Furnace Air Filter Replacement Practices and Implications for Indoor Air Quality: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Visit Scheduling
2.2. Site Visit PM2.5 Measurements
2.3. Site Visit Protocol
2.4. Elemental Analyses of Residence Air Filters
3. Results
3.1. Survey Findings
3.2. PM2.5 Measurements
3.3. Furnace Filter Observations
3.4. Furnace Filter Deposition
4. Discussion
4.1. Community Engagement
4.2. Community Health
4.3. Pollutant Collection Proof of Concept
4.4. Study Limitations
4.5. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
- Do you know when the last time your home air filter was changed?
- What barriers, if any, do you experience to changing your air filter or having your air filter changed?
- What concerns do you have, if any, about outdoor air quality?
- Please rate your level of concern about outdoor air quality:
- ○
- Very concerned
- ○
- Moderately concerned
- ○
- Not concerned
- What concerns do you have, if any, about indoor air quality?
- Please rate your level of concern about indoor air quality:
- ○
- Very concerned
- ○
- Moderately concerned
- ○
- Not concerned
- Sabes cuando fue la última vez que cambio el filtro de aire de su casa?
- Qué barreras, si hay, experiencia para cambiar su filtro de aire or que le cambien su filtro?
- Qué preocupaciones tiene sobre la calidad del aire exterior?
- Por favor califique su nivel de preocupación de la calidad de aire exterior?
- ○
- Muy precupado(a)
- ○
- Moderadamente preocupado(a)
- ○
- No preocupado
- Que preocupaciones tiene, si las tiene, sobre la calidad del aire interior?
- Por favor califique su nivel de preocupación de la calidad de aire interior?
- ○
- Muy precupado(a)
- ○
- Moderadamente preocupado(a)
- ○
- No preocupado
References
- Utah Department of Environmental Quality. Inversions. Available online: https://deq.utah.gov/air-quality/inversions (accessed on 12 December 2023).
- Jaffe, D.A.; Ninneman, M.; Nguyen, L.; Lee, H.; Hu, L.; Ketcherside, D.; Jin, L.; Cope, E.; Lyman, S.; Jones, C. Key results from the salt lake regional smoke, ozone, and aerosol study (SAMOZA). J. Air Waste Manag. Assoc. 2024, 74, 163–180. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. Winter lake breezes near the Great Salt Lake. Bound.-Layer Meteorol. 2016, 159, 439–464. [Google Scholar] [CrossRef]
- Beard, J.D.; Beck, C.; Graham, R.; Packham, S.C.; Traphagan, M.; Giles, R.T.; Morgan, J.G. Winter temperature inversions and emergency department visits for asthma in Salt Lake County, Utah, 2003–2008. Environ. Health Perspect. 2012, 120, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Horne, B.D.; Joy, E.A.; Hofmann, M.G.; Gesteland, P.H.; Cannon, J.B.; Lefler, J.S.; Blagev, D.P.; Korgenski, E.K.; Torosyan, N.; Hansen, G.I. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am. J. Respir. Crit. Care Med. 2018, 198, 759–766. [Google Scholar] [CrossRef]
- Pirozzi, C.S.; Jones, B.E.; VanDerslice, J.A.; Zhang, Y.; Paine, R., III; Dean, N.C. Short-Term Air Pollution and Incident Pneumonia. A Case–Crossover Study. Ann. Am. Thorac. Soc. 2018, 15, 449–459. [Google Scholar] [CrossRef]
- Pope, C.A., III; Muhlestein, J.B.; Anderson, J.L.; Cannon, J.B.; Hales, N.M.; Meredith, K.G.; Le, V.; Horne, B.D. Short-term exposure to fine particulate matter air pollution is preferentially associated with the risk of ST-segment elevation acute coronary events. J. Am. Heart Assoc. 2015, 4, e002506. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.L.; Pirozzi, C.S.; Crosman, E.T.; Liou, T.G.; Zhang, Y.; Cleeves, J.J.; Bannister, S.C.; Anderegg, W.R.; Paine, R., III. Impact of low-level fine particulate matter and ozone exposure on absences in K-12 students and economic consequences. Environ. Res. Lett. 2020, 15, 114052. [Google Scholar] [CrossRef]
- Ransom, M.R.; Pope, C.A. Elementary school absences and PM10 pollution in Utah Valley. Environ. Res. 1992, 58, 204–219. [Google Scholar] [CrossRef]
- Mullen, C.; Grineski, S.E.; Collins, T.W.; Mendoza, D.L. Effects of PM2.5 on Third Grade Students’ Proficiency in Math and English Language Arts. Int. J. Environ. Res. Public Health 2020, 17, 6931. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed]
- Flavelle, C. As the Great Salt Lake Dries up, Utah faces an “Environmental Nuclear Bomb”. The New York Times, 8 June 2022. [Google Scholar]
- Grineski, S.E.; Mallia, D.V.; Collins, T.W.; Araos, M.; Lin, J.C.; Anderegg, W.R.; Perry, K. Harmful dust from drying lakes: Preserving Great Salt Lake (USA) water levels decreases ambient dust and racial disparities in population exposure. One Earth 2024, 7, 1056–1067. [Google Scholar] [CrossRef]
- Rawat, N.; Kumar, P. Interventions for improving indoor and outdoor air quality in and around schools. Sci. Total Environ. 2023, 858, 159813. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, E.D.; Evtyugina, M.; Vicente, A.M.; Nunes, T.; Lucarelli, F.; Calzolai, G.; Nava, S.; Calvo, A.I.; del Blanco Alegre, C. Indoor and outdoor air quality: A university cafeteria as a case study. Atmos. Pollut. Res. 2020, 11, 531–544. [Google Scholar] [CrossRef]
- Mohammadi, M.; Calautit, J. Quantifying the transmission of outdoor pollutants into the indoor environment and vice versa—Review of influencing factors, methods, challenges and future direction. Sustainability 2022, 14, 10880. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Goodman, N. Improving the indoor air quality of residential buildings during bushfire smoke events. Climate 2021, 9, 32. [Google Scholar] [CrossRef]
- Yang, S.; Yuk, H.; Yun, B.Y.; Kim, Y.U.; Wi, S.; Kim, S. Passive PM2.5 control plan of educational buildings by using airtight improvement technologies in South Korea. J. Hazard. Mater. 2022, 423, 126990. [Google Scholar] [CrossRef]
- Kuo, H.-W.; Shen, H.-Y. Indoor and outdoor PM2.5 and PM10 concentrations in the air during a dust storm. Build. Environ. 2010, 45, 610–614. [Google Scholar] [CrossRef]
- Kalinauskaitė, A.; Davulienė, L.; Pauraite, J.; Minderytė, A.; Byčenkienė, S. New Year Fireworks Influence on Air Quality in Case of Stagnant Foggy Conditions. Urban Sci. 2024, 8, 54. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Benney, T.M.; Boll, S. Long-term analysis of the relationships between indoor and outdoor fine particulate pollution: A case study using research grade sensors. Sci. Total Environ. 2021, 776, 145778. [Google Scholar] [CrossRef] [PubMed]
- Albadrani, M. Socioeconomic disparities in mortality from indoor air pollution: A multi-country study. PLoS ONE 2025, 20, e0317581. [Google Scholar] [CrossRef]
- Mullen, C.; Grineski, S.; Collins, T.; Xing, W.; Whitaker, R.; Sayahi, T.; Becnel, T.; Goffin, P.; Gaillardon, P.-E.; Meyer, M. Patterns of distributive environmental inequity under different PM2.5 air pollution scenarios for Salt Lake County public schools. Environ. Res. 2020, 186, 109543. [Google Scholar] [CrossRef]
- Shirman, T.; Shirman, E.; Liu, S. Evaluation of filtration efficiency of various filter media in addressing wildfire smoke in indoor environments: Importance of particle size and composition. Atmosphere 2023, 14, 1729. [Google Scholar] [CrossRef]
- Kim, D.D.; Kang, K. Experimental Study of Energy Recovery Ventilator for Enhancing Indoor Air Quality in Daycare Centers: A Case Study in South Korea. Buildings 2025, 15, 566. [Google Scholar] [CrossRef]
- Thompson, M.; Castorina, R.; Chen, W.; Moore, D.; Peerless, K.; Hurley, S. Effectiveness of Air Filtration in Reducing PM2.5 Exposures at a School in a Community Heavily Impacted by Air Pollution. Atmosphere 2024, 15, 901. [Google Scholar] [CrossRef]
- Boal, J. Researchers Say Air Pollution Is Getting Inside, Recommend MERV 13 Filter. KSLTV.com. 2022. Available online: https://ksltv.com/local-news/researchers-say-air-pollution-is-getting-inside-recommend-merv-13-filter/501403/ (accessed on 24 October 2024).
- Elsaid, A.M.; Ahmed, M.S. Indoor air quality strategies for air-conditioning and ventilation systems with the spread of the global coronavirus (COVID-19) epidemic: Improvements and recommendations. Environ. Res. 2021, 199, 111314. [Google Scholar] [CrossRef]
- Glas, B. KSL Investigates If Utah Schools Are Doing Enough to Vent the Virus. KSL.com. 2020. Available online: https://www.ksl.com/article/50007513/ksl-investigates-if-utah-schools-are-doing-enough-to-vent-the-virus (accessed on 20 January 2025).
- Commodore, A.; Wilson, S.; Muhammad, O.; Svendsen, E.; Pearce, J. Community-based participatory research for the study of air pollution: A review of motivations, approaches, and outcomes. Environ. Monit. Assess. 2017, 189, 378. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.; Lowther-Payne, H.J.; Halliday, E.C.; Dooley, K.; Joseph, N.; Livesey, R.; Moran, P.; Kirby, S.; Cloke, J. Engaging communities in addressing air quality: A scoping review. Environ. Health 2022, 21, 89. [Google Scholar] [CrossRef] [PubMed]
- Sankhyan, S.; Clements, N.; Heckman, A.; Hollo, A.K.; Gonzalez-Beltran, D.; Aumann, J.; Morency, C.; Leiden, L.; Miller, S.L. Optimization of a do-it-yourself air cleaner design to reduce residential air pollution exposure for a community experiencing environmental injustices. Atmosphere 2023, 14, 1734. [Google Scholar] [CrossRef]
- Fogg-Rogers, L.; Sardo, A.M.; Csobod, E.; Boushel, C.; Laggan, S.; Hayes, E. Citizen-led emissions reduction: Enhancing enjoyment and understanding for diverse citizen engagement with air pollution and climate change decision making. Environ. Sci. Policy 2024, 154, 103692. [Google Scholar] [CrossRef]
- Williams, A.; Schulte, K.; Varaden, D. ‘Incense is the one that keeps the air fresh’: Indoor air quality perceptions and attitudes towards health risk. BMC Public Health 2024, 24, 3178. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Benney, T.M.; Ganguli, R.; Pothina, R.; Pirozzi, C.S.; Quackenbush, C.; Baty, S.R.; Crosman, E.T.; Zhang, Y. The Role of Structural Inequality on COVID-19 Incidence Rates at the Neighborhood Scale in Urban Areas. COVID 2021, 1, 186–202. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. What Is a MERV Rating? Available online: https://www.epa.gov/indoor-air-quality-iaq/what-merv-rating (accessed on 12 December 2023).
- The Community Research Collaborative. In It Together: Community-Based Research Guidelines for Communities and Higher Education; University of Utah: Salt Lake City, UT, USA, 2021. [Google Scholar]
- UnitedStatesZipCodes.org. Stats and Demographics for the 84104 ZIP Code. Available online: https://www.unitedstateszipcodes.org/84104/ (accessed on 12 December 2023).
- Met One Instruments Inc. ES-642 Dust Monitor Operation Manual; Met One Instruments Inc.: Grants Pass, OR, USA, 2013. [Google Scholar]
- Agilent. Agilent 8900 Triple Quadrupole ICP-MS. Available online: https://www.agilent.com/cs/library/technicaloverviews/public/5991-6942EN.pdf (accessed on 18 October 2025).
- Womack, C.C.; Chace, W.S.; Wang, S.; Baasandorj, M.; Fibiger, D.L.; Franchin, A.; Goldberger, L.; Harkins, C.; Jo, D.S.; Lee, B.H. Midlatitude ozone depletion and air quality impacts from industrial halogen emissions in the Great Salt Lake Basin. Environ. Sci. Technol. 2023, 57, 1870–1881. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Violations at Metal Recycling Facilities Cause Excess Emissions in Nearby Communities. Available online: https://www.epa.gov/system/files/documents/2021-07/metalshredder-enfalert.pdf (accessed on 15 August 2025).
- Green, L.; Daniel, M.; Novick, L. Partnerships and coalitions for community-based research. Public Health Rep. 2001, 116, 20–31. [Google Scholar] [CrossRef]
- Lakhan, C. Best Practices in Sustainable Communication for Minority Communities. SSRN 4946143. 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4946143 (accessed on 6 June 2025).
- Tran, V.V.; Park, D.; Lee, Y.-C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Mendoza, D.L.; Benney, T.M.; Bares, R.; Fasoli, B.; Anderson, C.; Gonzales, S.A.; Crosman, E.T.; Hoch, S. Investigation of Indoor and Outdoor Fine Particulate Matter Concentrations in Schools in Salt Lake City, Utah. Pollutants 2022, 2, 82–97. [Google Scholar] [CrossRef]
- Tofful, L.; Canepari, S.; Sargolini, T.; Perrino, C. Indoor air quality in a domestic environment: Combined contribution of indoor and outdoor PM sources. Build. Environ. 2021, 202, 108050. [Google Scholar] [CrossRef]
- Nishihama, Y.; Jung, C.-R.; Nakayama, S.F.; Tamura, K.; Isobe, T.; Michikawa, T.; Iwai-Shimada, M.; Kobayashi, Y.; Sekiyama, M.; Taniguchi, Y. Indoor air quality of 5,000 households and its determinants. Part A: Particulate matter (PM2. 5 and PM10–2.5) concentrations in the Japan Environment and Children’s Study. Environ. Res. 2021, 198, 111196. [Google Scholar] [CrossRef]
- Canha, N.; Teixeira, C.; Figueira, M.; Correia, C. How is indoor air quality during sleep? A review of field studies. Atmosphere 2021, 12, 110. [Google Scholar] [CrossRef]
- Nassikas, N.J.; Horner, E.; Rice, M.B. Indoor air: Guidelines, policies, and regulation. J. Allergy Clin. Immunol. 2024, 154, 911–913. [Google Scholar] [CrossRef]
- DeMarco, A.L.; Hardenbrook, R.; Rose, J.; Mendoza, D.L. Air pollution-related health impacts on individuals experiencing homelessness: Environmental justice and health vulnerability in Salt Lake County, Utah. Int. J. Environ. Res. Public Health 2020, 17, 8413. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.L.; Crosman, E.T.; Mitchell, L.E.; Jacques, A.; Fasoli, B.; Park, A.M.; Lin, J.C.; Horel, J. The TRAX Light-Rail Train Air Quality Observation Project. Urban Sci. 2019, 3, 108. [Google Scholar] [CrossRef]
- Thorsen, M.L.; Handy, R.G.; Sleeth, D.K.; Thiese, M.S.; Riches, N.O. A comparison study between previous and current shoreline concentrations of heavy metals at the Great Salt Lake using portable X-ray fluorescence analysis. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 1941–1954. [Google Scholar] [CrossRef]
- Wurtsbaugh, W.A.; Leavitt, P.R.; Moser, K.A. Effects of a century of mining and industrial production on metal contamination of a model saline ecosystem, Great Salt Lake, Utah. Environ. Pollut. 2020, 266, 115072. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Frantz, C.M.; Fernandez, D.P.; Werner, M.S. Toxic elements in benthic lacustrine sediments of Utah’s Great Salt Lake following a historic low in elevation. Front. Soil Sci. 2024, 4, 1445792. [Google Scholar] [CrossRef]
- Putman, A.L.; Blakowski, M.; DiViesti, D.; Fernandez, D.; McDonnell, M.; Longley, P.; Jones, D.K. Contributions of Great Salt Lake playa-and industrially sourced priority pollutant metals in dust contribute to possible health hazards in the communities of northern Utah. GeoHealth 2025, 9, e2025GH001462. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.; Kerry, R.; Ingram, B.; Golden, C.S.; LeMonte, J.J. Investigating the Spatial Patterns of Heavy Metals in Topsoil and Asthma in the Western Salt Lake Valley, Utah. Environments 2024, 11, 223. [Google Scholar] [CrossRef]
- Park, Y.M.; Chavez, D.; Sousan, S.; Figueroa-Bernal, N.; Alvarez, J.R.; Rocha-Peralta, J. Personal exposure monitoring using GPS-enabled portable air pollution sensors: A strategy to promote citizen awareness and behavioral changes regarding indoor and outdoor air pollution. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 347–357. [Google Scholar] [CrossRef]
- NeighborWorks Salt Lake. Available online: https://www.nwsaltlake.org/ (accessed on 12 December 2023).



| Level of Concern | Outdoor Air Quality | Indoor Air Quality |
|---|---|---|
| Not Concerned | 1 | 2 |
| Moderately Concerned | 3 | 5 |
| Very Concerned | 7 | 4 |
| Months Since Last Filter Change | Number of Participants |
|---|---|
| 0.75 | 3 |
| 1 | 1 |
| 2 | 2 |
| 5 | 2 |
| 8 | 1 |
| More than 24 | 1 |
| Unknown | 1 |
| Residence (Visit Date and Time) | Outdoor PM2.5 (µg m−3) Mean (Min–Max) [SD] | Indoor PM2.5 (µg m−3) Mean (Min–Max) [SD] |
|---|---|---|
| 1 (20 April 17:38) | 0.67 (0.00–1.00) [0.47] | 0.11 (0.00–1.00) [0.31] |
| 2 (20 April 18:12) | 5.19 (1.00–15.00) [3.47] | 0.08 (0.00–1.00) [0.27] |
| 3 (24 April 17:15) | 2.32 (1.00–12.00) [1.14] | 0.00 (0.00–0.00) [0.00] |
| 4 (24 April 17:45) | 15.04 (1.00–49.0) [11.57] | 0.18 (0.00–1.00) [0.38] |
| 5 (24 April 18:24) | 14.97 (12.00–20.00) [2.49] | 0.04 (0.00–1.00) [0.19] |
| 6 (24 April 18:52) | 2.93 (1.00–28.00) [3.61] | 0.00 (0.00–0.00) [0.00] |
| 7 (27 April 17:20) | 0.81 (0.00–3.00) [0.51] | 0.25 (0.00–3.00) [0.45] |
| 8 (27 April 17:52) | 20.09 (16.00–25.00) [1.96] | 0.43 (0.00–1.00) [0.50] |
| 9 (27 April 18:13) | 2.85 (1.00–5.00) [0.89] | 0.20 (0.00–1.00) [0.40] |
| 10 (27 April 18:42) | 0.93 (0.00–3.00) [0.56] | 0.15 (0.00–1.00) [0.35] |
| 11 (4 May 17:26) | 2.80 (1.00–5.00) [0.85] | 0.09 (0.00–4.00) [0.41] |
| Element | Minimum | Maximum | Mean | Median | IQR | SD | RSD (%) |
|---|---|---|---|---|---|---|---|
| Li | 0 | 1.703 | 0.739 | 0.637 | 0.767 | 0.627 | 85 |
| Be | 0 | 0.039 | 0.02 | 0.017 | 0.023 | 0.016 | 80 |
| B | 3.102 | 232.49 | 47.75 | 13.359 | 9.736 | 90.68 | 190 |
| Na | 561.499 | 3585.767 | 1540.498 | 861.174 | 1477.811 | 1265.175 | 82 |
| Mg | 1.384 | 1234.207 | 498.854 | 487.377 | 399.46 | 433.84 | 87 |
| Al | 0 | 386.693 | 232.493 | 289.807 | 215.943 | 156.45 | 67 |
| K | 0 | 1690.748 | 619.82 | 335.62 | 888.521 | 689.015 | 111 |
| Ca | 25.703 | 7161.399 | 3392.606 | 2924.089 | 4540.589 | 2919.438 | 86 |
| Sc | 0 | 0.031 | 0.015 | 0.015 | 0.008 | 0.011 | 73 |
| Mn | 0.005 | 31.044 | 13.467 | 13.953 | 9.512 | 10.743 | 80 |
| Fe | 5.131 | 539.395 | 313.323 | 378.477 | 412.366 | 241.692 | 77 |
| Co | 0 | 0.425 | 0.242 | 0.284 | 0.216 | 0.163 | 67 |
| Ni | 0.032 | 3.016 | 1.678 | 1.952 | 1.885 | 1.228 | 73 |
| Cu | 0.034 | 30.311 | 19.081 | 20.091 | 4.801 | 10.262 | 54 |
| V | 0.232 | 0.832 | 0.566 | 0.617 | 0.303 | 0.231 | 41 |
| Cr | 0.086 | 3.764 | 1.889 | 1.852 | 1.828 | 1.384 | 73 |
| Zn | 0 | 227.439 | 108.976 | 109.117 | 107.999 | 86.025 | 79 |
| Rb | 0.007 | 2.469 | 1.086 | 0.873 | 1.306 | 0.955 | 88 |
| Sr | 0.055 | 31.958 | 15.329 | 13.97 | 21.685 | 13.468 | 88 |
| Y | 0.001 | 0.624 | 0.297 | 0.262 | 0.329 | 0.239 | 80 |
| As | 0.01 | 1.469 | 0.869 | 0.874 | 0.581 | 0.53 | 61 |
| Mo | 0.039 | 0.816 | 0.496 | 0.533 | 0.251 | 0.272 | 55 |
| Cd | 0 | 0.407 | 0.198 | 0.19 | 0.072 | 0.132 | 67 |
| Sb | 0 | 5.33 | 1.902 | 1.46 | 1.458 | 1.88 | 99 |
| Cs | 0 | 0.258 | 0.134 | 0.148 | 0.101 | 0.092 | 69 |
| Ba | 0.148 | 70.623 | 38.161 | 36.632 | 45.379 | 28.941 | 76 |
| La | 0.001 | 1.483 | 0.689 | 0.614 | 0.466 | 0.508 | 74 |
| Ce | 0.092 | 2.356 | 1.094 | 0.943 | 0.856 | 0.808 | 74 |
| Pr | 0 | 0.195 | 0.1 | 0.091 | 0.121 | 0.079 | 79 |
| Nd | 0.001 | 0.747 | 0.396 | 0.373 | 0.471 | 0.304 | 77 |
| Sm | 0 | 0.15 | 0.077 | 0.07 | 0.097 | 0.062 | 81 |
| Eu | 0 | 0.033 | 0.016 | 0.017 | 0.015 | 0.012 | 75 |
| Gd | 0 | 0.141 | 0.073 | 0.068 | 0.084 | 0.056 | 77 |
| Tb | 0 | 0.02 | 0.01 | 0.008 | 0.012 | 0.008 | 80 |
| Dy | 0 | 0.109 | 0.057 | 0.052 | 0.068 | 0.044 | 77 |
| Ho | 0 | 0.02 | 0.01 | 0.009 | 0.012 | 0.008 | 80 |
| Er | 0.011 | 0.066 | 0.039 | 0.041 | 0.027 | 0.021 | 54 |
| Yb | 0 | 0.046 | 0.024 | 0.023 | 0.027 | 0.018 | 75 |
| Lu | 0 | 0.006 | 0.003 | 0.003 | 0.004 | 0.003 | 100 |
| Tl | 0 | 0.051 | 0.021 | 0.017 | 0.014 | 0.017 | 81 |
| Pb | 0.066 | 12.472 | 8.717 | 9.853 | 1.567 | 4.407 | 51 |
| Th | 0.003 | 0.083 | 0.039 | 0.036 | 0.029 | 0.028 | 72 |
| U | 0 | 0.186 | 0.097 | 0.1 | 0.072 | 0.065 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, D.L.; Christian, L.P.; Crosman, E.T.; Cachelin, A. Furnace Air Filter Replacement Practices and Implications for Indoor Air Quality: A Pilot Study. Atmosphere 2025, 16, 1291. https://doi.org/10.3390/atmos16111291
Mendoza DL, Christian LP, Crosman ET, Cachelin A. Furnace Air Filter Replacement Practices and Implications for Indoor Air Quality: A Pilot Study. Atmosphere. 2025; 16(11):1291. https://doi.org/10.3390/atmos16111291
Chicago/Turabian StyleMendoza, Daniel L., Lauren Piper Christian, Erik T. Crosman, and Adrienne Cachelin. 2025. "Furnace Air Filter Replacement Practices and Implications for Indoor Air Quality: A Pilot Study" Atmosphere 16, no. 11: 1291. https://doi.org/10.3390/atmos16111291
APA StyleMendoza, D. L., Christian, L. P., Crosman, E. T., & Cachelin, A. (2025). Furnace Air Filter Replacement Practices and Implications for Indoor Air Quality: A Pilot Study. Atmosphere, 16(11), 1291. https://doi.org/10.3390/atmos16111291

