Inter-Monthly Variations in CO2 and CH4 Fluxes in a Temperate Forest: Coupling Dynamics and Environmental Drivers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experiment Design
2.3. Data Processing and Analysis
2.4. Statistical Analyses
3. Results
3.1. Environmental Factors and Coupling of CO2 and CH4 Fluxes
3.2. Diel Patterns of CO2 and CH4 Fluxes and the Determination of Optimal Sampling Time
3.3. Environmental Factors Influencing CO2 and CH4 Emissions
4. Discussion
4.1. Diurnal and Seasonal Characteristics of CO2 and CH4 Emissions
4.2. Optimal Sampling Time for CO2 and CH4 Fluxes
4.3. Driving Factors and Correlation Mechanisms of CO2 and CH4 Emissions
4.4. Mechanisms Underlying Differences in Temporal Variability Between CH4 and CO2 Fluxes
4.5. Research Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Pirani, Z.A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Xu, X.; Xu, T.; Yue, J. Effect of In Situ Large Soil Column Translocation on CO2 and CH4 Fluxes under Two Temperate Forests of Northeastern China. Forests 2023, 14, 1531. [Google Scholar] [CrossRef]
- Zhou, Y.; Hagedorn, F.; Zhou, C.; Jiang, X.; Wang, X.; Li, M.-H. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China. Sci. Rep. 2016, 6, 21108. [Google Scholar] [CrossRef]
- Guo, C.Y.; Zhang, L.M.; Li, S.G.; Chen, Y.X. Freeze-Thaw Events Change Soil Greenhouse Gas Fluxes Through Modifying Soil Carbon and Nitrogen Cycling Processes in a Temperate Forest in Northeastern China. Forests 2024, 15, 2082. [Google Scholar] [CrossRef]
- Guo, C.Y.; Zhang, L.M.; Li, S.G.; Li, Q.K.; Dai, G.H. Comparison of Soil Greenhouse Gas Fluxes during the Spring Freeze-Thaw Period and the Growing Season in a Temperate Broadleaved Korean Pine Forest, Changbai Mountains, China. Forests 2020, 11, 1135. [Google Scholar] [CrossRef]
- Yu, L.J.; Huang, Y.; Zhang, W.; Li, T.T.; Sun, W.J. Methane uptake in global forest and grassland soils from 1981 to 2010. Sci. Total Environ. 2017, 607, 1163–1172. [Google Scholar] [CrossRef]
- Ni, X.Y.; Groffman, P.M. Declines in methane uptake in forest soils. Proc. Natl. Acad. Sci. USA 2018, 115, 8587–8590. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.; Teramoto, M.; Noh, N.J.; Hashimoto, S.; Yang, M.; Sanwangsri, M.; Liang, N. Soil carbon flux research in the Asian region: Review and future perspectives. J. Agric. Meteorol. 2021, 77, 24–51. [Google Scholar] [CrossRef]
- Heinzle, J.; Kitzler, B.; Zechmeister-Boltenstern, S.; Tian, Y.; Kengdo, S.K.; Wanek, W.; Borken, W.; Schindlbacher, A. Soil CH4 and N2O response diminishes during decadal soil warming in a temperate mountain forest. Agric. For. Meteorol. 2023, 329, 109287. [Google Scholar] [CrossRef]
- Martins, C.S.C.; Nazaries, L.; Delgado-Baquerizo, M.; Macdonald, C.A.; Anderson, I.C.; Hobbie, S.E.; Venterea, R.T.; Reich, P.B.; Singh, B.K. Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal-temperate forests. Funct. Ecol. 2017, 31, 2356–2368. [Google Scholar] [CrossRef]
- Natali, S.; Watts, J.; Rogers, B.; Potter, S.; Ludwig, S.; Selbmann, A.; Sullivan, P.F.; Abbott, B.W.; Arndt, K.A.; Birch, L.; et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 2019, 9, 852–857. [Google Scholar] [CrossRef]
- Luo, G.J.; Kiese, R.; Wolf, B.; Butterbach-Bahl, K. Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences 2013, 10, 3205–3219. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Petrakis, S.; Seyfferth, A.; Kan, J.; Inamdar, S.; Vargas, R. Influence of experimental extreme water pulses on greenhouse gas emissions from soils. Biogeochemistry 2017, 133, 147–164. [Google Scholar] [CrossRef]
- Liu, L.; Estiarte, M.; Peñuelas, J. Soil moisture as the key factor of atmospheric CH4 uptake in forest soils under environmental change. Geoderma 2019, 355, 113920. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Baldocchi, D.D.; Gershenson, A.; Goldstein, A.; Misson, L.; Wong, S. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Change Biol. 2007, 13, 2018–2035. [Google Scholar] [CrossRef]
- Fang, Y.; Gundersen, P.; Zhang, W.; Zhou, G.; Christiansen, J.R.; Mo, J.; Dong, S.; Zhang, T. Soil–atmosphere exchange of N2O, CO2 and CH4 along a slope of an evergreen broad-leaved forest in southern China. Plant Soil 2009, 319, 37–48. [Google Scholar] [CrossRef]
- McCalley, C.; Woodcroft, B.; Hodgkins, S.; Wehr, R.; Kim, E.; Mondav, R.; Crill, P.M.; Chanton, J.P.; Rich, V.I.; Tyson, G.W.; et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 2014, 514, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, A.; Pendall, E.; Macdonald, C. Microbial mechanisms of interactive climate-driven changes in soil N2O and CH4 fluxes: A global meta-analysis. J. Environ. Manag. 2025, 376, 124380. [Google Scholar] [CrossRef]
- Zang, H.; Blagodatskaya, E.; Wen, Y.; Shi, L.; Cheng, F.; Chen, H.; Zhao, B.; Zhang, F.; Fan, M.; Kuzyakov, Y. Temperature sensitivity of soil organic matter mineralization decreases with long-term N fertilization: Evidence from four Q10 estimation approaches. Land Degrad. Dev. 2020, 31, 683–693. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Prior, S.A.; Runion, G.B.; Torbert, H.A.; Tian, H.; Lu, C.; Venterea, R.T. Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: Evidence from field experiments. Front. Ecol. Environ. 2012, 10, 520–527. [Google Scholar] [CrossRef]
- Blankinship, J.C.; Brown, J.R.; Dijkstra, P.; Allwright, M.C.; Hungate, B.A. Response of terrestrial CH4 uptake to interactive changes in precipitation and temperature along a climatic gradient. Ecosystems 2010, 13, 1157–1170. [Google Scholar] [CrossRef]
- Sponseller, R.A. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob. Change Biol. 2007, 13, 426–436. [Google Scholar] [CrossRef]
- Liu, Y.; Christiansen, J.; Huang, K.; Liu, D.; Duan, Y.; Liu, G.; Gurmesa, G.A.; Fang, X.; Peng, S.; Fang, Y. Temperature and moisture both control net methane uptake in a temperate forest soil. Agric. For. Meteorol. 2025, 370, 110574. [Google Scholar] [CrossRef]
- Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl. Acad. Sci. USA 2016, 113, 13797–13802. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.L.; Tobin, B.; Luo, Y.Q.; Osborne, B. Differential responses of soil CO2 and N2O fluxes to experimental warming. Agric. For. Meteorol. 2018, 259, 11–22. [Google Scholar] [CrossRef]
- Yan, W.M.; Zhong, Y.Q.W.; Shangguan, Z.P.; Torn, M.S. Response of soil greenhouse gas fluxes to warming: A global meta-analysis of field studies. Geoderma 2022, 419, 115865. [Google Scholar] [CrossRef]
- Xu, X.K. Effect of freeze-thaw disturbance on soil C and N dynamics and GHG fluxes of East Asia forests: Review and future perspectives. Soil Sci. Plant Nutr. 2022, 68, 15–26. [Google Scholar] [CrossRef]
- Maier, M.; Cordes, M.; Osterholt, L. Soil respiration and CH4 consumption covary on the plot scale. Geoderma 2021, 382, 114702. [Google Scholar] [CrossRef]
- Davidson, E.A.; Savage, K.; Verchot, L.V.; Navarro, R. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric. For. Meteorol. 2002, 113, 21–37. [Google Scholar] [CrossRef]
- Janssens, I.A.; Kowalski, A.S.; Longdoz, B.; Ceulemans, R. Assessing forest soil CO2 efflux: An in situ comparison of four techniques. Tree Physiol. 2000, 20, 23–32. [Google Scholar] [CrossRef]
- Rayment, M.; Jarvis, P. An improved open chamber system for measuring soil CO2 effluxes in the field. J. Geophys. Res.-Atmos. 1997, 102, 28779–28784. [Google Scholar] [CrossRef]
- Crill, P.; Bartlett, K.; Harriss, R.; Gorham, E.; Verry, E.; Sebacherl, D.; Madzar, L.; Sanner, W. Methane Flux From Minnesota Peatlands. Glob. Biogeochem. Cycles 1988, 2, 371–384. [Google Scholar] [CrossRef]
- Dannenberg, S.; Conrad, R. Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 1999, 45, 53–71. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Zhang, B.; Yang, Q.; Chang, J.; Hou, K. Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China. Atmos. Environ. 2016, 125, 283–292. [Google Scholar] [CrossRef]
- Ma, X.-Z.; Zhang, Q.-L.; Li, C.-S.; Chen, G.-W.; Wang, F. Temporal variation of soil greenhouse gases fluxes in a cold-temperate Larix gmelinii forest in Inner Mongolia, China. Yingyong Shengtai Xuebao 2012, 23, 2149–2156. [Google Scholar]
- Hall, M.K.D.; Winters, A.J.; Rogers, G.S. Variations in the Diurnal Flux of Greenhouse Gases from Soil and Optimizing the Sampling Protocol for Closed Static Chambers. Commun. Soil Sci. Plant Anal. 2014, 45, 2970–2978. [Google Scholar] [CrossRef]
- Yang, H.; Liu, S.; Li, Y.; Xu, H. Diurnal variations and gap effects of soil CO2, N2O and CH4 fluxes in a typical tropical montane rainforest in Hainan Island, China. Ecol. Res. 2018, 33, 379–392. [Google Scholar] [CrossRef]
- Yu, X.; Li, X.; Xu, L.; Wang, M.; Zhang, J.; Jiang, M.; Wang, G. Diurnal variation of soil CO2 efflux and its optimal measuring time-window of temperate meadow steppes in western Songnen Plain, China. Chin. Geogr. Sci. 2016, 26, 518–526. [Google Scholar] [CrossRef]
- Kong, Y.; Gong, S.; Zhu, L.; Wu, H.; Duan, K.; Cheng, W.; Khoroshaev, D.; Lai, Y.; Xu, X. Dynamics of Soil N2O and CO2 Emissions in Response to Freeze-Thaw Intensity and Moisture Variations: A Laboratory Experiment. Forests 2025, 16, 380. [Google Scholar] [CrossRef]
- Guo, C.Y.; Zhang, L.M.; Li, S.G.; Ke, F.X. Monthly Diurnal Variations in Soil N2O Fluxes and Their Environmental Drivers in a Temperate Forest in Northeastern China: Insights from Continuous Automated Monitoring. Forests 2025, 16, 766. [Google Scholar] [CrossRef]
- Li, Q.; Cui, K.; Lv, J.; Zhang, J.; Peng, C.; Li, Y.; Gu, Z.; Song, X. Biochar amendments increase soil organic carbon storage and decrease global warming potentials of soil CH4 and N2O under N addition in a subtropical Moso bamboo plantation. For. Ecosyst. 2022, 9, 100054. [Google Scholar] [CrossRef]
- Jian, J.; Steele, M.; Day, S.; Thomas, R.; Hodges, S. Measurement strategies to account for soil respiration temporal heterogeneity across diverse regions. Soil Biol. Biochem. 2018, 125, 167–177. [Google Scholar] [CrossRef]
- Xian, Y.; Li, J.; Zhang, Y.; Shen, Y.; Wang, X.; Huang, J.; Sui, P. Determining Suitable Sampling Times for Soil CO2 and N2O Emissions Helps to Accurately Evaluate the Ability of Rubber-Based Agroforestry Systems to Cope with Climate Stress. Forests 2024, 15, 950. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 28 April 2025).
- Hopple, A.; Pennington, S.; Megonigal, J.; Bailey, V.; Bond-Lamberty, B. Root and Microbial Soil CO2 and CH4 Fluxes Respond Differently to Seasonal and Episodic Environmental Changes in a Temperate Forest. J. Geophys. Res.-Biogeosci. 2023, 128, e2022JG007233. [Google Scholar] [CrossRef]
- Machacova, K.; Warlo, H.; Svobodová, K.; Agyei, T.; Uchytilová, T.; Horácek, P.; Lang, F. Methane emission from stems of European beech (Fagus sylvatica) offsets as much as half of methane oxidation in soil. New Phytol. 2023, 238, 584–597. [Google Scholar] [CrossRef]
- Krebs, L.; Burri, S.; Feigenwinter, I.; Gharun, M.; Meier, P.; Buchmann, N. Forest-floor respiration, N2O fluxes, and CH4 fluxes in a subalpine spruce forest: Drivers and annual budgets. Biogeosciences 2024, 21, 2005–2028. [Google Scholar] [CrossRef]
- Jevon, F.; Gewirtzman, J.; Lang, A.; Ayres, M.; Matthes, J. Tree Species Effects on Soil CO2 and CH4 Fluxes in a Mixed Temperate Forest. Ecosystems 2023, 26, 1587–1602. [Google Scholar] [CrossRef]
- Pang, J.; Peng, C.; Wang, X.; Zhang, H.; Zhang, S. Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in temperate forests along an elevation gradient in the Qinling Mountains, China. Plant Soil 2023, 488, 325–342. [Google Scholar] [CrossRef]
- Shao, G.D.; Martinson, G.O.; Corre, M.D.; Luo, J.; Niu, D.; Veldkamp, E. Conversion of cropland monoculture to agroforestry increases methane uptake. Agron. Sustain. Dev. 2025, 45, 1. [Google Scholar] [CrossRef]
- Laberge, S.; Courcot, B.; Trejo-Perez, R.; Belanger, N. Soil CO2 and CH4 response to experimental warming under various tree species compositions in a temperate hardwood forest. Discov. Soil 2025, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Gritsch, C.; Zimmermann, M.; Zechmeister-Boltenstern, S. Interdependencies between temperature and moisture sensitivities of CO2 emissions in European land ecosystems. Biogeosciences 2015, 12, 5981–5993. [Google Scholar] [CrossRef]
- Zhou, W.; Hui, D.; Shen, W. Effects of Soil Moisture on the Temperature Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation Study. PLoS ONE 2014, 9, e92531. [Google Scholar] [CrossRef]
- Keane, B.; Shuttleworth, E.L.; Evans, M.G.; Ritson, J.P.; Harris, A.; Johnston, A.; Alderson, D.M.; Clay, G.D. Recovery of Sphagnum from drought is controlled by species-specific moisture thresholds. Sci. Rep. 2025, 15, 22167. [Google Scholar] [CrossRef]
- Schuur, E.; McGuire, A.; Schädel, C.; Grosse, G.; Harden, J.; Hayes, D.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Zhang, W.; Xin, H.; Li, Z.; Cui, Q.; Xu, B.; Tang, B.; Wang, Y.; Xu, C.; Xue, J. Responses of CO2 and CH4 in the alpine wetlands of the Tibetan Plateau to warming and nitrogen and phosphorus additions. Environ. Sci.-Process. Impacts 2024, 26, 1516–1525. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.; Middelburg, J.; Röckmann, T.; Aerts, R.; Blauw, L.; Egger, M.; Jetten, M.S.M.; de Jong, A.E.E.; Meisel, O.H.; Rasigraf, O.; et al. Methane Feedbacks to the Global Climate System in a Warmer World. Rev. Geophys. 2018, 56, 207–250. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Ballantyne, A.; Berryman, E.; Fluet-Chouinard, E.; Jian, J.; Morris, K.; Rey, A.; Vargas, R. Twenty Years of Progress, Challenges, and Opportunities in Measuring and Understanding Soil Respiration. J. Geophys. Res.-Biogeosci. 2024, 129, e2023JG007637. [Google Scholar] [CrossRef]
- Robertson, G.; Collins, S.; Foster, D.; Brokaw, N.; Ducklow, H.; Gragson, T.; Gries, C.; Hamilton, S.K.; McGuire, A.D.; Moore, J.C.; et al. Long-Term Ecological Research in a Human-Dominated World. Bioscience 2012, 62, 342–353. [Google Scholar] [CrossRef]
- Wu, X.; Yao, Z.; Brüggemann, N.; Shen, Z.Y.; Wolf, B.; Dannenmann, M.; Zheng, X.; Butterbach-Bahl, K. Effects of soil moisture and temperature on CO2 and CH4 soil atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biol. Biochem. 2010, 42, 773–787. [Google Scholar] [CrossRef]
- Maier, M.; Paulus, S.; Nicolai, C.; Stutz, K.P.; Nauer, P.A. Drivers of Plot-Scale Variability of CH4 Consumption in a Well-Aerated Pine Forest Soil. Forests 2017, 8, 193. [Google Scholar] [CrossRef]
- Gao, D.; Wang, W.; Gao, W.; Zeng, Q.; Liang, H. Greenhouse gas fluxes response to autumn freeze-thaw period in continuous permafrost region of Daxing’an Mountains, Northeast China. Environ. Sci. Pollut. Res. 2022, 29, 63753–63767. [Google Scholar] [CrossRef]
- Yang, S.; He, Z.; Chen, L. Elevated soil moisture amplified the effects of freeze-thaw cycles on soil CO2 and CH4 fluxes in subalpine forests. Ecol. Indic. 2023, 157, 111313. [Google Scholar] [CrossRef]
- Wigley, K.; Armstrong, C.; Smaill, S.; Reid, N.; Kiely, L.; Wakelin, S. Methane cycling in temperate forests. Carbon Balance Manag. 2024, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Mäkipää, R.; Abramoff, R.; Adamczyk, B.; Baldy, V.; Biryol, C.; Bosela, M.; Casals, P.; Yuste, J.C.; Dondini, M.; Filipek, S.; et al. How does management affect soil C sequestration and greenhouse gas fluxes in boreal and temperate forests?—A review. For. Ecol. Manag. 2023, 529, 120637. [Google Scholar] [CrossRef]
- Kazmi, F.; Mander, Ü.; Khanongnuch, R.; Öpik, M.; Ranniku, R.; Soosaar, K.; Masta, M.; Tenhovirta, S.A.M.; Kasak, K.; Ah-Peng, C.; et al. Distinct microbial communities drive methane cycling in below- and above-ground compartments of tropical cloud forests growing on peat. Environ. Microbiome 2025, 20, 54. [Google Scholar] [CrossRef]






| Scale | Gas Flux | Month | Kruskal–Wallis | Wilcoxon | ||
|---|---|---|---|---|---|---|
| p-Value | Significance | Pairwise Comparison | p-Value | |||
| Monthly | CO2 | 2 | <0.0001 | **** | 6, 12, 13, 14, 15, 16, 17 vs. 0−23 | <0.05 |
| 3 | <0.0001 | **** | 6, 17 vs. 0–23 | <0.05 | ||
| 4 | 0.0018 | ** | 6, 11, 12 vs. 0–23 | <0.05 | ||
| 5 | <0.0001 | **** | 6 vs. 0–23 | <0.05 | ||
| 6 | <0.0001 | **** | 6, 11 vs. 0–23 | <0.05 | ||
| 7 | <0.0001 | **** | 6, 11, 12, 13 vs. 0–23 | <0.05 | ||
| 8 | <0.0001 | **** | 11, 12, 13, 14, 15 vs. 0–23 | <0.05 | ||
| 9 | <0.0001 | **** | 11, 12, 13, 14, 15, 17 vs. 0–23 | <0.05 | ||
| 10 | <0.0001 | **** | 11, 12, 13, 14, 15 vs. 0–23 | <0.05 | ||
| 11 | 0.0220 | * | 15, 16, 17 vs. 0–23 | <0.05 | ||
| CH4 | 5 | <0.0001 | **** | 15 vs. 0–23 | <0.05 | |
| Month | Observed Values | 9:00–12:00 Estimates (a) | 16:00 Estimates (b) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| GWP100 CO2 | GWP100 CH4 | GWP100 CO2 + CH4 | GWP100 CO2 | GWP100 CH4 | GWP100 CO2 + CH4 | GWP100 CO2 | GWP100 CH4 | GWP100 CO2 + CH4 | |
| 1 | 8.31 | −0.34 | 7.97 | 8.48 (2.06%) | −0.31 (−7.56%) | 8.16 (2.47%) | 9.67 (16.40%) | −0.36 (7.09%) | 9.30 (16.79%) |
| 2 | 11.75 | −0.20 | 11.56 | 11.90 (1.24%) | −0.17 (−13.09%) | 11.73 (1.48%) | 15.78 (34.26%) | −0.22 (14.53%) | 15.55 (34.59%) |
| 3 | 30.01 | −0.21 | 29.81 | 25.76 (−14.17%) | −0.16 (−22.15%) | 25.60 (−14.12%) | 31.88 (6.20%) | −0.21 (−0.17%) | 31.67 (6.24%) |
| 4 | 56.19 | −0.16 | 56.02 | 61.22 (8.97%) | −0.13 (−21.71%) | 61.09 (9.06%) | 63.33 (12.72%) | −0.14 (−12.11%) | 63.19 (12.79%) |
| 5 | 200.01 | −0.64 | 199.38 | 186.54 (−6.74%) | −0.53 (−17.29%) | 186.01 (−6.70%) | 195.84 (−2.08%) | −0.59 (−6.78%) | 195.25 (−2.07%) |
| 6 | 265.87 | −1.01 | 264.86 | 246.55 (−7.27%) | −0.88 (−12.64%) | 245.66 (−7.25%) | 266.65 (0.29%) | −0.96 (−5.44%) | 265.70 (0.32%) |
| 7 | 415.29 | −1.00 | 414.29 | 368.42 (−11.29%) | −0.85 (−14.79%) | 367.56 (−11.28%) | 410.34 (−1.19%) | −0.99 (−1.62%) | 409.35 (−1.19%) |
| 8 | 426.99 | −0.95 | 426.04 | 373.85 (−12.44%) | −0.76 (−19.55%) | 373.09 (−12.43%) | 414.66 (−2.89%) | −0.92 (−3.11%) | 413.74 (−2.89%) |
| 9 | 262.52 | −0.44 | 262.08 | 218.14 (−16.91%) | 0.34 (−24.69%) | 217.81 (−16.89%) | 262.04 (−0.18%) | −0.48 (8.10%) | 261.56 (−0.20%) |
| 10 | 135.00 | −0.81 | 134.19 | 115.11 (−14.73%) | −0.61 (−25.11%) | 114.51 (−14.67%) | 131.23 (−2.79%) | −0.85 (4.92%) | 130.38 (−2.83%) |
| 11 | 45.94 | −0.46 | 45.48 | 43.28 (−5.79%) | −0.41 (−12.19%) | 42.88 (−5.73%) | 52.51 (14.29%) | −0.51 (9.56%) | 52.00 (14.34%) |
| 12 | 23.82 | −0.11 | 23.71 | 21.95 (−7.86%) | −0.10 (−13.80%) | 21.86 (−7.83%) | 26.75 (12.27%) | −0.10 (−8.79%) | 26.65 (12.37%) |
| Total | 1881.71 | −6.33 | 1875.37 | 1681.20 (−10.66%) | −5.24 (−17.20%) | 1675.95 (−10.63%) | 1880.68 (−0.05%) | −6.33 (−0.02%) | 1874.35 (−0.05%) |
| Summary Statistics | |||||||||
| Annual Bias (Total) | −10.66% (CO2) | −17.20% (CH4) | −10.63% (CO2 + CH4) | −0.05% (CO2) | −0.02% (CH4) | −0.05% (CO2 + CH4) | |||
| Seasonal Range of Deviation | −16.91% to 8.97% | −25.11% to −7.56% | −16.89 to 9.06% | −2.89% to 34.26% | −12.11% to 14.53% | −2.89% to 34.59% | |||
| Gas Flux | Month | Fitted Equation | R2 | F | p |
|---|---|---|---|---|---|
| CO2 | Total | CO2 flux = 0.474 **** + 0.187Ts **** − 1.517VWC **** − 0.179CH4 **** | 0.916 | 54,037.3 | **** |
| 1 | CO2 flux = −0.084 **** − 0.024Ts **** + 0.581VWC *** − 0.219CH4 **** | 0.828 | 2176.2 | **** | |
| 2 | CO2 flux = 0.114 *** − 2.142VWC *** − 0.895CH4 *** | 0.512 | 688.4 | *** | |
| 3 | CO2 flux = 0.256 **** + 0.135Ts **** − 0.027VWC − 0.476CH4 **** | 0.579 | 641.0 | **** | |
| 4 | CO2 flux = −1.720 **** + 0.067Ts **** + 4.092VWC **** − 0.948CH4 **** | 0.332 | 148.9 | **** | |
| 5 | CO2 flux = −7.081 **** + 0.191Ts **** + 13.622VWC **** − 1.792CH4 **** | 0.552 | 443.5 | **** | |
| 6 | CO2 flux = −1.695 *** + 0.289Ts *** − 0.301CH4 *** | 0.322 | 333.3 | *** | |
| 7 | CO2 flux = −10.984 **** + 0.331Ts **** + 17.802VWC **** − 2.321CH4 **** | 0.755 | 1410.4 | **** | |
| 8 | CO2 flux = −10.175 **** + 0.341Ts **** + 14.631VWC **** − 2.187CH4 **** | 0.815 | 2091.0 | **** | |
| 9 | CO2 flux = −1.414 *** + 0.242Ts *** − 0.879CH4 *** | 0.584 | 1007.8 | *** | |
| 10 | CO2 flux = −4.839 **** + 0.136Ts **** + 10.101VWC **** − 1.148CH4 **** | 0.771 | 1629.6 | **** | |
| 11 | CO2 flux = −0.076 + 0.035Ts **** + 0.187VWC − 0.711CH4 **** | 0.731 | 821.8 | **** | |
| 12 | CO2 flux = 0.398 **** + 0.255Ts **** − 0.912VWC **** − 0.255CH4 **** | 0.307 | 119.1 | **** | |
| CH4 | Total | CH4 flux = 0.071 *** − 0.050VWC * − 0.002CO2 | 0.033 | 6.1 | ** |
| 1 | CH4 flux = −0.238 + 3.105VWC− 0.968CO2 *** | 0.193 | 12.7 | *** | |
| 2 | CH4 flux = 0.551 − 5.067VWC− 0.776CO2 *** | 0.506 | 27.1 | *** | |
| 3 | CH4 flux = −0.210 **** + 0.022Ts **** + 0.777VWC **** − 0.445CO2 **** | 0.620 | 741.0 | **** | |
| 4 | CH4 flux = −1.533 **** + 0.012Ts **** + 3.029VWC **** − 0.163CO2 **** | 0.641 | 517.1 | **** | |
| 5 | CH4 flux = −3.448 **** + 0.025Ts **** + 6.906VWC **** − 0.172CO2 **** | 0.804 | 1478.3 | **** | |
| 6 | CH4 flux = −4.067 **** + 0.069Ts **** + 6.875VWC **** − 0.151CO2 **** | 0.908 | 4644.5 | **** | |
| 7 | CH4 flux = −4.454 **** + 0.073Ts **** + 7.963VWC **** − 0.206CO2 **** | 0.941 | 7242.1 | **** | |
| 8 | CH4 flux = −4.609 **** + 0.089Ts **** + 7.633VWC **** − 0.240CO2 **** | 0.894 | 3886.6 | **** | |
| 9 | CH4 flux = −3.130 **** + 0.040Ts **** + 5.777VWC **** − 0.193CO2 **** | 0.886 | 3593.9 | **** | |
| 10 | CH4 flux = −4.057 **** + 0.046Ts **** + 8.510VWC **** − 0.397CO2 **** | 0.720 | 1239.9 | **** | |
| 11 | CH4 flux = −0.574 *** + 1.132VWC *** − 0.910CO2 **** | 0.716 | 770.6 | **** | |
| 12 | CH4 flux = 0.013 + 0.024Ts − 0.408VWC **** − 0.136CO2 **** | 0.289 | 104.2 | **** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Ke, F.; Zhang, L.; Li, S. Inter-Monthly Variations in CO2 and CH4 Fluxes in a Temperate Forest: Coupling Dynamics and Environmental Drivers. Atmosphere 2025, 16, 1326. https://doi.org/10.3390/atmos16121326
Guo C, Ke F, Zhang L, Li S. Inter-Monthly Variations in CO2 and CH4 Fluxes in a Temperate Forest: Coupling Dynamics and Environmental Drivers. Atmosphere. 2025; 16(12):1326. https://doi.org/10.3390/atmos16121326
Chicago/Turabian StyleGuo, Chuying, Fuxi Ke, Leiming Zhang, and Shenggong Li. 2025. "Inter-Monthly Variations in CO2 and CH4 Fluxes in a Temperate Forest: Coupling Dynamics and Environmental Drivers" Atmosphere 16, no. 12: 1326. https://doi.org/10.3390/atmos16121326
APA StyleGuo, C., Ke, F., Zhang, L., & Li, S. (2025). Inter-Monthly Variations in CO2 and CH4 Fluxes in a Temperate Forest: Coupling Dynamics and Environmental Drivers. Atmosphere, 16(12), 1326. https://doi.org/10.3390/atmos16121326

