The Response of Maximum Freezing Depth in the Permafrost Region of the Source Region of the Yellow River to Ground Temperature Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Climate Data
2.2.2. Soil and DEM Data
2.3. Methods
2.3.1. Freezing Index Calculation
2.3.2. Stefan Equation
2.3.3. The Mann–Kendall Trend Test
3. Results
3.1. Response of MFD to Ground Temperature
| Station Name | Elevation Classification | Topographical Features | Vegetation Coverage | Soil Type | ΔMFD (cm·yr−1) |
|---|---|---|---|---|---|
| Mado | High | Mountain plateau, valleys crisscrossed | High: Huge biomass, dominated by Kobresia | Clay Loam | 0.9 |
| Dari | High | Mountain hills and basins | Medium–High: Predominantly meadow grasslands | Loam | 1.1 |
| Central Station | High | Plateau and hill boundary terrain | Low: Desertified grassland cover | Sand | 0.75 |
| Ruoer Gai | Medium | Wetlands, lake landforms | Very High: Wetland meadows coverage | Loam | 1.05 |
| Hongyuan | Medium | Mountain hills, large elevation changes | High: Meadow grasslands | Loam | 0.86 |
| Jiuzhi | Medium | Wetlands, river valleys | Medium–High: Well-covered meadows | Loam | 0.79 |
| Zeku | Medium | Mountain hills and river valleys intersect | Medium: Wetland grassland cover | Loam | 0.79 |
| Maqu | Medium | Wetlands, lakes, flat and open | High: Wetland meadows, high coverage | Loam | 0.73 |
| Maqin | Medium | Plateau hills, deep ravines | Low: Desertified meadows | Loam | 0.84 |
| Henan | Medium | Front plain and hilly boundary | Medium: Grassland coverage, sparse vegetation | Loam | 0.79 |
| Gonghe | Low | Basin and hilly terrain | Low: Sparse grassland cover | Sandy Loam | 0.49 |
| Guinan | Low | Mountain hills and basins | Low: Degraded grasslands | Loam | 1.2 |
| Tongde | Low | Basin and hill boundary area | Low: Grasslands and desertified meadows | Loam | 1.11 |
| Chaka | Low | Basin center, salt lake landforms | None: Salinized land, no vegetation cover | Clay Loam | 1.41 |
| Xinghai | Low | Mountain hills and basins, relatively flat | Low: Desertified grasslands, sparse vegetation | Loam | 1.2 |
3.2. Spatial Patterns of MFD in Historical and Future Periods
3.3. Temporal Evolution of MFD in Historical and Future Periods
4. Discussion
4.1. Comparison with Previous Studies
4.2. Potential Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexandrov, G.A.; Ginzburg, V.A.; Insarov, G.E.; Romanovskaya, A.A. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. Clim. Change 2021, 169, 42. [Google Scholar] [CrossRef]
- Piao, S.; Niu, B.; Zhu, J.; Zhang, X.; Wang, T.; Wang, S.; Liang, E. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin. Sci. Bull. 2019, 64, 2842–2855. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, C.C.; Zhang, Y.; Zhou, Y.; Zha, X.; Wang, N.; Shang, R.; Rong, X.; Jia, Y.n.; Wang, H. Palaeoflood events during the last deglaciation in the Yellow River source area on the northeast Tibetan Plateau. Geol. J. 2021, 56, 4293–4309. [Google Scholar] [CrossRef]
- Di Luca, A.; Pitman, A.J.; de Elía, R. Decomposing Temperature Extremes Errors in CMIP5 and CMIP6 Models. Geophys. Res. Lett. 2020, 47, e2020GL088031. [Google Scholar] [CrossRef]
- Jin, X.-Y.; Jin, H.-J.; Iwahana, G.; Marchenko, S.S.; Luo, D.-L.; Li, X.-Y.; Liang, S.-H. Impacts of climate-induced permafrost degradation on vegetation: A review. Adv. Clim. Chang. Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Sharma, S.; Talchabhadel, R.; Nepal, S.; Ghimire, G.R.; Rakhal, B.; Panthi, J.; Adhikari, B.R.; Pradhanang, S.M.; Maskey, S.; Kumar, S. Increasing risk of cascading hazards in the central Himalayas. Nat. Hazards 2022, 119, 1117–1126. [Google Scholar] [CrossRef]
- Wang, S.; Song, Q.; Zhao, J.; Lu, Z.; Zhang, H. Identification of Key Areas and Early-Warning Points for Ecological Protection and Restoration in the Yellow River Source Area Based on Ecological Security Pattern. Land 2023, 12, 1643. [Google Scholar] [CrossRef]
- Yang, J.; Wang, T.; Yang, D.; Yang, Y. Insights into runoff changes in the source region of Yellow River under frozen ground degradation. J. Hydrol. 2023, 617, 128892. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, T.; Yan, D.; Liu, S.; Feng, J.; Wang, Q.; Liu, H.; Gao, H. Analysis of the evolution of ecosystem service value and its driving factors in the Yellow River Source Area, China. Ecol. Indic. 2024, 158, 111344. [Google Scholar] [CrossRef]
- Ju, Q.; Shen, T.; Zhao, W.; Wang, X.; Jiang, P.; Wang, G.; Liu, Y.; Wang, Q.; Yu, Z. Simulation and prediction of changes in maximum freeze depth in the source region of the Yellow River under climate change. Sci. Total Environ. 2023, 905, 167136. [Google Scholar] [CrossRef]
- Li, H.; Pan, X.; Washakh, R.M.A.; Nie, X. A New Method of Diagnosing the Historical and Projected Changes in Permafrost on the Tibetan Plateau. Earth’s Future 2024, 12, e2023EF003897. [Google Scholar] [CrossRef]
- Burke, E.J.; Zhang, Y.; Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 2020, 14, 3155–3174. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Koven, C.D.; Riley, W.J.; Subin, Z.M.; Tang, J.Y.; Torn, M.S.; Collins, W.D.; Bonan, G.B.; Lawrence, D.M.; Swenson, S.C. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 2013, 10, 7109–7131. [Google Scholar] [CrossRef]
- Yi, Y.; Kimball, J.S.; Chen, R.H.; Moghaddam, M.; Miller, C.E. Sensitivity of active-layer freezing process to snow cover in Arctic Alaska. Cryosphere 2019, 13, 197–218. [Google Scholar] [CrossRef]
- You, Y.; Guo, L.; Yu, Q.; Wang, X.; Pan, X.; Wu, Q.; Wang, D.; Wang, G. Spatial variability and influential factors of active layer thickness and permafrost temperature change on the Qinghai-Tibet Plateau from 2012 to 2018. Agric. For. Meteorol. 2022, 318, 108913. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Yin, Z.; Zhao, L. Isolating the Contributions of Seasonal Climate Warming to Permafrost Thermal Responses Over the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2021, 126, e2021JD035218. [Google Scholar] [CrossRef]
- Li, C.; Zhao, L.; Wang, L.; Liu, S.; Zhou, H.; Li, Z.; Liu, G.; Du, E.; Zou, D.; Hou, Y. Ground Deformation and Permafrost Degradation in the Source Region of the Yellow River, in the Northeast of the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 3153. [Google Scholar] [CrossRef]
- Chang, T.; Yi, Y.; Jiang, H.; Li, R.; Lu, P.; Liu, L.; Wang, L.; Zhao, L.; Zwieback, S.; Zhao, J. Unraveling the non-linear relationship between seasonal deformation and permafrost active layer thickness. npj Clim. Atmos. Sci. 2024, 7, 308. [Google Scholar] [CrossRef]
- Langer, M.; Nitzbon, J.; Groenke, B.; Assmann, L.-M.; Schneider von Deimling, T.; Stuenzi, S.M.; Westermann, S. The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model. Cryosphere 2024, 18, 363–385. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, T.; Frauenfeld, O.W.; Mu, C.; Wang, K.; Wu, X.; Guo, D.; Luo, J.; Hjort, J.; Aalto, J.; et al. Active Layer Thickness and Permafrost Area Projections for the 21st Century. Earth’s Future 2023, 11, e2023EF003573. [Google Scholar] [CrossRef]
- Ohara, N.; Jones, B.M.; Parsekian, A.D.; Hinkel, K.M.; Yamatani, K.; Kanevskiy, M.; Rangel, R.C.; Breen, A.L.; Bergstedt, H. A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry. Cryosphere 2022, 16, 1247–1264. [Google Scholar] [CrossRef]
- Park, S.-E.; Jung, Y.T.; Kim, H.-C. Monitoring permafrost changes in central Yakutia using optical and polarimetric SAR data. Remote Sens. Environ. 2022, 274, 112989. [Google Scholar] [CrossRef]
- Zhang, T.; Armstrong, R.L.; Smith, J. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation. J. Geophys. Res. Atmos. 2003, 108, GCP21. [Google Scholar] [CrossRef]
- Bennett, K.E.; Schwenk, J.; Bachand, C.; Gasarch, E.; Stachelek, J.; Bolton, W.R.; Rowland, J.C. Recent streamflow trends across permafrost basins of North America. Front. Water 2023, 5, 1099660. [Google Scholar] [CrossRef]
- Correia, T.P.; Francelino, M.R.; Veloso, G.V.; Michel, R.F.; Schaefer, C.E.; Fernandes Filho, E.I.; Justino, F.B.; Lyra, G.B. Ground temperature trend and active layer dynamics in the Fildes Peninsula, King George Island—Marine Antarctica. An. Da Acad. Bras. De Ciências 2024, 96, e20230743. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, T.; Cao, B. Surface Warming Constraint Projects Less Permafrost Thawing in High Mountain Asia. Geophys. Res. Lett. 2024, 51, e2024GL110465. [Google Scholar] [CrossRef]
- Nitzbon, J.; Schneider von Deimling, T.; Aliyeva, M.; Chadburn, S.E.; Grosse, G.; Laboor, S.; Lee, H.; Lohmann, G.; Steinert, N.J.; Stuenzi, S.M.; et al. No respite from permafrost-thaw impacts in the absence of a global tipping point. Nat. Clim. Chang. 2024, 14, 573–585. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Lian, Y.; Wang, G.; Jin, J.; Ning, Z.; Zhang, J.; Liu, Y.; Wang, X. Changes in Headwater Streamflow from Impacts of Climate Change in the Tibetan Plateau. Engineering 2024, 34, 133–142. [Google Scholar] [CrossRef]
- Brierley, G.J.; Han, M.; Li, X.; Li, Z.; Huang, H.Q. Geo-eco-hydrology of the Upper Yellow River. WIREs Water 2022, 9, e1587. [Google Scholar] [CrossRef]
- Zhang, M.; Li, R.; Pei, W.; Zhou, Y.; Li, G.; Yang, S. Permafrost Degradation Risk Evaluation in the Qinghai-Tibet Plateau Under Climate Change Based on Machine Learning Models. J. Geophys. Res. Atmos. 2024, 129, e2023JD039611. [Google Scholar] [CrossRef]
- Song, L.; Wang, L.; Luo, D.; Chen, D.; Zhou, J. Assessing hydrothermal changes in the upper Yellow River Basin amidst permafrost degradation. npj Clim. Atmos. Sci. 2024, 7, 57. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Hu, G.; Du, E.; Liu, G.; Wang, C.; Li, W. Permafrost temperature baseline at 15 m depth on the Qinghai–Tibetan Plateau (2010–2019). Earth Syst. Sci. Data 2025, 17, 1731–1742. [Google Scholar] [CrossRef]
- Hu, Y.n.; Li, H.; Yu, D.; Feng, X.; Ba, W. Analysis of lake changes and their influence factors in the three river regions from 2000 to 2020 in the Sanjiangyuan Region, China. Heliyon 2024, 10, e35672. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- GB/T 50145–2007Standard for Engineering Classification of Soil; Ministry of Construction of the People’s Republic of China and the General Admistration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2007.
- Frauenfeld, O.W.; Zhang, T.; McCreight, J.L. Northern Hemisphere freezing/thawing index variations over the twentieth century. Int. J. Climatol. 2006, 27, 47–63. [Google Scholar] [CrossRef]
- GB 50324–2014; Code for Engineering Geological Investigation of Frozen Ground. China Planning Press: Beijing, China, 2014.
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Shi, Y.; Niu, F.; Lin, Z.; Luo, J. Freezing/thawing index variations over the circum-Arctic from 1901 to 2015 and the permafrost extent. Sci. Total Environ. 2019, 660, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Gao, B.; Gong, T.; Wang, B. Analyzing Changes in Frozen Soil in the Source Region of the Yellow River Using the MODIS Land Surface Temperature Products. Remote Sens. 2021, 13, 180. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Yang, Y.; Pan, X.; Ding, Y.; Duan, Z. Permafrost Hydrology of the Qinghai-Tibet Plateau: A Review of Processes and Modeling. Front. Earth Sci. 2021, 8, 576838. [Google Scholar] [CrossRef]
- Shen, T.; Jiang, P.; Ju, Q.; Zhao, J.; Chen, X.; Lin, H.; Yang, B.; Tan, C.; Zhang, Y.; Fu, X.; et al. Permafrost on the Tibetan Plateau is degrading: Historical and projected trends. J. Hydrol. 2024, 628, 130501. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, L.; Sun, Z.; Hu, G.; Zou, D.; Xiao, M.; Liu, G.; Pang, Q.; Du, E.; Li, Z.; et al. The thermal state of permafrost under climate change on the Qinghai–Tibet Plateau (1980–2022): A case study of the West Kunlun. Cryosphere 2025, 19, 4211–4236. [Google Scholar] [CrossRef]
- Wei, R.; Hu, X.; Zhao, S. Changes in the Distribution of Thermokarst Lakes on the Qinghai-Tibet Plateau from 2015 to 2020. Remote Sens. 2025, 17, 1174. [Google Scholar] [CrossRef]
- Ziteng, F.; Qingbai, W.; Anping, C.; Luyang, W.; Guanli, J.; Siru, G.; Hanbo, Y.; Ji, C. Non-temperature environmental drivers modulate warming-induced 21st-century permafrost degradation on the Tibetan Plateau. Nat. Commun. 2025, 16, 7556. [Google Scholar] [CrossRef]
- Chen, X.-G.; Yu, Z.-B.; Lin, H.; Shen, T.-Q.; Jiang, P. Hydrological responses to permafrost degradation on Tibetan Plateau under changing climate. Water Sci. Eng. 2024, 17, 209–216. [Google Scholar] [CrossRef]
- Sun, Z.-Z.; Ma, W.; Wu, G.-L.; Liu, Y.-Z.; Li, G.-Y. Permafrost degradation along the Qinghai–Tibet Highway from 1995 to 2020. Adv. Clim. Chang. Res. 2023, 14, 248–254. [Google Scholar] [CrossRef]
- Wei, T.; Wang, J.; Xie, M.; Feng, P. Formation mechanism of climate warming-induced landslides in permafrost along the Qinghai-Tibet Engineering corridor. Front. Earth Sci. 2024, 12, 1503980. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Hu, N.; Yin, Z.; Zhao, L.; Cheng, G.; Mu, C. Qinghai-Tibet Plateau Permafrost at Risk in the Late 21st Century. Earth’s Future 2022, 10, e2022EF002652. [Google Scholar] [CrossRef]
- Li, T.; Liu, W.; Li, Q.; Liu, Y.; Liu, H.; Li, Q.; Luo, B.; Zhang, J.; He, R.; Yang, H. Large-scale Surface Subsidence Monitoring for Permafrost Degradation along the Qinghai-Tibet Highway Corridor Using SBAS-InSAR and Machine Learning. Res. Cold Arid Reg. 2025, in press. [Google Scholar] [CrossRef]
- Shen, T.; Yu, Z.; Zhang, D.; Ju, Q.; Chen, X.; Lin, H.; Nie, T.; Wang, Q.; Si, X.; Jiang, P. How will permafrost carbon respond to future climate change? A new assessment for future thaw trends of permafrost carbon on the Tibetan Plateau. Geoderma 2024, 446, 116898. [Google Scholar] [CrossRef]
- Wang, S.; Ning, Z.-J.; Ran, Y.-H.; Cao, W.; Peng, E.-X.; Peng, C.-Y.; Wu, J.-C.; Wang, B.-Q.; Sheng, Y. Changes in the standard freezing depth of seasonally frozen ground in China over the last 50 years. GIScience Remote Sens. 2024, 56, 2395090. [Google Scholar] [CrossRef]
- Fang, P.; Wang, T.; Yang, D.; Yang, J.; Tang, L. Permafrost degradation and concomitant hydrological changes dominated by anthropogenic greenhouse gas emissions in the Northeastern Tibetan Plateau. Geophys. Res. Lett. 2025, 52, e2024GL113679. [Google Scholar] [CrossRef]
- Guo, L.; Wang, G.; Song, C.; Sun, S.; Li, J.; Li, K.; Huang, P.; Ma, J. Hydrological changes caused by integrated warming, wetting, and greening in permafrost regions of the Qinghai–Tibetan Plateau. Water Resour. Res. 2025, 61, e2024WR038465. [Google Scholar] [CrossRef]










| Soil Type | λck /(kg·m−3) | λf /(W·m−1·°C−1) | Wf /(%) | Wu /(%) |
|---|---|---|---|---|
| Clay | 1230 | 1.52 | 35 | 5 |
| ClayLoam | 1310 | 1.48 | 31 | 5 |
| SiltyLoam | 1350 | 1.57 | 29 | 5 |
| Loam | 1400 | 1.45 | 26 | 5 |
| SandyLoam | 1610 | 1.02 | 15 | 5 |
| Sand | 1700 | 2.20 | 10 | 5 |
| Station | Maduo | Dari | Xinhai | Guinan | Henan | Jiuzhi | Maqu | Ruoergai | Hongyuan |
|---|---|---|---|---|---|---|---|---|---|
| Longitude/E | 98.22 | 99.65 | 99.98 | 100.75 | 101.6 | 101.48 | 102.08 | 102.97 | 102.55 |
| Latitude/N | 34.92 | 33.75 | 35.58 | 35.58 | 34.73 | 33.43 | 34.00 | 33.58 | 32.80 |
| Elevation/m | 4272 | 3968 | 3323 | 3120 | 3500 | 3629 | 3471 | 3441 | 3492 |
| Simulated value/m | 2.22 | 1.82 | 1.48 | 1.38 | 1.02 | 0.79 | 0.79 | 0.72 | 0.61 |
| Measured value/m | 2.13 | 1.83 | 1.40 | 1.44 | 1.22 | 0.77 | 0.67 | 0.61 | 0.47 |
| Period | Time Span | Sen’s Slope (cm·yr−1) | Station Median [IQR] (cm·yr−1) |
|---|---|---|---|
| Historical | 1981–1990 | −1.57 | −1.39 [−1.54, −0.87] |
| Historical | 1991–1999 | −1.45 | −1.57 [−2.14, −1.43] |
| Historical | 2000–2014 | −1.20 | −1.10 [−1.39, −0.87] |
| SSP1-2.6 | 2024–2050 | −0.72 | −0.73 [−0.88, −0.57] |
| 2051–2100 | −0.20 | −0.27 [−0.34, −0.17] | |
| SSP2-4.5 | 2024–2050 | −0.74 | −0.80 [−0.98, −0.62] |
| 2051–2100 | −0.37 | −0.40 [−0.53, −0.29] | |
| SSP3-7.0 | 2024–2050 | −0.52 | −0.64 [−0.79, −0.49] |
| 2051–2100 | −0.47 | −0.52 [−0.66, −0.39] | |
| SSP5-8.5 | 2024–2050 | −0.53 | −0.69 [−0.86, −0.53] |
| 2051–2100 | −1.07 | −1.17 [−1.66, −0.70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Wang, W. The Response of Maximum Freezing Depth in the Permafrost Region of the Source Region of the Yellow River to Ground Temperature Change. Atmosphere 2025, 16, 1399. https://doi.org/10.3390/atmos16121399
Bai X, Wang W. The Response of Maximum Freezing Depth in the Permafrost Region of the Source Region of the Yellow River to Ground Temperature Change. Atmosphere. 2025; 16(12):1399. https://doi.org/10.3390/atmos16121399
Chicago/Turabian StyleBai, Xinyu, and Wei Wang. 2025. "The Response of Maximum Freezing Depth in the Permafrost Region of the Source Region of the Yellow River to Ground Temperature Change" Atmosphere 16, no. 12: 1399. https://doi.org/10.3390/atmos16121399
APA StyleBai, X., & Wang, W. (2025). The Response of Maximum Freezing Depth in the Permafrost Region of the Source Region of the Yellow River to Ground Temperature Change. Atmosphere, 16(12), 1399. https://doi.org/10.3390/atmos16121399

