wellstein, C.; Acosta, A.T.R.; Bolpagni, R.; Bragazza, L.; Campetella, G.; et al. Plant-environment interactions through a functional traits perspective: A review of Italian studies. Plant Biosyst. 2019, 153, 853–869. [Google Scholar] [CrossRef]
- Burkhardt, J.; Koch, K.; Kaiser, H. Deliquescence of Deposited Atmospheric Particles on Leaf Surfaces. Water Air Soil Pollut. Focus 2001, 1, 313–321. [Google Scholar] [CrossRef]
- Wang, H.X.; Wang, Y.H.; Yang, J.; Xie, B.Z.; Shi, H. Morphological Structure of Leaves and Particulate Matter Capturing Capability of Common Broad-leaved Plant Species in Beijing. In Proceedings of the International Conference on Industrial Technology and Management Science (ITMS), Tianjin, China, 27–28 March 2015; pp. 581–584. [Google Scholar]
- Mo, L.; Ma, Z.Y.; Xu, Y.S.; Sun, F.B.; Lun, X.X.; Liu, X.H.; Chen, J.G.; Yu, X.X. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China. PLoS ONE 2015, 10, e0140664. [Google Scholar] [CrossRef]
- Redondo-Bermudez, M.D.; Gulenc, I.T.; Cameron, R.W.; Inkson, B.J. ‘Green barriers’ for air pollutant capture: Leaf micromorphology as a mechanism to explain plants capacity to capture particulate matter. Environ. Pollut. 2021, 288, 117809. [Google Scholar] [CrossRef]
- Kim, J.J.; Park, J.; Jung, S.Y.; Lee, S.J. Effect of trichome structure of Tillandsia usneoides on deposition of particulate matter under flow conditions. J. Hazard. Mater. 2020, 393, 122401. [Google Scholar] [CrossRef]
- Prigioniero, A.; Postiglione, A.; Zuzolo, D.; Niinemets, Ü.; Tartaglia, M.; Scarano, P.; Mercurio, M.; Germinario, C.; Izzo, F.; Trifuoggi, M.; et al. Leaf surface functional traits influence particulate matter and polycyclic aromatic hydrocarbons air pollution mitigation: Insights from Mediterranean urban forests. J. Clean. Prod. 2023, 418, 138158. [Google Scholar] [CrossRef]
- Qiu, Y.; Guan, D.S.; Song, W.W.; Huang, K.Y. Capture of heavy metals and sulfur by foliar dust in urban Huizhou, Guangdong Province, China. Chemosphere 2009, 75, 447–452. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Giulini, S.; Magliocco, A.; Roccotiello, E. Quantification of fine dust deposition on different plant species in a vertical greening system. Ecol. Eng. 2017, 100, 268–276. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Niu, X.; Wang, B.; Wei, W.J. Response of the particulate matter capture ability to leaf age and pollution intensity. Environ. Sci. Pollut. Res. 2020, 27, 34258–34269. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Ma, C.; Wang, Y.Q.; Wang, Y.J.; Zhao, C.X. Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environ. Sci. Pollut. Res. 2016, 23, 21176–21186. [Google Scholar] [CrossRef]
Principal Sections | Location | References |
---|---|---|
Macro-morphology, Micro-morphology | Jinzhong, China | [17,18,19,20] |
Macro-morphology, Micro-morphology | Seoul, South Korea | [21,22] |
Macro-morphology, Micro-morphology | Kunming, China | [23] |
Macro-morphology | Beijing, China | [24,25] |
Macro-morphology, Micro-morphology | Stafford, UK | [26,27] |
Micro-morphology | Seoul, South Korea | [28,29] |
Macro-morphology, Micro-morphology | Changsha, China | [30] |
Micro-morphology | Lanzhou, China | [31] |
Macro-morphology | Tehran, Iran | [32] |
Macro-morphology, Micro-morphology | Hangzhou, China | [33] |
Micro-morphology | Beijing, China | [7,34,35] |
Micro-morphology | Reggio Emilia, Italy | [36] |
Macro-morphology, Micro-morphology | Terni, Italy | [10] |
Micro-morphology | Shenyang, China | [37] |
Micro-morphology | Guiyang, China | [38] |
Macro-morphology, Micro-morphology | Singapore | [15] |
Macro-morphology, Micro-morphology | Chhattisgarh, India | [39] |
Macro-morphology, Micro-morphology | Beijing, China | [40,41,42] |
Macro-morphology, Micro-morphology | Poland and Norway | [43] |
Macro-morphology | Destelbergen, Belgium | [9] |
Macro-morphology, Micro-morphology | Shanghai, China | [6] |
Macro-morphology, Micro-morphology | Zhengzhou, China | [44] |
Micro-morphology | Wuhan, China | [45] |
Micro-morphology | Hangzhou, China | [46] |
Micro-morphology | Shanghai, China | [47] |
Macro-morphology, Micro-morphology | Hannover, Germany | [48] |
Macro-morphology, Micro-morphology | Nanchang, China | [49] |
Micro-morphology | São Paulo, Brazil | [50] |
Micro-morphology | Pęchcin, Poland | [51] |
Macro-morphology | Guildford, UK | [52] |
Macro-morphology, Micro-morphology | Urumqi, China | [53] |
Macro-morphology, Micro-morphology | Berkshire, UK | [54] |
Micro-morphology | Warsaw, Poland | [55] |
Macro-morphology, Micro-morphology | Sydney, Australia | [14] |
Macro-morphology, Micro-morphology | Antwerp, Belgium | [56] |
Macro-morphology, Micro-morphology | Medellin, Colombia | [57] |
Micro-morphology | Sekhukhune, South Africa | [58] |
Micro-morphology | Irkutsk, Russia | [59] |
Year | OS | LS | LA | SLA | L, W, L–W R | SC | S | H | WL | R |
---|---|---|---|---|---|---|---|---|---|---|
2011 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
2012 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
2013 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
2014 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
2015 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 2 | 1 | 1 |
2016 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
2017 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 2 |
2018 | 1 | 2 | 2 | 0 | 0 | 0 | 2 | 3 | 2 | 3 |
2019 | 0 | 1 | 3 | 2 | 1 | 0 | 3 | 5 | 1 | 4 |
2020 | 1 | 2 | 1 | 1 | 1 | 0 | 7 | 5 | 4 | 7 |
2021 | 1 | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 2 | 3 |
2022 | 0 | 3 | 4 | 1 | 3 | 1 | 5 | 2 | 0 | 3 |
2023 | 0 | 0 | 1 | 1 | 0 | 0 | 3 | 3 | 1 | 3 |
2024 | 1 | 3 | 4 | 1 | 2 | 0 | 1 | 3 | 1 | 5 |
Total | 4 | 14 | 21 | 7 | 8 | 1 | 27 | 30 | 16 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Lin, Y.; Sun, Z.; Long, Y.; Chen, D.; Yin, S. Effects of Leaf Trait Variability on PM Retention: A Systematic Review. Atmosphere 2025, 16, 170. https://doi.org/10.3390/atmos16020170
Xue W, Lin Y, Sun Z, Long Y, Chen D, Yin S. Effects of Leaf Trait Variability on PM Retention: A Systematic Review. Atmosphere. 2025; 16(2):170. https://doi.org/10.3390/atmos16020170
Chicago/Turabian StyleXue, Wenkai, Yongjun Lin, Zhengqi Sun, Yuchong Long, Dele Chen, and Shan Yin. 2025. "Effects of Leaf Trait Variability on PM Retention: A Systematic Review" Atmosphere 16, no. 2: 170. https://doi.org/10.3390/atmos16020170
APA StyleXue, W., Lin, Y., Sun, Z., Long, Y., Chen, D., & Yin, S. (2025). Effects of Leaf Trait Variability on PM Retention: A Systematic Review. Atmosphere, 16(2), 170. https://doi.org/10.3390/atmos16020170