Observational Evidence of Distinct Excitation Pathways for Migrating and Non-Migrating Tides in the Mesosphere-Lower Thermosphere During the 2021 Sudden Stratospheric Warming
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Diurnal and Semi-Diurnal Westward Migrating and Non-Migrating Tides
3.2. Excitation Mechanism of Diurnal Non-Migrating Tides
3.3. Excitation Mechanism of Semi-Diurnal Non-Migrating Tides
3.4. Diurnal Eastward Non-Migrating Tides
3.5. Excitation Mechanism of Diurnal Eastward Non-Migrating Tides
4. Discussion
5. Conclusions
- The diurnal tides dominate at low latitudes, with the migrating diurnal tide (DW1) peaking between 10 ∘N and 40 ∘N following the SSW onset. In contrast, the semi-diurnal tides are most pronounced in mid-to-high latitudes, with the migrating semi-diurnal tide (SW2) exhibiting the largest amplitude enhancement near 60 ∘N.
- The non-migrating diurnal tides (D0, DW2, DW3) show amplitude variations consistent with nonlinear interactions between the migrating DW1 tide and SPWs at low latitudes.
- The S0 tide at high latitudes exhibits a strong interaction with zonal wind shear, indicating that the SSW-induced dynamical response drives the excitation of this tide.
- SW1 and SW3 tides at high latitudes are closely associated with TCO, suggesting that ozone-related variability contributes to the tidal amplification.
- The eastward-propagating non-migrating tides (DE2 and DE3) exhibit a strong phase relationship with TPWV at low latitudes, suggesting a role of latent heat release from tropical convection in their modulation. In contrast, DE1 shows a weak relationship with TPWV.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A


References
- Forbes, J.M.; Zhang, X.; Hagan, M.E. Simulations of diurnal tides due to tropospheric heating from the NCEP/NCAR Reanalysis Project. Geophys. Res. Lett. 2001, 28, 3851–3854. [Google Scholar] [CrossRef]
- Teitelbaum, H.; Vial, F.; Manson, A.H.; Giraldez, R.; Massebeuf, M. Non-linear interaction between the diurnal and semidiurnal tides: Terdiurnal and diurnal secondary waves. J. Atmos. Terr. Phys. 1989, 51, 627–634. [Google Scholar] [CrossRef]
- Pancheva, D.; Mitchell, N.J.; Hagan, M.E.; Manson, A.H.; Meek, C.E.; Luo, Y.; Riggin, D.M. Global-scale tidal structure in the mesosphere and lower thermosphere during the PSMOS campaign of June–August 1999 and comparisons with the global-scale wave model. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1011–1035. [Google Scholar] [CrossRef]
- Oberheide, J.; Hagan, M.E.; Roble, R.G.; Offermann, D. Sources of nonmigrating tides in the tropical middle atmosphere. J. Geophys. Res. Atmospheres 2002, 107, ACL 6-1–ACL 6-14. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Pancheva, D.; Mukhtarov, P.; Jin, H.; Fujiwara, H.; Shinagawa, H. Excitation mechanism of non-migrating tides. J. Atmos. Sol.-Terr. Phys. 2017, 156, 24–36. [Google Scholar] [CrossRef]
- Lilienthal, F.; Jacobi, C. Nonlinear forcing mechanisms of the migrating terdiurnal solar tide and their impact on the zonal mean circulation. Ann. Geophys. 2019, 37, 943–953. [Google Scholar] [CrossRef]
- Matsuno, T. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 1971, 28, 1479–1494. [Google Scholar] [CrossRef]
- Matsuno, T.; Nakamura, K. The Eulerian- and Lagrangian-mean meridional circulations in the stratosphere at the time of a sudden warming. J. Atmos. Sci. 1979, 36, 640–654. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Coster, A.J.; Plumb, R.A.; Domeisen, D.I. The potential role of stratospheric ozone in the stratosphere–ionosphere coupling during stratospheric warmings. Geophys. Res. Lett. 2012, 39, L08106. [Google Scholar] [CrossRef]
- Zorkaltseva, O.; Saunkin, A.; Vasilyev, R.; Gavrilyeva, G.; Artamonov, M.; Antokhina, O. Effects of sudden stratospheric warmings on airglow emissions layers over Siberia. Adv. Space Res. 2025, 75, 5603–5614. [Google Scholar] [CrossRef]
- Pancheva, D.; Mukhtarov, P. Atmospheric tides and planetary waves: Recent progress based on SABER/TIMED temperature measurements (2002–2007). In Aeronomy of the Earth’s Atmosphere and Ionosphere; Abdu, M.A., Pancheva, D., Bhattacharyya, A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 19–56. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Richmond, A.D. A theory of ionospheric response to upward-propagating tides: Electrodynamic effects and tidal mixing effects. J. Geophys. Res. Space Phys. 2013, 118, 5891–5905. [Google Scholar] [CrossRef]
- Chandran, A.; Collins, R.L. Stratospheric sudden warming effects on winds and temperature in the middle atmosphere at middle and low latitudes: A study using WACCM. Ann. Geophys. 2014, 32, 859–874. [Google Scholar] [CrossRef]
- Liu, G.; Janches, D.; Ma, J.; Lieberman, R.S.; Stober, G.; Moffat-Griffin, T.; Murphy, D.J. Mesosphere and lower thermosphere winds and tidal variations during the 2019 Antarctic sudden stratospheric warming. J. Geophys. Res. Space Phys. 2022, 127, e2021JA030177. [Google Scholar] [CrossRef]
- Siddiqui, T.A.; Chau, J.L.; Stolle, C.; Yamazaki, Y. Migrating solar diurnal tidal variability during northern and southern hemisphere sudden stratospheric warmings. Earth Planets Space 2022, 74, 101. [Google Scholar] [CrossRef]
- Hibbins, R.E.; Espy, P.J.; Orsolini, Y.J.; Limpasuvan, V.; Barnes, R.J. SuperDARN observations of semidiurnal tidal variability in the MLT and the response to sudden stratospheric warming events. J. Geophys. Res. Atmos. 2019, 124, 4862–4872. [Google Scholar] [CrossRef]
- Pancheva, D.; Mukhtarov, P.; Andonov, B. Nonmigrating tidal activity related to the sudden stratospheric warming in the Arctic winter of 2003/2004. Ann. Geophys. 2009, 27, 975–987. [Google Scholar] [CrossRef]
- Sridharan, S. Seasonal variations of low-latitude migrating and nonmigrating diurnal and semidiurnal tides in TIMED-SABER temperature and their relationship with source variations. J. Geophys. Res. Space Phys. 2019, 124, 3558–3572. [Google Scholar] [CrossRef]
- Zhang, J.; Limpasuvan, V.; Orsolini, Y.J.; Espy, P.J.; Hibbins, R.E. Climatological westward-propagating semidiurnal tides and their composite response to sudden stratospheric warmings in SuperDARN and SD-WACCM-X. J. Geophys. Res. Atmos. 2021, 126, e2020JD032895. [Google Scholar] [CrossRef]
- Mitra, G.; Guharay, A.; Batista, P.P.; Buriti, R.A.; Moffat-Griffin, T. Investigation on the MLT tidal variability during September 2019 minor sudden stratospheric warming. Adv. Space Res. 2023, 71, 869–882. [Google Scholar] [CrossRef]
- Mitra, G.; Guharay, A.; Paulino, I. Signature of a zonally symmetric semidiurnal tide during major sudden stratospheric warmings and plausible mechanisms: A case study. Sci. Rep. 2024, 14, 23806. [Google Scholar] [CrossRef]
- Tsidu, G.M.; Abraha, G. Moderate geomagnetic storms of January 22–25, 2012 and their influences on the wave components in ionosphere and upper stratosphere-mesosphere regions. Adv. Space Res. 2014, 54, 1793–1812. [Google Scholar] [CrossRef]
- Mlynczak, M.; Martin-Torres, F.J.; Russell, J.; Beaumont, K.; Jacobson, S.; Kozyra, J.; Paxton, L. The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett. 2003, 30, 2100. [Google Scholar] [CrossRef]
- Forbes, J.M.; Wu, D. Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J. Atmos. Sci. 2006, 63, 1776–1797. [Google Scholar] [CrossRef]
- Teitelbaum, H.; Vial, F. On tidal variability induced by nonlinear interaction with planetary waves. J. Geophys. Res. Space Phys. 1991, 96, 14169–14178. [Google Scholar] [CrossRef]
- Xu, J.; Smith, A.K.; Liu, M.; Liu, X.; Gao, H.; Jiang, G.; Yuan, W. Evidence for nonmigrating tides produced by the interaction between tides and stationary planetary waves in the stratosphere and lower mesosphere. J. Geophys. Res. Atmos. 2014, 119, 471–489. [Google Scholar] [CrossRef]
- Sridharan, S.; Sathishkumar, S.; Gurubaran, S. An unusual reduction in the mesospheric semi-diurnal tidal amplitude over Tirunelveli (8.7∘ N, 77.8∘ E) prior to the 2011 minor warming and its relationship with stratospheric ozone. J. Atmos. Sol.-Terr. Phys. 2012, 89, 27–32. [Google Scholar] [CrossRef]
- McCormack, J.P.; Eckermann, S.D.; Coy, L.; Allen, D.R.; Kim, Y.J.; Hogan, T.; Trepte, C.R. NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE2 campaign. Atmos. Chem. Phys. 2004, 4, 2401–2423. [Google Scholar] [CrossRef]
- Pancheva, D.; Mitchell, N.; Middleton, H.; Muller, H. Variability of the semidiurnal tide due to fluctuations in solar activity and total ozone. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1–19. [Google Scholar] [CrossRef]
- Limpasuvan, V.; Thompson, D.W.; Hartmann, D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Clim. 2004, 17, 2584–2596. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Forbes, J.M. Evidence for stratosphere sudden warming–ionosphere coupling due to vertically propagating tides. Geophys. Res. Lett. 2010, 37, L11101. [Google Scholar] [CrossRef]
- Forbes, J.M.; Russell, J.; Miyahara, S.; Zhang, X.; Palo, S.; Mlynczak, M.; Hagan, M.E. Troposphere–thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002. J. Geophys. Res. Space Phys. 2006, 111, A10308. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X.; Palo, S.; Russell, J.; Mertens, C.J.; Mlynczak, M. Tidal variability in the ionospheric dynamo region. J. Geophys. Res. Space Phys. 2008, 113, A02303. [Google Scholar] [CrossRef]
- Jones, M.; Forbes, J.M.; Hagan, M.E.; Maute, A. Non-migrating tides in the ionosphere-thermosphere: In situ versus tropospheric sources. J. Geophys. Res. Space Phys. 2013, 118, 2438–2451. [Google Scholar] [CrossRef]
- Häusler, K.; Lühr, H.; Hagan, M.E.; Maute, A.; Roble, R.G. Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. J. Geophys. Res. Atmos. 2010, 115, D1. [Google Scholar] [CrossRef]
- Chau, J.L.; Hoffmann, P.; Pedatella, N.M.; Matthias, V.; Stober, G. Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events. J. Geophys. Res. Space Phys. 2015, 120, 3084–3096. [Google Scholar] [CrossRef]
- Niu, X.; Du, J.; Zhu, X. Statistics on nonmigrating diurnal tides generated by tide-planetary wave interaction and their relationship to Sudden Stratospheric Warming. Atmosphere 2018, 9, 416. [Google Scholar] [CrossRef]
- Teng, C.K.M.; Fan, Z.; Cheng, W.; Qin, Y.; Yang, Z.; Sun, J. SD-WACCM-X Study of Nonmigrating Tidal Responses to the 2019 Antarctic Minor SSW. Atmosphere 2025, 16, 848. [Google Scholar] [CrossRef]
- Forbes, J.M.; Jun, G.; Saburo, M. On the interactions between gravity waves and the diurnal propagating tide. Planet. Space Sci. 1991, 39, 1249–1257. [Google Scholar] [CrossRef]
- Hagan, M.E.; Maute, A.; Roble, R.G. Tropospheric tidal effects on the middle and upper atmosphere. J. Geophys. Res. Space Phys. 2009, 114, A1. [Google Scholar] [CrossRef]
- Zhang, X.; Forbes, J.M.; Hagan, M.E. Seasonal-latitudinal variation of the eastward-propagating diurnal tide with zonal wavenumber 3 in the MLT: Influences of heating and background wind distribution. J. Atmos. Sol.-Terr. Phys. 2012, 78, 37–43. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X.; Forget, F.; Millour, E.; Kleinböhl, A. Solar tides in the middle and upper atmosphere of Mars. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028140. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asamoah, R.A.; Tsidu, G.M.; Garuma, G.F.; Amekudzi, L.K. Observational Evidence of Distinct Excitation Pathways for Migrating and Non-Migrating Tides in the Mesosphere-Lower Thermosphere During the 2021 Sudden Stratospheric Warming. Atmosphere 2025, 16, 1254. https://doi.org/10.3390/atmos16111254
Asamoah RA, Tsidu GM, Garuma GF, Amekudzi LK. Observational Evidence of Distinct Excitation Pathways for Migrating and Non-Migrating Tides in the Mesosphere-Lower Thermosphere During the 2021 Sudden Stratospheric Warming. Atmosphere. 2025; 16(11):1254. https://doi.org/10.3390/atmos16111254
Chicago/Turabian StyleAsamoah, Reuben Acheampong, Gizaw Mengistu Tsidu, Gemechu Fanta Garuma, and Leonard Kofitse Amekudzi. 2025. "Observational Evidence of Distinct Excitation Pathways for Migrating and Non-Migrating Tides in the Mesosphere-Lower Thermosphere During the 2021 Sudden Stratospheric Warming" Atmosphere 16, no. 11: 1254. https://doi.org/10.3390/atmos16111254
APA StyleAsamoah, R. A., Tsidu, G. M., Garuma, G. F., & Amekudzi, L. K. (2025). Observational Evidence of Distinct Excitation Pathways for Migrating and Non-Migrating Tides in the Mesosphere-Lower Thermosphere During the 2021 Sudden Stratospheric Warming. Atmosphere, 16(11), 1254. https://doi.org/10.3390/atmos16111254

