Performance Analysis for Integrated Sensing and Communication Systems in Rainfall Scenarios
Abstract
1. Introduction
Studies on ISAC
- We establish an ISAC system model comprising a dual-functional base station serving multiple communication users while simultaneously performing rainfall detection, a shift from conventional target sensing.
- We conduct a rigorous analytical study from both communication and sensing perspectives. Notably, we derive novel, closed-form expressions for key performance metrics under a Weibull-distributed rainfall channel model, including the following: (1) the average signal-to-interference-plus-noise ratio (SINR) and asymptotic channel capacity of the users; (2) the average bit error rate (BER) for M-QAM modulation and its high-SNR approximation; (3) the exact outage probability of the communication users; and (4) a sensing performance model that links the received echo power to the rainfall reflectivity factor and ultimately to the rainfall rate. Furthermore, to ensure the physical fidelity of our analysis, our channel modeling and performance evaluation are aligned with international telecommunication standards and canonical meteorological studies. The choice of the Weibull distribution for modeling the mmWave channel in rainfall is motivated by its proven ability to accurately capture the right-skewed, heavy-tailed statistics of rain attenuation. Similarly, the sensing analysis is grounded in the standard weather radar equation, ensuring that our derived probability of rainfall is based on physically meaningful parameters.
- We validate our analytical findings through numerical simulations and discuss the non-trivial trade-offs between communication and sensing performance under rainfall-induced impairments. Furthermore, we corroborate our theoretical trends with well-established international standards, such as the ITU-R P.838-3 recommendation for rain attenuation, thereby bridging our novel analysis with established empirical knowledge.
2. System Model
2.1. Communication Signal Transmission
2.2. Sensing Signal Transmission
3. Performance Analysis
3.1. Average SINRs
3.2. Channel Capacity
3.3. BER
3.4. Outage Probability
3.5. Probability of Rainfall
4. Numerical Results
Model Validation and Trend Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Wang, D.; Wu, S.; Guan, W.; Liu, X. USTB 6G: Key Technologies and Metaverse Applications. IEEE Wirel. Commun. 2023, 30, 112–119. [Google Scholar] [CrossRef]
- Kaushik, A.R.; Singh, R.; Dayarathna, S.; Senanayake, R.; Renzo, M.D.; Dajer, M. Toward Integrated Sensing and Communications for 6G: Key Enabling Technologies, Standardization, and Challenges. IEEE Commun. Stand. Mag. 2024, 18, 52–59. [Google Scholar] [CrossRef]
- Gonzalez-Prelcic, N.; Keskin, M.F.; Kaltiokallio, O.; Valkama, M.; Dardari, D.; Shen, X. The Integrated Sensing and Communication Revolution for 6G: Vision, Techniques, and Applications. Proc. IEEE 2024, 112, 676–723. [Google Scholar] [CrossRef]
- Yang, R.; Wang, C.-X.; Huang, J.; Aggoune, E.-H.M.; Hao, Y. A Novel 6G ISAC Channel Model Combining Forward and Backward Scattering. IEEE Trans. Wirel. Commun. 2023, 22, 8050–8065. [Google Scholar] [CrossRef]
- Osorio, D.P.M.; Barua, B.; Besser, K.-L.; Blue, H.; Dass, P.; Porambage, P. The Rise of Networked ISAC: Emerging Aspects and Challenges. IEEE Open J. Commun. Soc. 2025, 6, 5072–5091. [Google Scholar] [CrossRef]
- Gonzalez-Prelcic, N.; Tagliaferri, D.; Keskin, M.F.; Wymeersch, H.; Song, L. Six Integration Avenues for ISAC in 6G and Beyond. IEEE Veh. Technol. Mag. 2025, 20, 18–39. [Google Scholar] [CrossRef]
- Liu, M.; Yang, M.; Zhang, Z.; Li, H.; Liu, F.; Nallanathan, A.; Hanzo, L. Sensing-Communication Coexistence vs. Integration. IEEE Trans. Veh. Technol. 2023, 72, 8158–8163. [Google Scholar] [CrossRef]
- Cui, Y.; Ding, H.; Ma, Y.; Li, X.; Zhang, H. and Fang Y. Energy-Efficient Integrated Sensing and Communication in Collaborative Millimeter Wave Networks. IEEE Trans. Wirel. Commun. 2025, 24, 2341–2357. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, E.; Chen, Y.; Chen, L.; Ikhlef, A.; Sun, H. Integrated Sensing and Communications with Mixed Fields Using Transmit Beamforming. IEEE Wirel. Commun. Lett. 2025, 14, 726–730. [Google Scholar] [CrossRef]
- Jia, C.; Zhao, Z.; Sun, L.; Quek, T.Q.S. An Interference Cancelation Scheme of Integrated Sensing and Communications in Wireless Networks. IEEE Wirel. Commun. Lett. 2024, 13, 3429–3433. [Google Scholar] [CrossRef]
- Wu, Y.; Lemic, F.; Han, C.; Chen, Z. Sensing Integrated DFT-Spread OFDM Waveform and Deep Learning-Powered Receiver Design for Terahertz Integrated Sensing and Communication Systems. IEEE IEEE Trans. Commun. 2023, 71, 595–610. [Google Scholar] [CrossRef]
- Demirhan, U.; Alkhateeb, A. Cell-Free ISAC MIMO Systems: Joint Sensing and Communication Beamforming. IEEE Trans. Commun. 2025, 73, 4454–4468. [Google Scholar] [CrossRef]
- Son, C.; Jeong, S. Secrecy Enhancement for AAV-Enabled Integrated Sensing and Communication Systems. IEEE Wirel. Commun. Lett. 2025, 14, 696–700. [Google Scholar] [CrossRef]
- Tang, R.; Yang, L.; Lv, L.; Zhang, Z.; Liu, Y.; Chen, J. Dual-Functional Artificial Noise (DFAN) Aided Robust Covert Communications in Integrated Sensing and Communications. IEEE Trans. Commun. 2025, 73, 1072–1086. [Google Scholar] [CrossRef]
- Liu, M.; Yang, M.; Wei, F.; Li, H.; Zhang, Z.; Nallanathan, A.; Hanzo, L. A Nonorthogonal Uplink/Downlink IoT Solution for Next-Generation ISAC Systems. IEEE Internet Things J. 2024, 11, 8224–8239. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, C.; Huang, C.; Ge, J.; Niyato, D.; Yuen, C. RIS-Assisted ISAC Systems for Robust Secure Transmission with Imperfect Sense Estimation. IEEE Trans. Wirel. Commun. 2025, 24, 3979–3992. [Google Scholar]
- Liu, M.; Yang, M.; Li, H.; Zeng, K.; Zhang, Z.; Nallanathan, A.; Wang, G.; Hanzo, L. Performance Analysis and Power Allocation for Cooperative ISAC Networks. IEEE Internet Things J. 2023, 10, 6336–6351. [Google Scholar] [CrossRef]
- Angeloni, S.; Adirosi, E.; Sapienza, F.; Giannetti, F.; Francini, F.; Magherini, L.; Valgimigli, A.; Vaccaro, A.; Melani, S.; Antonini, A.; et al. Enhanced Estimation of Rainfall From Opportunistic Microwave Satellite Signals. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Liu, S.; Dong, X.; Hu, C.; Liu, F.; Wang, S. Improved Estimation of Backscattering Differential Phase in Rain and Its Utilization in Rainfall Estimation. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–22. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Y.; Xia, W.; Chen, K.; Ma, Q.; Zhang, Q. An Anti-Clutter Distance Measurement Method for IoT Linear Frequency Modulation Radar in Heavy Rainfall Environment. IEEE Internet Things J. 2025, 12, 17906–17919. [Google Scholar] [CrossRef]
- El-Mottaleb, S.A.A.; Mohamed, A.G.; Ahmed, H.Y.; Zeghid, M. Performance Enhancement of FSO Communication System Under Rainy Weather Environment Using a Novel Encryption Technique. IEEE Access 2024, 12, 1–22. [Google Scholar] [CrossRef]
- Zou, W.; Yin, Z.; Dai, Y.; Chen, Y.; Bu, Z.; Li, S.; He, Y.; Hu, X.; Muller, D.; Lu, T.; et al. Robust Lidar-Radar Composite Cloud Boundary Detection Method with Rainfall Pixels Removal. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Zou, W.; Yin, Z.; Zhang, J.; Dai, Y.; Chen, Y.; Bu, Z.; He, Y.; Muller, D.; Lu, T.; Wei, Y.; et al. Ka-Band Cloud Radar Meteorological Echo Dataset with Complex Weather Coverage: Baseline Models for Deep Learning Applications. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–16. [Google Scholar] [CrossRef]
- Bose, T.; Chatur, N.; Mukherjee, M.; Verma, S.; Adhya, A. Traffic-Aware Optimal Multi-Beam Resource Allocation in 5G Networks Impaired by Rain and Foliage. IEEE Commun. Lett. 2024, 28, 612–616. [Google Scholar] [CrossRef]
- Paul, P.; Bhatnagar, M.R.; Nebhen, J. Pulse Jamming in Aperture-Averaged FSO Receiver Over Exponentiated Weibull Fading Channel. IEEE Trans. Wirel. Commun. 2022, 21, 4242–4254. [Google Scholar] [CrossRef]
- Zhao, B.; Ouyang, C.; Zhang, X.; Liu, Y. Downlink and Uplink NOMA-ISAC with Signal Alignment. IEEE Trans. Wirel. Commun. 2024, 23, 15322–15338. [Google Scholar] [CrossRef]
- Wang, Y.; Zu, K.; Xiang, L.; Zhang, Q.; Feng, Z.; Hu, J. ISAC Enabled Cooperative Detection for Cellular-Connected UAV Network. IEEE Trans. Wirel. Commun. 2025, 24, 1541–1554. [Google Scholar] [CrossRef]
- Doost, E.A.; Saghezchi, F.B.; Navarro, A.; Rodriguez, J. Bit Error Rate for Physical-Layer Network Coding with M-QAM-OFDM Signals. IEEE Wirel. Commun. Lett. 2025, 14, 153–157. [Google Scholar] [CrossRef]
- Lakew, W.; Al-Dweik, A.; Assaf, T. Performance Analysis of OFDM-SIMO Systems with Time-Domain Interleaving. IEEE Commun. Lett. 2025, 29, 323–327. [Google Scholar]
- Ji, Y.; Dong, Z.; Zhang, Y.; Wang, C.; Hu, C.; Xu, Z. Transionospheric Synthetic Aperture Radar Observation: A comprehensive review. IEEE Geosci. Remote Sens. Mag. 2025, 13, 273–313. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Wang, T.; Liu, J.; Gao, H.; Chandrasekar, V. Circulation Retrieval of Wake Vortex Under Rainy Condition with a Vertically Pointing Radar. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1893–1906. [Google Scholar] [CrossRef]
- ITU-R Recommendation P.838-3; Specific Attenuation Model for Rain for Use in PredictionMethods. ITU-R: Geneva, Switzerland, 2005.








| Rainfall Intensity (mm/h) | SINR (dB) | Channel Capacity (bps/Hz) | Outage Probability (%) | 
|---|---|---|---|
| 5 (Light Rain) | 15.2 | 8.7 | 2.1 | 
| 25 (Heavy Rain) | 5.8 | 4.2 | 15.6 | 
| 50 (Storm) | −2.3 | 1.5 | 42.3 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Li, J.; Cao, J.; Fu, S.; Jin, Y.; Zhang, S. Performance Analysis for Integrated Sensing and Communication Systems in Rainfall Scenarios. Atmosphere 2025, 16, 1249. https://doi.org/10.3390/atmos16111249
Huang S, Li J, Cao J, Fu S, Jin Y, Zhang S. Performance Analysis for Integrated Sensing and Communication Systems in Rainfall Scenarios. Atmosphere. 2025; 16(11):1249. https://doi.org/10.3390/atmos16111249
Chicago/Turabian StyleHuang, Songtao, Jing Li, Jing Cao, Shaozhong Fu, Yujian Jin, and Shuo Zhang. 2025. "Performance Analysis for Integrated Sensing and Communication Systems in Rainfall Scenarios" Atmosphere 16, no. 11: 1249. https://doi.org/10.3390/atmos16111249
APA StyleHuang, S., Li, J., Cao, J., Fu, S., Jin, Y., & Zhang, S. (2025). Performance Analysis for Integrated Sensing and Communication Systems in Rainfall Scenarios. Atmosphere, 16(11), 1249. https://doi.org/10.3390/atmos16111249
 
        

 
       