Recent Advances in Wildland Fire Smoke Dynamics Research in the United States
Abstract
1. Introduction
2. Advances in Smoke Measurements
2.1. Field Campaigns
2.2. Laboratory Experiments
2.3. Satellite Products and Applications
2.4. Smoke Properties
2.4.1. Fire Emissions
2.4.2. Processes and Evolution
2.4.3. Optical Properties
2.4.4. Contributions to Clouds
2.5. Plume Structure
2.6. Plume Rise
3. Advances in Smoke Modeling
3.1. Smoke Models
3.2. Evaluation and Improvement of Smoke Dynamics and Chemistry Modeling
3.3. Development of Interactive and Integrated Smoke Modeling Tools
3.4. Interactions with Canopy and Topography
3.5. Plume Rise
3.6. Smoke Decision Support Systems
3.7. Applications of ML/DL
4. Gaps and Research Needs
4.1. Measurement
- Measurements of smoke plume from large wildfires
- Plume rise
- Smoke from duff burning
- Differences between prescribed fire and wildfire
4.2. Modeling
- Evaluation and improvement of smoke modeling
- Coupling with dynamic fire modeling
- Plume rise
- Future smoke under a changing climate
4.3. The Unique Challenge of WUI Smoke Dynamics
4.4. ML/DL Technology
4.5. Smoke Health Impacts
4.6. Management
- Smoke management of prescribed fire
- Smoke decision support systems
4.7. New Approaches and Support
5. Conclusions
- Field experiments have changed their focus recently from fire behavior to smoke–atmosphere interactions and further to comprehensive field measurements of fuel, fire behavior, emission, smoke, and meteorology. Massive data have been collected using measurement techniques from the ground and onboard aircraft and satellite, and new knowledge and uncertainties about fire emissions, smoke properties, evolution, structure, plume chemistry, and atmospheric interactions have been achieved. Long-term global smoke plume height datasets have been developed using satellite multiple-angle detection and modeling techniques for research on smoke impacts and fire–climate interactions.
- Smoke, fire, atmosphere, and canopy-coupled models, smoke operational prediction and decision support systems, plume-rise models, and ML wildland fire and smoke models have been developed and/or improved. The recent comprehensive field campaigns provided extremely valuable datasets of the physical, chemical, and optical properties of smoke, fuels, fire behavior, and meteorology for smoke model evaluation and improvement. Applications of these models have improved our understanding and prediction of smoke processes and mechanisms, their control factors and feedback to ambient conditions, and future smoke and air quality impact trends.
- Major gaps in smoke dynamics research exist and need to be filled to better address the challenges facing smoke dynamics research. Observational data across multiple times and spaces for large wildfires, plume vertical structure, and duff burning are needed to improve smoke modeling and prediction. There is a need to understand the differences in measured smoke properties between prescribed fire and wildfire. There is also a need for high-resolution, dynamic fire, smoke, and atmospheric-coupled systems, integrated systems of statistical, physical, and ML models, and the simultaneous measurements of these components for wildfires and WUI fires. It is important to develop “physics-informed” or “explainable AI” (XAI) models that respect physical laws, as ML techniques applicable in wildfire simulation are not only limited in data fitting, but have to consist of scientific content. Schemes are needed for vertical plume distributions and multiple updrafts. There is also a need to improve nighttime smoke modeling, smoke processes in Earth system models, and operational smoke prediction skills.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAE | Ångström absorption exponent |
ACSM | Aerosol chemical speciation monitor |
AERONET | AErosol RObotic NETwork |
AI | Artificial Intelligence |
AOD | Serosol optical depth |
ARPS | Advanced Regional Prediction System |
BB-FLUX | Biomass Burning Fluxes of Trace Gases and Aerosols |
BC | Black carbon |
BrC | Brown carbon |
CALIOP | Cloud-Aerosol LIDAR with Orthogonal Polarization |
CALIPSO | Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations |
CCN | Cloud condensation nuclei |
CFD | Computational fluid dynamics |
CIMS | Chemical ionization MS |
CMAQ | Community Multi-Scale Air Quality model |
DL | Deep learning |
EESI-TOF-MS | Extractive electrospray ionization–time of flight–MS |
FASMEE | Fire and Smoke Model Evaluation Experiment |
FCCS | Fuel Characteristic Classification System |
FINN | Fire inventory from NCAR |
FIREX-AQ | Fire Influence on Regional to Global Environments and Air Quality |
FRP | Fire radiative power |
GFED | Global Fire Emission Database |
GFFEPS | Global Forest Fire Emissions Prediction System |
GOES | Geostationary Operational Environmental Satellite |
G-WISE | Georgia Wildland-fire Simulation Experiment |
HRRR | High-Resolution Rapid Refresh model |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory |
INP | Ice-nucleating particles |
JFSP | Joint Fire–Science Program |
LES | Large eddy simulation |
Lidar | Doppler Light Detection and Ranging |
MEE | Mass extinction efficiency |
MISR | Multi-angle Imaging SpectroRadiometer |
ML | Machine learning |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MUSICA | (Multi-Scale Infrastructure for Chemistry and Aerosols) |
NCWFMS | National Cohesive Wildland Fire Management Strategy |
OA | organic aerosol |
OC | Organic carbon |
PBL | Planetary boundary layer |
PB-P | Planned Burn-Piedmont |
PILS | Particle in Liquid Sampler |
POA | Primary organic aerosol |
PTR-MS | Proton-transfer-reaction mass spectrometry |
RHI | Range Height Indicator |
RxCADRE | Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment |
SDSS | Smoke decision support system |
SERDP | Strategic Environmental Research and Development Program |
SOA | Secondary organic aerosol |
SOC | Secondary organic carbon |
SSA | Single scattering albedo |
SSS | Shared Stewardship Strategy |
TEMPO | Tropospheric Emissions: Monitoring of Pollution |
TROPOMI | TROPOspheric Monitoring Instrument |
VFEI | VIIRS-based Fire Emission Inventory |
VIIRS | Visible Infrared Imaging Radiometer Suite |
VOC | Volatile organic compounds |
WE-CAN | Western wildfire Experiment for Cloud chemistry, Aerosol absorption, and Nitrogen |
WFSI | Wildland Fire Science Initiative |
WoFS-Smoke | Warn-on-Forecast System for Smoke |
WRF | Weather Research and Forecasting |
WUI | Wildlife–urban interface |
References
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Larkin, N.K.; Raffuse, S.M.; Strand, T.M. Wildland fire emissions, carbon, and climate: U.S. emissions inventories. For. Ecol. Manag. 2014, 317, 61–69. [Google Scholar] [CrossRef]
- Larkin, N.K.; Raffuse, S.M.; Huang, S.; Pavlovic, N.; Lahm, P.; Rao, V. The Comprehensive Fire Information Reconciled Emissions (CFIRE) Inventory: Wildland Fire Emissions Developed for the 2011 and 2014 U.S. National Emissions Inventory. J. Air Waste Manag. Assoc. 2020, 70, 1165–1185. [Google Scholar] [CrossRef] [PubMed]
- Decker, Z.C.J.; Robinson, M.A.; Barsanti, K.C.; Bourgeois, I.; Coggon, M.M.; DiGangi, J.P.; Diskin, G.S.; Flocke, F.M.; Franchin, A.; Fredrickson, C.D.; et al. Nighttime and daytime dark oxidation chemistry in wildfire plumes: An observation and model analysis of FIREX-AQ aircraft data. Atmos. Chem. Phys. 2021, 21, 16293–16317. [Google Scholar] [CrossRef]
- Wilkins, J.L.; de Foy, B.; Thompson, A.M.; Peterson, D.A.; Hyer, E.J.; Graves, C.; Fishman, J.; Morris, G.A. Evaluation of stratospheric intrusions and biomass burning plumes on the vertical distribution of tropospheric ozone over the midwestern United States. J. Geophys. Res. Atmos. 2020, 125, e2020JD032454. [Google Scholar] [CrossRef]
- Evangeliou, N.; Balkanski, Y.; Hao, W.M.; Petkov, A.; Silverstein, R.P.; Corley, R.; Nordgren, B.L.; Urbanski, S.P.; Eckhardt, S.; Stohl, A.; et al. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic—A 12-year retrospective synopsis (2002–2013). Atmos. Chem. Phys. 2016, 16, 7587–7604. [Google Scholar] [CrossRef]
- Katich, J.M.; Apel, E.C.; Bourgeois, I.; Brock, C.A.; Bui, T.P.; Campuzano-Jost, P.; Commane, R.; Daube, B.; Dollner, M.; Fromm, M.; et al. Pyrocumulonimbus affect average stratospheric aerosol composition. Science 2023, 379, 815–820. [Google Scholar] [CrossRef]
- McClure, C.D.; Jaffe, D.A. Investigation of High Ozone Events Due to Wildfire Smoke in an Urban Area. Atmos. Environ. 2018, 194, 146–157. [Google Scholar] [CrossRef]
- Lim, C.Y.; Hagan, D.H.; Coggon, M.M.; Koss, A.R.; Sekimoto, K.; de Gouw, J.; Warneke, C.; Cappa, C.D.; Kroll, J.H. Secondary organic aerosol formation from biomass burning emissions. Atmos. Chem. Phys. 2019, 19, 12797–12809. [Google Scholar] [CrossRef]
- Heilman, W.E.; Liu, Y.; Urbanski, S.; Kovalev, V.; Mickler, R. Wildland fire emissions, carbon, and climate: Plume rise, atmospheric transport and chemistry processes. For. Ecol. Manag. 2014, 317, 70–79. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef]
- Waldrop, T.A.; Goodrick, S.L. Introduction to Prescribed Fires in Southern Ecosystems; Science Update SRS-054; US Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2012; p. 80. [Google Scholar]
- Holden, Z.A.; Swanson, A.; Luce, C.H.; Jolly, W.M.; Maneta, M.; Oyler, J.W.; Warren, D.A.; Parsons, R.; Affleck, D. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. USA 2018, 115, E8349–E8357. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, T.Y.; Mallia, D.V.; Hallar, A.G.; Lin, J.C. Wildfire activity is driving summertime air quality degradation across the western US: A model-based attribution to smoke source regions. Environ. Res. Lett. 2022, 17, 114014. [Google Scholar] [CrossRef]
- Carreras-Sospedra, M.; Zhu, S.; MacKinnon, M.; Lassman, W.; Mirocha, J.D.; Barbato, M.; Dabdub, D. Air quality and health impacts of the 2020 wildfires in California. Fire Ecol. 2024, 20, 6. [Google Scholar] [CrossRef]
- Mass, C.F.; Ovens, D. The Northern California wildfires of 8–9 October 2017: The role of a major downslope wind event. Bull. Am. Meteorol. Soc. 2018, 100, 235–256. [Google Scholar] [CrossRef]
- Selimovic, V.; Yokelson, R.J.; McMeeking, G.R.; Coefield, S. In situ measurements of trace gases, PM, and aerosol optical properties during the 2017 NW US wildfire smoke event. Atmos. Chem. Phys. 2019, 19, 3905–3926. [Google Scholar] [CrossRef]
- Li, Y.; Tong, D.; Ma, S.; Zhang, X.; Kondragunta, S.; Li, F.; Saylor, R. Dominance of wildfires impact on air quality exceedances during the 2020 record-breaking wildfire season in the United States. Geophys. Res. Lett. 2021, 48, e2021GL094908. [Google Scholar] [CrossRef]
- Dinavahi, S.; Archer, C.L. Air quality in the U.S. during the 2023 wildfire season. Bull. Atmos. Sci. Technol. 2025, 6, 6. [Google Scholar] [CrossRef]
- Burke, M.; Childs, M.L.; de la Cuesta, B.; Qiu, M.; Li, J.; Gould, C.F.; Heft-Neal, S.; Wara, M. The contribution of wildfire to PM2.5 trends in the USA. Nature 2023, 622, 761–766. [Google Scholar] [CrossRef]
- Warneke, C.; Schwarz, J.P.; Dibb, J.; Kalashnikova, O.; Frost, G.; Al-Saad, J.; Brown, S.S.; Brewer, W.A.; Soja, A.; Seidel, F.C.; et al. Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ). J. Geophys. Res. Atmos. 2023, 128, e2022JD037758. [Google Scholar] [CrossRef]
- Prichard, S.; Larkin, N.S.; Ottmar, R.; French, N.H.; Baker, K.; Brown, T.; Clements, C.; Dickinson, M.; Hudak, A.; Kochanski, A.; et al. The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns. Atmosphere 2019, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.C.; Varner, J.M.; Soltanaghai, E.; Calle, L.; Alipour, M. An Interdisciplinary Approach to Coordinated Data Collection for Wildland Fire Science: The Fire and Smoke Model Evaluation Experiment (FASMEE). In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 2588–2592. [Google Scholar]
- Kochanski, A.K.; Jenkins, M.A.; Yedinak, K.; Mandel, J.; Beezley, J.; Lamb, B. Toward an integrated system for fire, smoke and air quality simulations. Int. J. Wildland Fire 2015, 25, 534–546. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M. A review of machine learning applications in wildfire science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Heilman, W.E. Atmospheric turbulence and wildland fires: A review. Int. J. Wildland Fire 2023, 32, 476–495. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Heilman, W.E.; Potter, B.E.; Clements, C.B.; Jackson, W.A.; French, N.H.F.; Goodrick, S.L.; Kochanski, A.K.; Larkin, N.K.; Lahm, P.W.; et al. Smoke Plume Dynamics. In Wildland Fire Smoke in the United States: A Scientific Assessment; Peterson, D.L., McCaffrey, S.M., Patel-Weynand, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 83–119. ISBN 9783030870454. [Google Scholar]
- Yokelson, R.J.; Burling, I.R.; Gilman, J.B.; Warneke, C.; Stockwell, C.E.; de Gouw, J.; Akagi, S.K.; Urbanski, S.P.; Veres, P.; Roberts, J.M.; et al. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmos. Chem. Phys. 2013, 13, 89–116. [Google Scholar] [CrossRef]
- Clements, C.B.; Oliphant, A.J. The California State University Mobile Atmospheric Profiling System: A facility for research and education in boundary layer meteorology. Bull. Am. Meteorol. Soc. 2014, 95, 1713–1724. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A.; Dolan, B.; Krehbiel, P.; Rison, W.; Lindsey, D.T. Lightning in wildfire smoke plumes observed in Colorado during summer 2012. Mon. Weather. Rev. 2014, 142, 489–507. [Google Scholar] [CrossRef]
- Lareau, N.P.; Clements, C.B. Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmos. Chem. Phys. 2016, 16, 4005–4022. [Google Scholar] [CrossRef]
- McCarthy, N.; McGowan, H.; Guyot, A.; Dowdy, A. Mobile X-pol radar: A new tool for investigating pyroconvection and associated wildfire meteorology. Bull. Am. Meteorol. Soc. 2018, 99, 1177–1195. [Google Scholar] [CrossRef]
- Falkowski, M.; Shuman, J.; Boland, J.; Kauffman, T.; Lefer, B.; Martin, M.M.; Riris, H. The NASA FireSense Project: Responding to Stakeholder Needs Across the Fire Life Cycle. In Proceedings of the IGARSS 2024—IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024. [Google Scholar]
- Ottmar, R.D.; Hiers, J.K.; Butler, B.W.; Clements, C.B.; Dickinson, M.B.; Hudak, A.T.; O’Brien, J.J.; Potter, B.E.; Rowell, E.M.; Strand, T.M.; et al. Measurements, datasets and preliminary results from the RxCADRE project—2008, 2011 and 2012. Int. J. Wildland Fire 2016, 25, 1–9. [Google Scholar] [CrossRef]
- Peterson, D.L.; Hardy, C.C. The RxCADRE study: A new approach to interdisciplinary fire research. Int. J. Wildland Fire 2016, 25, i. [Google Scholar] [CrossRef]
- Ottmar, R.; Varner, M.; Hiers, K.; Cornwell, E.; Kling, J. Research and management: Working together for the common good. Wildfires 2021, 30. [Google Scholar]
- Heilman, W.E.; Bian, X.; Clark, K.L.; Zhong, S. Observations of turbulent heat and momentum fluxes during wildland fires in forested environments. J. Appl. Meteorol. Climatol. 2019, 58, 813–829. [Google Scholar] [CrossRef]
- Heilman, W.E.; Banerjee, T.; Clements, C.B.; Clark, K.L.; Zhong, S.; Bian, X. Observations of sweep-ejection dynamics for heat and momentum fluxes during wildland fires in forested and grassland environments. J. Appl. Meteorol. Climatol. 2021, 60, 185–199. [Google Scholar] [CrossRef]
- Heilman, W.E.; Clark, K.L.; Bian, X.; Charney, J.J.; Zhong, S.; Skowronski, N.S.; Gallagher, M.R.; Patterson, M. Turbulent momentum flux behavior above a fire front in an open-canopied forest. Atmosphere 2021, 12, 956. [Google Scholar] [CrossRef]
- Desai, A.; Heilman, W.E.; Skowronski, N.S.; Clark, K.L.; Gallagher, M.R.; Clements, C.B.; Banerjee, T. Features of turbulence during wildland fires in forested and grassland environments. Agric. For. Meteorol. 2023, 338, 109501. [Google Scholar] [CrossRef]
- Seitz, J.; Zhong, S.; Charney, J.J.; Heilman, W.E.; Clark, K.L.; Bian, X.; Skowronski, N.S.; Gallagher, M.R.; Patterson, M.; Cole, J.; et al. Atmospheric turbulence observed during a fuel-bed-scale low-intensity surface fire. Atmos. Chem. Phys. 2024, 24, 1119–1142. [Google Scholar] [CrossRef]
- Clements, C.B.; Kochanski, A.K.; Seto, D.; Davis, B.; Camacho, C.; Lareau, N.P.; Contezac, J.; Restaino, J.; Heilman, W.E.; Krueger, S.K.; et al. The FireFlux II experiment: A model-guided field experiment to improve understanding of fire-atmosphere interactions and fire spread. Int. J. Wildland Fire 2019, 28, 308–326. [Google Scholar] [CrossRef]
- Clements, C.B.; Seto, D. Observations of fire–atmosphere interactions and near-surface heat transport on a slope. Bound.-Layer Meteorol. 2015, 154, 409–426. [Google Scholar] [CrossRef]
- Deegan, A.M.; Glenn, C.K.; El Hajj, O.; Anosike, A.; Kumar, K.; Abdurrahman, M.; Bai, B.; Liu, P.; O’Brien, J.; Saleh, R.; et al. Properties of surface-active organics in aerosol particles produced from combustion of biomass fuels under simulated prescribed-fire and wildefire conditions. ACS Environ. Sci. Technol. Air 2025, 2, 264–276. [Google Scholar]
- Czech, H.; Popovicheva, O.; Chernov, D.G.; Kozlov, A.; Schneider, E.; Shmargunov, V.P.; Sueur, M.; Rüger, C.P.; Afonso, C.; Uzhegov, V.; et al. Wildfire plume ageing in the photochemical larger aerosol chamber (PHOTO-LAC). Environ. Sci. Process. Impacts 2024, 26, 35–55. [Google Scholar] [CrossRef]
- Saleh, R.; O’Brien, J. Overview of the Georgia Wildland-fire Simulation Experiment (G-WISE). ACS EST Air 2025, 2, 979–981. [Google Scholar] [CrossRef]
- Yang, S.X.; Huang, Q.Y.; Yu, M.Z. Advancements in remote sensing for active fire detection: A review of datasets and methods. Sci. Total Environ. 2024, 943, 173273. [Google Scholar] [CrossRef] [PubMed]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- Kahn, R.A.; Chen, Y.; Nelson, D.L.; Leung, F.; Li, Q.; Diner, D.J.; Logan, J.A. Wildfire smoke injection heights: Two perspectives from space. Geophys. Res. Lett. 2008, 35, L04809. [Google Scholar] [CrossRef]
- Singh, H.; Ang, L.-M.; Lewis, T.; Paudyal, D.; Acuna, M.; Srivastava, P.K.; Srivastava, S.K. Trending and emerging prospects of physics-based and ML-based wildfire spread models: A comprehensive review. J. For. Res. 2024, 35, 135. [Google Scholar] [CrossRef]
- Junghenn Noyes, K.T.; Kahn, R.A.; Limbacher, J.A.; Li, Z.; Fenn, M.A.; Giles, D.M.; Hair, J.W.; Katich, J.M.; Moore, R.H.; Robinson, C.E.; et al. Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign. Remote Sens. 2020, 12, 3823. [Google Scholar] [CrossRef]
- Wiggins, E.B.; Soja, A.J.; Gargulinski, E.; Halliday, H.S.; Pierce, R.B.; Schmidt, C.C.; Nowak, J.B.; DiGangi, J.P.; Diskin, G.S.; Katich, J.M.; et al. High temporal resolution satellite observations of fire radiative power reveal link between fire behavior and aerosol and gas emissions. Geophys. Res. Lett. 2020, 47, e2020GL090707. [Google Scholar] [CrossRef]
- Griffin, D.; McLinden, C.A.; Dammers, E.; Adams, C.; Stockwell, C.E.; Warneke, C.; Bourgeois, I.; Peischl, J.; Ryerson, T.B.; Zarzana, K.J.; et al. Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: Methodology and validation. Atmos. Meas. Tech. 2021, 14, 7929–7957. [Google Scholar] [CrossRef]
- Wiggins, E.B.; Anderson, B.E.; Brown, M.D.; Campuzano-Jost, P.; Chen, G.; Crawford, J.; Crosbie, E.C.; Dibb, J.; DiGangi, J.P.; Diskin, G.S.; et al. Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ. J. Geophys. Res. 2021, 126, e2021JD035692. [Google Scholar] [CrossRef]
- Huang, J.; Loría-Salazar, S.M.; Deng, M.; Lee, J.; Holmes, H.A. Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US. Atmos. Chem. Phys. 2024, 24, 3673–3698. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Chen, Y.; Hall, J.; van Wees, D.; Andela, N.; Hantson, S.; Giglio, L.; van der Werf, G.R.; Morton, D.C.; Randerson, J.T. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth Syst. Sci. Data 2023, 15, 5227–5259. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Kimura, Y.; McDonald-Buller, E.C.; Emmons, L.K.; Buchholz, R.R.; Tang, W.F.; Seto, K.; Joseph, M.B.; Barsanti, K.C.; Carlton, A.G.; et al. The Fire Inventory from NCAR version 2.5: An updated global fire emissions model for climate and chemistry applications. Geosci. Model Dev. 2023, 16, 3873–3891. [Google Scholar] [CrossRef]
- Anderson, K.; Chen, J.; Englefield, P.; Griffin, D.; Makar, P.A.; Thompson, D. The Global Forest Fire Emissions Prediction System version 1.0. Geosci. Model Dev. 2024, 17, 7713–7749. [Google Scholar] [CrossRef]
- Ferrada, G.A.; Zhou, M.; Wang, J.; Lyapustin, A.; Wang, Y.; Freitas, S.R.; Carmichael, G.R. Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0). Geosci. Model Dev. 2022, 15, 8085–8109. [Google Scholar] [CrossRef]
- Hoff, R.M.; Kondragunta, S.; Ciren, P.; Xu, C.; Zhang, H.; Huff, A. Development of synthetic GOES-R ABI aerosol products. Atmos. Meas. Tech. 2014, 7, 10131–10157. [Google Scholar]
- Jones, T.; Ahmadov, R.; James, E.; Pereira, G.; Freitas, S.; Grell, G. Prototype of a Warn-on-Forecast System for Smoke (WoFS-Smoke). Weather Forecast. 2022, 37, 1191–1209. [Google Scholar] [CrossRef]
- Naeger, A.R.; Newchurch, M.; Liu, X.; Chance, K. The NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO) Satellite Mission: Early Adopters Program and Applied Science Activities. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7178–7181. [Google Scholar]
- Mak, H.W.L. Application of satellite informatics in mitigating climatic challenges within the atmosphere: Selected case studies of Asian cities. In Asia-Pacific Tech Monitor: Innovative Technologies for Building Climate-Resilient Cities in Asia and the Pacific; ESCAP: Asian and Pacific Centre for Transfer of Technology: New Delhi, India, 2025; pp. 36–47. [Google Scholar]
- Rickly, P.S.; Guo, H.; Campuzano-Jost, P.; Jimenez, J.L.; Wolfe, G.M.; Bennett, R.; Bourgeois, I.; Crounse, J.D.; Dibb, J.E.; DiGangi, J.P.; et al. Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires. Atmos. Chem. Phys. 2022, 22, 15603–15620. [Google Scholar] [CrossRef]
- Tomsche, L.; Piel, F.; Mikoviny, T.; Nielsen, C.J.; Guo, H.; Campuzano-Jost, P.; Nault, B.A.; Schueneman, M.K.; Jimenez, J.L.; Halliday, H.; et al. Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States. Atmos. Chem. Phys. 2023, 23, 2331–2343. [Google Scholar] [CrossRef]
- Xu, L.; Crounse, J.D.; Vasquez, K.T.; Allen, H.; Wennberg, P.O.; Bourgeois, I.; Brown, S.S.; Campuzano-Jost, P.; Coggon, M.M.; Crawford, J.H.; et al. Ozone chemistry in western U.S. wildfire plumes. Sci. Adv. 2021, 7, eabl3648. [Google Scholar] [CrossRef]
- Peng, Q.; Palm, B.B.; Melander, K.E.; Lee, B.H.; Hall, S.R.; Ullmann, K.; Campos, T.; Weinheimer, A.J.; Apel, E.C.; Hornbrook, R.S.; et al. HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke. Environ. Sci. Technol. 2020, 54, 5954–5963. [Google Scholar] [CrossRef]
- Aurell, J.; Gullett, B.; Holder, A.; Kiros, F.; Mitchell, W.; Watts, A.; Ottmar, R. Wildland fire emission sampling at Fishlake National Forest, Utah using an unmanned aircraft system. Atmos. Environ. 2021, 247, 118193. [Google Scholar] [CrossRef]
- Kobziar, L.N.; Lampman, P.; Tohidi, A.; Kochanski, A.K.; Cervantes, A.; Hudak, A.T.; McCarley, R.; Gullett, B.; Aurell, J.; Moore, R.; et al. Bacterial emission factors: A foundation for the terrestrial-atmospheric modeling of bacteria aerosolized by wildland fires. Environ. Sci. Technol. 2024, 58, 2413–2422. [Google Scholar] [CrossRef]
- Lindaas, J.; Pollack, I.B.; Garofalo, L.A.; Pothier, M.A.; Farmer, D.K.; Kreidenweis, S.M.; Campos, T.L.; Flocke, F.; Weinheimer, A.J.; Montzka, D.D.; et al. Emissions of Reactive Nitrogen from Western U.S. Wildfires During Summer 2018. J. Geophys. Res. Atmos. 2020, 126, e2020JD032657. [Google Scholar] [CrossRef]
- Sekimoto, K.; Coggon, M.M.; Gkatzelis, G.I.; Stockwell, C.E.; Peischl, J.; Soja, A.J.; Warneke, C. Fuel-type independent parameterization of volatile organic compound emissions from western US wildfires. Environ. Sci. Technol. 2023, 57, 13193–13204. [Google Scholar] [CrossRef] [PubMed]
- Bela, M.M.; Kille, N.; McKeen, S.A.; Romero-Alvarez, J.; Ahmadov, R.; James, E.; Pereira, G.; Schmidt, C.; Pierce, R.B.; O’Neill, S.M.; et al. Quantifying carbon monoxide emissions on the scale of large wildfires. Geophys. Res. Lett. 2022, 49, e2021GL095831. [Google Scholar] [CrossRef]
- Gkatzelis, G.I.; Coggon, M.M.; Stockwell, C.E.; Hornbrook, R.S.; Allen, H.; Apel, E.C.; Bela, M.M.; Blake, D.R.; Bourgeois, I.; Brown, S.S.; et al. Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements. Atmos. Chem. Phys. 2023, 24, 929–956. [Google Scholar] [CrossRef]
- Roberts, J.M.; Stockwell, C.E.; Yokelson, R.J.; de Gouw, J.; Liu, Y.; Selimovic, V.; Koss, A.R.; Sekimoto, K.; Coggon, M.M.; Yuan, B.; et al. The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study. Atmos. Chem. Phys. 2020, 20, 8807–8826. [Google Scholar] [CrossRef]
- Wang, S.; Bathras, B.L.; Cui, W.; Milazzo, M.; Goldstein, A.H.; Gollner, M.J. Laboratory Quantification of Emissions from Wildland-Urban Interface Fuels Using Fourier-Transform Infrared Spectroscopy. Environ. Sci. Technol. 2025, 59, 12843–12852. [Google Scholar] [CrossRef]
- Srivastava, D.; Vu, T.V.; Tong, S.; Shi, Z.; Harrison, R.M. Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. npj Clim. Atmos. Sci. 2022, 5, 22. [Google Scholar] [CrossRef]
- Calahorrano, J.F.J.; Lindaas, J.; O’Dell, K.; Palm, B.B.; Peng, Q.; Flocke, F.; Pollack, I.B.; Garofalo, L.A.; Farmer, D.K.; Pierce, J.R.; et al. Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. J. Geophys. Res. Atmos. 2020, 126, e2020JD033484. [Google Scholar] [CrossRef]
- Garofalo, L.A.; Pothier, M.A.; Levin, E.J.T.; Campos, T.; Kreidenweis, S.M.; Farmer, D.K. Emission and Evolution of Submicron Organic Aerosol in Smoke from Wildfires in the Western United States. ACS Earth Space Chem. 2019, 3, 1237–1247. [Google Scholar] [CrossRef]
- Palm, B.B.; Peng, Q.; Fredrickson, C.D.; Lee, B.H.; Garofalo, L.A.; Pothier, M.A.; Kreidenweis, S.M.; Farmer, D.K.; Pokhrel, R.P.; Shen, Y.; et al. Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes. Proc. Natl. Acad. Sci. USA 2020, 117, 29469–29477. [Google Scholar] [CrossRef]
- June, N.A.; Hodshire, A.L.; Wiggins, E.B.; Winstead, E.L.; Robinson, C.E.; Thornhill, K.L.; Sanchez, K.J.; Moore, R.H.; Pagonis, D.; Guo, H.; et al. Aerosol size distribution changes in FIREX-AQ biomass burning plumes: The impact of plume concentration on coagulation and OA condensation/evaporation. Atmos. Chem. Phys. 2022, 22, 12803–12825. [Google Scholar] [CrossRef]
- Washenfelder, R.A.; Azzarello, L.; Ball, K.; Brown, S.S.; Decker, Z.C.J.; Franchin, A.; Fredrickson, C.D.; Hayden, K.; Holmes, C.D.; Middlebrook, A.M.; et al. Complexity in the evolution, composition, and spectroscopy of brown carbon in aircraft measurements of wildfire plumes. Geophys. Res. Lett. 2022, 49, e2022GL098951. [Google Scholar] [CrossRef]
- Zeng, L.; Dibb, J.; Scheuer, E.; Katich, J.M.; Schwarz, J.P.; Bourgeois, I.; Peischl, J.; Ryerson, T.; Warneke, C.; Perring, A.E.; et al. Characteristics and evolution of brown carbon in western United States wildfires. Atmos. Chem. Phys. 2022, 22, 8009–8036. [Google Scholar] [CrossRef]
- Hodshire, A.L.; Akherati, A.; Alvarado, M.J.; Brown-Steiner, B.; Jathar, S.H.; Jimenez, J.L.; Kreidenweis, S.M.; Lonsdale, C.R.; Onasch, T.B.; Ortega, A.M.; et al. Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. Environ. Sci. Technol. 2019, 53, 10007–10022. [Google Scholar] [CrossRef]
- Tkacik, D.S.; Robinson, E.S.; Ahern, A.; Saleh, R.; Stockwell, C.; Veres, P.; Simpson, I.J.; Meinardi, S.; Blake, D.R.; Yokelson, R.J.; et al. A Dual-Chamber Method for Quantifying the Effects of Atmospheric Perturbations on Secondary Organic Aerosol Formation from Biomass Burning Emissions. J. Geophys. Res. Atmos. 2017, 122, 6043–6058. [Google Scholar] [CrossRef]
- Deng, M.; Wang, Z.; Volkamer, R.; Snider, J.R.; Oolman, L.; Plummer, D.M.; Kille, N.; Zarzana, K.J.; Lee, C.F.; Campos, T.; et al. Wildfire Smoke Observations in the Western United States from the Airborne Wyoming Cloud Lidar during the BB-FLUX Project. Part I: Data Description and Methodology. J. Atmos. Ocean. Technol. 2022, 39, 545–558. [Google Scholar] [CrossRef]
- Saide, P.E.; Thapa, L.H.; Ye, X.; Pagonis, D.; Campuzano-Jost, P.; Guo, H.; Schueneman, M.K.; Jimenez, J.; Moore, R.; Wiggins, E.; et al. Understanding the evolution of smoke mass extinction efficiency using field campaign measurements. Geophys. Res. Lett. 2022, 49, e2022GL099175. [Google Scholar] [CrossRef]
- Shen, Y.J.; Pokhrel, R.P.; Sullivan, A.P.; Levin, E.J.T.; Garofalo, L.A.; Farmer, D.K.; Permar, W.; Hu, L.; Toohey, D.W.; Campos, T.; et al. Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign. Atmos. Chem. Phys. 2024, 24, 12881–12901. [Google Scholar] [CrossRef]
- Chakrabarty, R.K.; Shetty, N.J.; Thind, A.S.; Beeler, P.; Sumlin, B.J.; Zhang, C.; Liu, P.; Idrobo, J.C.; Adachi, K.; Wagner, N.L.; et al. Shortwave absorption by wildfire smoke dominated by dark brown carbon. Nat. Geosci. 2023, 16, 683–688. [Google Scholar] [CrossRef] [PubMed]
- McQueen, Z.C.; Poland, R.P.; Glenn, C.K.; El Hajj, O.; Penland, R.; Anosike, A.; Kumar, K.V.; O’Brien, J.J.; Saleh, R.; Smith, G.D. Optical Properties of Biomass Burning Aerosols from Simulated Wildfires and Prescribed Fires with Representative Fuel Beds from the Southeast United States. ACS EST Air 2014, 1, 1137–1146. [Google Scholar] [CrossRef]
- Barry, K.R.; Hill, T.C.J.; Levin, E.J.T.; Twohy, C.H.; Moore, K.A.; Weller, Z.D.; Toohey, D.W.; Reeves, M.; Campos, T.; Geiss, R.; et al. Observations of Ice Nucleating Particles in the Free Troposphere from Western US Wildfires. J. Geophys. Res. Atmos. 2021, 126, e2020JD033752. [Google Scholar] [CrossRef]
- Twohy, C.H.; Toohey, D.W.; Levin, E.J.T.; DeMott, P.J.; Rainwater, B.; Garofalo, L.A.; Pothier, M.A.; Farmer, D.K.; Kreidenweis, S.M.; Pokhrel, R.P.; et al. Biomass burning smoke and its influence on clouds over the western U.S. Geophys. Res. Lett. 2021, 48, e2021GL094224. [Google Scholar] [CrossRef]
- Peterson, D.A.; Thapa, L.H.; Saide, P.E.; Soja, A.J.; Gargulinski, E.M.; Hyer, E.J.; Weinzierl, B.; Dollner, M.; Schöberl, M.; Papin, P.P.; et al. Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment. Bull. Am. Meteorol. Soc. 2022, 103, E2140–E2167. [Google Scholar] [CrossRef]
- Lareau, N.P.; Clements, C.B. Cold smoke: Smoke-induced density currents cause unexpected smoke transport near large wildfires. Atmos. Chem. Phys. 2015, 15, 11513–11520. [Google Scholar] [CrossRef]
- Aydell, T.B.; Clements, C.B. Mobile ka-band polarimetric Doppler radar observations of wildfire smoke plumes. Mon. Weather. Rev. 2021, 149, 1247–1264. [Google Scholar] [CrossRef]
- Heilman, W.E.; Bian, X.; Clark, K.L.; Skowronski, N.S.; Hom, J.L.; Gallagher, M.R. Atmospheric turbulence observations in the vicinity of surface fires in forested environments. J. Appl. Meteorol. Climatol. 2017, 56, 3133–3150. [Google Scholar] [CrossRef]
- Raffuse, S.M.; Craig, K.J.; Larkin, N.K.; Strand, T.T.; Sullivan, D.C.; Wheeler, N.J.M.; Solomon, R. An Evaluation of Modeled Plume Injection Height with Satellite-Derived Observed Plume Height. Atmosphere 2012, 3, 103–123. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Goodrick, S.; Achtemeier, G.; Forbus, K.; Combs, D. Smoke plume height measurement of prescribed burns in the southeastern United States. Int. J. Wildland Fire 2012, 22, 130–147. [Google Scholar] [CrossRef]
- Deng, M.; Volkamer, R.M.; Wang, Z.; Snider, J.R.; Kille, N.; Romero-Alvarez, L.J. Wildfire Smoke Observations in the Western United States from the Airborne Wyoming Cloud Lidar during the BB-FLUX Project. Part II: Vertical Structure and Plume Injection Height. J. Atmos. Ocean. Technol. 2022, 39, 559–572. [Google Scholar] [CrossRef]
- Thapa, L.H.; Ye, X.; Hair, J.W.; Fenn, M.A.; Shingler, T.; Kondragunta, S.; Ichoku, C.; Dominguez, R.A.; Ellison, L.; Soja, A.J.; et al. Heat flux assumptions contribute to overestimation of wildfire smoke injection into the free troposphere. Commun. Earth Environ. 2022, 3, 236. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Silva Dias, M.A.F.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.A., Jr. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398. [Google Scholar] [CrossRef]
- Ke, Z.M.; Wang, Y.H.; Zou, Y.F.; Song, Y.; Liu, Y. Global wildfire plume-rise dataset and parameterizations for climate model applications. J. Geophys. Res. Atmos. 2019, 126, e2020JD033085. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’S HYSPLIT Atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Grell, G.; Freitas, S.R.; Stuefer, M.; Fast, J. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts. Atmos. Chem. Phys. 2011, 11, 5289–5303. [Google Scholar] [CrossRef]
- Ye, X.; Arab, P.; Ahmadov, R.; James, E.; Grell, G.A.; Pierce, B.; Kumar, A.; Makar, P.; Chen, J.; Davignon, D.; et al. Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmos. Chem. Phys. 2021, 21, 14427–14469. [Google Scholar] [CrossRef]
- Makkaroon, P.; Tong, D.Q.; Li, Y.; Hyer, E.J.; Xian, P.; Kondragunta, S.; Campbell, P.C.; Tang, Y.; Baker, B.D.; Cohen, M.D.; et al. Development and evaluation of a North America ensemble wildfire air quality forecast: Initial application to the 2020 Western United States “Gigafire”. J. Geophys. Res. Atmos. 2023, 128, e2022JD037298. [Google Scholar] [CrossRef]
- Decker, Z.C.J.; Novak, G.A.; Aikin, K.; Veres, P.R.; Neuman, J.A.; Bourgeois, I.; Bui, T.P.; Campuzano-Jost, P.; Coggon, M.M.; Day, D.A.; et al. Airborne observations constrain heterogeneous Nitrogen and Halogen chemistry on tropospheric and stratospheric biomass burning aerosol. Geophys. Res. Lett. 2024, 51, e2023GL107273. [Google Scholar] [CrossRef]
- Robinson, M.A.; Decker, Z.C.J.; Barsanti, K.C.; Coggon, M.M.; Flocke, F.M.; Franchin, A.; Fredrickson, C.D.; Gilman, J.B.; Gkatzelis, G.I.; Holmes, C.D.; et al. Variability and time of day dependence of ozone photochemistry in western wildfire plumes. Environ. Sci. Technol. 2021, 55, 10280–10290. [Google Scholar] [CrossRef] [PubMed]
- Dearden, A.; He, Y.; Akherati, A.; Lim, C.Y.; Coggon, M.M.; Koss, A.R.; de Gouw, J.; Warneke, C.; Yee, L.D.; Seinfeld, J.H.; et al. Multi-day photochemical evolution of organic aerosol from biomass burning emissions. Environ. Sci. Atmos. 2024, 4, 925–941. [Google Scholar] [CrossRef]
- Patoulias, D.; Kallitsis, E.; Posner, L.; Pandis, S.N. Modeling biomass burning organic aerosol atmospheric evolution and chemical aging. Atmosphere 2021, 12, 1638. [Google Scholar] [CrossRef]
- Jin, L.; Permar, W.; Selimovic, V.; Ketcherside, D.; Yokelson, R.J.; Hornbrook, R.S.; Apel, E.C.; Ku, I.-T.; Collett, J.L., Jr.; Sullivan, A.P.; et al. Constraining emissions of volatile organic compounds from western US wildfires with WE-CAN and FIREX-AQ airborne observations. Atmos. Chem. Phys. 2023, 23, 5969–5991. [Google Scholar] [CrossRef]
- Akherati, A.; He, Y.; Garofalo, L.A.; Hodshire, A.L.; Farmer, D.K.; Kreidenweis, S.M.; Permar, W.; Hu, L.; Fischer, E.V.; Jen, C.N.; et al. Dilution and photooxidation driven processes explain the evolution of organic aerosol in wildfire plumes. Environ. Sci. Atmos. 2022, 2, 1000–1022. [Google Scholar] [CrossRef]
- Zou, Y.; O’Neill, S.M.; Larkin, N.K.; Alvarado, E.C.; Solomon, R.; Mass, C.; Liu, Y.; Odman, M.T.; Shen, H. Machine learning-based integration of high-resolution wildfire smoke simulations and observations for regional health impact assessment. Int. J. Environ. Res. Public Health 2019, 16, 2137. [Google Scholar] [CrossRef]
- Carter, T.S.; Heald, C.L.; Cappa, C.D.; Kroll, J.H.; Campos, T.L.; Coe, H.; Cotterell, M.I.; Davies, N.W.; Farmer, D.K.; Fox, C.; et al. Investigating Carbonaceous Aerosol and Its Absorption Properties From Fires in the Western United States (WE-CAN) and Southern Africa (ORACLES and CLARIFY). J. Geophys. Res. Atmos. 2021, 126, e2021JD034984. [Google Scholar] [CrossRef]
- Mandel, J.; Beezley, J.D.; Kochanski, A.K. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev. 2011, 4, 591–610. [Google Scholar] [CrossRef]
- Kochanski, A.K.; Mallia, D.V.; Fearon, M.G.; Mandel, J.; Souri, A.H.; Brown, T. Modeling wildfire smoke feedback mechanisms using a coupled fire-atmosphere model with a radiatively active aerosol scheme. J. Geophys. Res. Atmos. 2019, 124, 9099–9116. [Google Scholar] [CrossRef]
- Kiefer, M.T.; Zhong, S.; Heilman, W.E.; Charney, J.J.; Bian, X. Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts. J. Geophys. Res. Atmos. 2013, 118, 6175–6188. [Google Scholar] [CrossRef]
- Massman, W.J.; Forthofer, J.M.; Finney, M.A. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior. Can. J. For. Res. 2017, 47, 594–603. [Google Scholar] [CrossRef]
- Charney, J.J.; Kiefer, M.T.; Zhong, S.; Heilman, W.E.; Nikolic, J.; Bian, X.; Hom, J.L.; Clark, K.L.; Skowronski, N.S.; Gallagher, M.R.; et al. Assessing Forest canopy impacts on smoke concentrations using a coupled numerical model. Atmosphere 2019, 10, 273. [Google Scholar] [CrossRef]
- Moon, K.; Duff, T.J.; Tolhurst, K.G. Sub-canopy forest winds: Understanding wind profiles for fire behaviour simulation. Fire Saf. J. 2019, 105, 320–329. [Google Scholar] [CrossRef]
- Kiefer, M.T.; Heilman, W.E.; Zhong, S.; Charney, J.J.; Bian, X. Mean and turbulent flow downstream of a low-intensity fire: Influence of canopy and background atmospheric conditions. J. Appl. Meteorol. Clim. 2015, 54, 42–57. [Google Scholar] [CrossRef]
- Miller, C.; O’Neill, S.; Rorig, M.; Alvarado, E. Air-quality challenges of prescribed fire in the complex terrain and wildland urban interface surrounding Bend, Oregon. Atmosphere 2019, 10, 515. [Google Scholar] [CrossRef]
- Mallia, D.V.; Kochanski, A.K.; Kelly, K.E.; Whitaker, R.; Xing, W.; Mitchell, L.E.; Jacques, A.; Farguell, A.; Mandel, J.; Gaillardon, P.; et al. Evaluating wildfire smoke transport within a coupled fire-atmosphere model using a high-density observation network for an episodic smoke event along Utah’s Wasatch Front. J. Geophys. Res. Atmos. 2020, 125, e2020JD032712. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.; Achtemeier, G. The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site. Atmosphere 2018, 9, 259. [Google Scholar] [CrossRef]
- Bartolome, C.; Princevac, M.; Weise, D.R.; Mahalingam, S.; Ghasemian, M.; Venkatram, A.; Vu, H.; Aguilar, G. Laboratory and numerical modeling of the formation of superfog from wildland fires. Fire Saf. J. 2019, 106, 94–104. [Google Scholar] [CrossRef]
- Briggs, G.A. Plume rise predictions. In Lectures on Air Pollution and Environmental Impact Analysis; American Meteorological Society: Boston, MA, USA, 1975; pp. 59–111. [Google Scholar]
- Pouliot, G.; Pierce, T.; Benjey, W.; O’Neill, S.M. Wildfire emission modeling: Integrating BlueSky and SMOKE. In Proceedings of the 14th International Emission Inventory Conference “Transforming Emission Inventories Meeting Future Challenges Today”, Las Vegas, NV, USA, 11–14 April 2005. [Google Scholar]
- Liu, Y.Q. A regression model for smoke plume rise of prescribed fires using meteorological conditions. J. Appl. Meteorol. Climatol. 2014, 53, 1961–1975. [Google Scholar] [CrossRef]
- Sofiev, M.; Ermakova, T.; Vankevich, R. Evaluation of the smoke-injection height from wild-land fires using remote-sensing data. Atmos. Chem. Phys. 2012, 12, 1995–2006. [Google Scholar] [CrossRef]
- Sofiev, M.; Vankevich, R.; Ermakova, T.; Hakkarainen, J. Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions. Atmos. Chem. Phys. 2013, 13, 7039–7052. [Google Scholar] [CrossRef]
- Val Martin, M.; Logan, J.A.; Kahn, R.A.; Leung, F.-Y.; Nelson, D.L.; Diner, D.J. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos. Chem. Phys. 2010, 10, 1491–1510. [Google Scholar] [CrossRef]
- Baker, K.; Woody, M.; Valin, L.; Szykman, J.; Yates, E.L.; Iraci, L.T.; Choi, H.D.; Soja, A.J.; Koplitz, S.N.; Zhou, L.; et al. Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data. Sci. Total. Environ. 2018, 637–638, 1137–1149. [Google Scholar] [CrossRef]
- Paugam, R.; Wooster, M.; Freitas, S.; Val Martin, M. A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models. Atmos. Chem. Phys. 2016, 16, 907–925. [Google Scholar] [CrossRef]
- Achtemeier, G.L.; Goodrick, S.A.; Liu, Y.; Garcia-Menendez, F.; Hu, Y.; Odman, M.T. Modeling smoke plume-rise and dispersion from southern United States prescribed burns with Daysmoke. Atmosphere 2011, 2, 358–388. [Google Scholar] [CrossRef]
- Ye, X.; Saide, P.E.; Hair, J.; Fenn, M.; Shingler, T.; Soja, A.; Gargulinski, E.; Wiggins, E. Assessing vertical allocation of wildfire smoke emissions using observational constraints from airborne lidar in the western U.S. J. Geophys. Res. Atmos. 2022, 127, e2022JD036808. [Google Scholar] [CrossRef]
- Li, Y.; Tong, D.; Ma, S.Q.; Freitas, S.R.; Ahmadov, R.; Sofiev, M.; Zhang, X.; Kondragunta, S.; Kahn, R.; Tang, Y.; et al. Impacts of estimated plume rise on PM2.5 exceedance prediction during extreme wildfire events: A comparison of three schemes (Briggs, Freitas, and Sofiev). Atmos. Chem. Phys. 2023, 23, 3083–3101. [Google Scholar] [CrossRef]
- Tang, W.; Emmons, L.K.; Buchholz, R.R.; Wiedinmyer, C.; Schwantes, R.H.; He, C.; Kumar, R.; Pfister, G.G.; Worden, H.M.; Hornbrook, R.S.; et al. Effects of Fire Diurnal Variation and Plume Rise on the U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0). J. Geophys. Res. Atmos. 2022, 127, e2022JD036650. [Google Scholar] [CrossRef]
- Moisseeva, N.; Stull, R. Wildfire smoke-plume rise: A simple energy balance parameterization. Atmos. Chem. Phys. 2021, 21, 1407–1425. [Google Scholar] [CrossRef]
- Wang, S.Y. Emulating Wildfire Plume Injection Using Machine Learning Trained by Large Eddy Simulation (LES). Environ. Sci. Technol. 2024, 58, 22204–22212. [Google Scholar] [CrossRef] [PubMed]
- Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.; Ferguson, S.A. The BlueSky smoke modeling framework. Int. J. Wildland Fire 2009, 18, 906–920. [Google Scholar] [CrossRef]
- Prichard, S.J.; Sandberg, D.W.; Ottmar, R.D.; Eberhardt, E.; Andreu, A.; Eagle, P.; Swedin, K. Fuel Characteristic Classification System Version 3.0: Technical Documentation; USDA Forest Service General Tech. Rep. PNW-GTR-887; Pacific Northwest Research Station: Corvallis, OR, USA, 2013; 79p. [Google Scholar]
- Chen, J.; Vaughan, J.; Avise, J.; O’Neill, S.; Lamb, B. Enhancement and evaluation of the AIRPACT ozone and PM2.5 forecast system for the Pacific Northwest. J. Geophys. Res. Atmos. 2008, 113, D14305. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Muñoz-Esparza, D.; Kosović, B. A High Resolution Coupled Fire–Atmosphere Forecasting System to Minimize the Impacts of Wildland Fires: Applications to the Chimney Tops II Wildland Event. Atmosphere 2018, 9, 197. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Lagouvardos, K.; Kotroni, V. Performance Evaluation of an Operational Rapid Response Fire Spread Forecasting System in the Southeast Mediterranean (Greece). Atmosphere 2020, 11, 1264. [Google Scholar] [CrossRef]
- Linn, R.R.; Goodrick, S.L.; Brambilla, S.; Brown, M.J.; Middleton, R.S.; O’Brien, J.J.; Hiers, J.K. QUIC-fire: A fast-running simulation tool for prescribed fire planning. Environ. Model. Softw. 2020, 125, 104616. [Google Scholar] [CrossRef]
- Wang, S.S.-C.; Qian, Y.; Leung, L.R.; Zhang, Y. Identifying key drivers of wildfires in the contiguous US using machine learning and game theory interpretation. Earth’s Future 2021, 9, e2020EF001910. [Google Scholar] [CrossRef]
- Wang, S.S.-C.; Leung, L.R.; Qian, Y. Projection of future fire emissions over the contiguous US using explainable artificial intelligence and CMIP6 models. J. Geophys. Res. Atmos. 2023, 128, e2023JD039154. [Google Scholar] [CrossRef]
- Wang, S.S.C.; Qian, Y.; Leung, L.R.; Zhang, Y. Interpreting machine learning prediction of fire emissions and comparison with FireMIP process-based models. Atmos. Chem. Phys. 2022, 22, 3445–3468. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Ke, Z.; Tian, H.; Yang, J.; Liu, Y. Development of a REgion—Specific ecosystem feedback fire (RESFire) model in the Community Earth System Model. J. Adv. Model. Earth Syst. 2019, 11, 417–445. [Google Scholar] [CrossRef]
- Yao, J.Y.; Raffuse, S.M.; Brauer, M.; Williamson, G.J.; Bowman, D.M.J.S.; Johnston, F.H.; Henderson, S.B. Predicting the minimum height of forest fire smoke within the atmosphere using machine learning and data from the CALIPSO satellite. Remote Sens. Environ. 2018, 206, 98–106. [Google Scholar] [CrossRef]
- Nair, A.A.; Yu, F.; Campuzano-Jost, P.; DeMott, P.J.; Levin, E.J.T.; Jimenez, J.L.; Peischl, J.; Pollack, I.B.; Fredrickson, C.D.; Beyersdorf, A.J.; et al. Machine Learning Uncovers Aerosol Size Information from Chemistry and Meteorology to Quantify Potential Cloud-Forming Particles. Geophys. Res. Lett. 2021, 48, e2021GL094133. [Google Scholar] [CrossRef]
- Raffuse, S.; O’Neill, S.; Schmidt, R. A model for rapid wildfire smoke exposure estimates using routinely-available data—Rapidfire v0.1.3. EGUsphere 2023, 17, 381–397. [Google Scholar]
- Ejaz, N.; Choudhury, S. A comprehensive survey of the machine learning pipeline for wildfire risk prediction and assessment. Ecol. Inform. 2025, 90, 103325. [Google Scholar] [CrossRef]
- Singh, H.; Ang, L.-M.; Paudyal, D.; Acuna, M.; Srivastava, P.K.; Srivastava, S.K. A comprehensive review of empirical and dynamic wildfire simulators and machine learning techniques used for the prediction of wildfire in Australia. Technol. Knowl. Learn. 2025, 30, 935–968. [Google Scholar] [CrossRef]
- Wann, G.T.; Whipple, A.L.; O’Donnell, M.S.; Aldridge, C.L. A compilation pipeline for wildlife tracking datasets collected from ground-based and satellite-based telemetry transmission devices. Ecol. Inform. 2025, 90, 103220. [Google Scholar] [CrossRef]
- Zhao, F.J.; Liu, Y.Q.; Goodrick, S.; Hornsby, B.; Schardt, J. The contribution of duff consumption to fire emissions and air pollution of the Rough Ridge Fire. Int. J. Wildland Fire 2019, 28, 993–1004. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Goodrick, S.; Williams, M.D. Duff burning from wildfires in a moist region: Different impacts on PM 2.5 and ozone. Atmos. Chem. Phys. 2022, 22, 597–624. [Google Scholar] [CrossRef]
- Liu, Y.; Kochanski, A.; Baker, K.R.; Mell, W.; Linn, R.; Paugam, R.; Mandel, J.; Fournier, A.; Jenkins, M.A.; Goodrick, S.; et al. Fire Behaviour and Smoke Modelling: Model Improvement and Measurement Needs for next-Generation Smoke Research and Forecasting Systems. Int. J. Wildland Fire 2019, 28, 570–588. [Google Scholar] [CrossRef]
- Kolluru, V.K.; Chintakunta, A.N.; Nuthakki, Y.; Koganti, S. Advancements in wildfire prediction and detection: A systematic review. Int. J. Multidiscip. Res. 2022, 4, 1–15. [Google Scholar]
- Ford, B.; Val Martin, M.; Zelasky, S.E.; Fischer, E.V.; Anenberg, S.C.; Heald, C.L.; Pierce, J.R. Future fire impacts on smoke concentrations, visibility, and health in the contiguous United States. GeoHealth 2018, 2, 229–247. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Liu, Y.; Fu, J.; Yang, C.-E.; Dong, X.; Tian, H.; Tao, B.; Yang, J.; Wang, Y.; Zou, Y.; et al. Projection of future wildfire emissions in western USA under climate change: Contributions from changes in wildfire, fuel loading, and fuel moisture. Int. J. Widland Fire 2021, 31, 1–13. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Liu, Y.Q. New development and application needs for Earth system modeling of fire–climate–ecosystem interactions. Environ. Res. Lett. 2018, 13, 011001. [Google Scholar] [CrossRef]
- Pfister, G.G.; Eastham, S.D.; Arellano, A.F.; Aumont, B.; Barsanti, K.C.; Barth, M.C.; Conley, A.; Davis, N.A.; Emmons, L.K.; Fast, J.D.; et al. The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bull. Am. Meteorol. Soc. 2020, 101, E1743–E1760. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, X.; Ke, Z.; Zhang, K.; Ma, P.-L.; Fan, J. Incorporating an interactive fire plume-rise model in the DOE’s energy exascale earth system model version 1 (E3SMv1) and examining aerosol radiative effect. J. Adv. Model. Earth Syst. 2024, 16, e2023MS003818. [Google Scholar] [CrossRef]
- Holder, A.L.; Ahmed, A.; Vukovich, J.M.; Rao, V. Hazardous air pollutant emissions estimates from wildfires in the wildland urban interface. PNAS Nexus 2023, 2, pgad186. [Google Scholar] [CrossRef]
- Boaggio, K.; LeDuc, S.D.; Rice, R.B.; Duffney, P.F.; Foley, K.M.; Holder, A.L.; McDow, S.; Weaver, C.P. Beyond particulate patter mass: Heightened levels of lead and other pollutants associated with destructive fire events in California. Environ. Sci. Technol. 2022, 56, 14272–14283. [Google Scholar] [CrossRef]
- Villarruel, C.M.; Figueroa, L.A.; Ranville, J.F. Quantification of bioaccessible and environmentally relevant trace metals in structure ash from a wildland–urban interface fire. Environ. Sci. Technol. 2024, 58, 2502–2513. [Google Scholar] [CrossRef]
- Jung, J.; Schollaert, C.L.; Masuda, Y.J.; Connolly, R.E.; Bonilla, E.; Samuel, K.; Elum, D.; Haugo, R.D.; Bandzuh, J.T.; Baek, B.H.; et al. Wildland fire smoke exposure disparities by wildland urban interface category and land ownership. Landsc. Urban Plan. 2025, 263, 105423. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. The Chemistry of Fires at the Wildland-Urban Interface; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar]
- Tang, W.; Emmons, L.K.; Wiedinmyer, C.; Partha, D.B.; Huang, Y.; He, C.; Zhang, J.; Barsanti, K.C.; Gaubert, B.; Jo, D.S.; et al. Disproportionately large impacts of wildland-urban interface fire emissions on global air quality and human health. Sci. Adv. 2025, 11, eadr2616. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Opabola, E.A. Interpretable machine learning insights into wildfire damage drivers in California, USA. Int. J. Disaster Risk Reduct. 2025, 126, 105610. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.; Cheng, S.; Rui, X.; Zhao, Y.; He, H.; Guan, H.; Sharma, A.; Erxleben, M.; Chang, R.; et al. Deep learning for wildfire risk prediction: Integrating remote sensing and environmental data. ISPRS J. Photogramm. Remote Sens. 2025, 227, 632–677. [Google Scholar] [CrossRef]
- Delplanque, A.; Théau, J.; Foucher, S.; Serati, G.; Durand, S.; Lejeune, P. Wildlife detection, counting and survey using satellite imagery: Are we there yet? GIScience Remote Sens. 2024, 61, 2348863. [Google Scholar] [CrossRef]
- Rizzo, L.V.; Rizzo, M.C.F.V. Wildfire smoke and health impacts: A narrative review. J. Pediatr. 2025, 101, S56–S64. [Google Scholar] [CrossRef]
- Grant, E.; Runkle, J.D. Long-term health effects of wildfire exposure: A scoping review. J. Clim. Change Health 2022, 6, 100110. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Ng, D.C.Y. Spatial and socio-classification of traffic pollutant emissions and associated mortality rates in high-density Hong Kong via improved data analytic approaches. Int. J. Environ. Res. Public Health 2021, 18, 6532. [Google Scholar] [CrossRef]
- Dey, A.K.; Ma, Y.; Carrasco-Escobar, G.; Han, C.; Rerolle, F.; Benmarhnia, T. Two-stage interrupted time series analysis with machine learning: Evaluating the health effects of the 2018 wildfire smoke event in San Francisco County as a case study. Am. J. Epidemiol. 2025, 194, 2936–2944. [Google Scholar] [CrossRef]
- Johnson, M.M.; Garcia-Menendez, F. A comparison of smoke modelling tools used to mitigate air quality impacts from prescribed burning. Int. J. Wildland Fire 2023, 32, 1162–1173. [Google Scholar] [CrossRef]
Program | Description | Implementation | Program and/or Data Websites |
---|---|---|---|
We-CAN | Airborne; nitrogen, absorbing aerosols, and cloud activation; smoke focused on chemistry; to characterize emissions and evolution. | Western U.S. in 2018, led by CSU | https://www.eol.ucar.edu/field_projects/we-can, accessed on 14 July 2025 https://data.eol.ucar.edu/master_lists/generated/we-can/, accessed on 14 July 2025 |
BB-FLUX | Airborne and in situ measurements; trace gases and particles; to quantify total emission and evolution | 20 wildfires in Western U.S. in 2018, led by CU | https://volkamergroup.colorado.edu/timeline/field/bb-flux, accessed on 14 July 2025 https://www.uwyo.edu/atsc/research-facilities/uwka/projects-data.html, accessed on 14 July 2025 |
FireSense | Airborne measurement of various fire phases; deliver unique Earth science and technological capabilities to operational agencies and address challenges in US wildland fire management. | 9 and 3 wildland fires in Western US in 2023 and 2024, respectively, and 3 in Southeastern U.S. in 2025, led by NASA | https://cce.nasa.gov/firesense/, accessed on 14 July 2025 https://www-air.larc.nasa.gov/missions/firesense/index.html, accessed on 14 July 2025 |
FIREX-AQ | Airborne and ground measurements; smoke composition and chemistry; to better understand the impact of smoke on air quality and climate | Wildfires in Western U.S. and prescribed fire in Eastern U.S. in 2019, led by NOAA and NASA | https://csl.noaa.gov/projects/firex-aq/, accessed on 14 July 2025 https://www-air.larc.nasa.gov/cgi-bin/ArcView/firexaq, accessed on 14 July 2025 |
FASMEE | Mainly ground-based; fuels, fire behavior, emission and smoke, and meteorology; smoke focused on structure; to evaluate and advance operational-use fire and smoke models. | Planning: 2016–2018; prescribed fires at Fishlake NF, UT, in 2019 and 2023. Led by USFS | https://research.fs.usda.gov/pnw/centers/fasmee, accessed on 14 July 2025 https://www-air.larc.nasa.gov/missions/fasmee/index.html, accessed on 14 July 2025 |
WFSI | Measurement of fuels, fire behavior, smoke, and meteorology data; evaluate and accelerate operational availability and use of next-generation physics-based fire behavior and smoke models. | Prescribed fires in Southeastern U.S. in each year during 2022–2025 (joint with FireSense in 2025), led by DoD and USFS | https://serdp-estcp.mil/page/4f3816cb-f84e-4935-b8fd-896381e98f1b, accessed on 14 July 2025 https://wfsidata.org/data, accessed on 14 July 2025 |
FireLab | Measurement of nitrogen, VOC, and carbon emissions from fuel combustion in lab; understanding optical and photochemical properties and processes. | Characteristic fuels of the Western U.S. burned in 2016 at Missoula Fire Lab, led by NOAA and USFS | https://csl.noaa.gov/projects/firex/firelab/, accessed on 14 July 2025 |
G-WISE | Link smoke emission rates and properties to fire dynamics; understanding dependence of fire emissions on fuel properties and moisture conditions. | Fuels collected from different Georgia ecoregions and burned in Athens Fire Lab in 2022 and 2025, led by UGA and USFS. | https://rawad85.wixsite.com/g-wise, accessed on 14 July 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Heilman, W.E.; Potter, B.E.; Clements, C.B.; Jackson, W.A.; French, N.H.F.; Goodrick, S.L.; Kochanski, A.K.; Larkin, N.K.; Lahm, P.W.; et al. Recent Advances in Wildland Fire Smoke Dynamics Research in the United States. Atmosphere 2025, 16, 1221. https://doi.org/10.3390/atmos16111221
Liu Y, Heilman WE, Potter BE, Clements CB, Jackson WA, French NHF, Goodrick SL, Kochanski AK, Larkin NK, Lahm PW, et al. Recent Advances in Wildland Fire Smoke Dynamics Research in the United States. Atmosphere. 2025; 16(11):1221. https://doi.org/10.3390/atmos16111221
Chicago/Turabian StyleLiu, Yongqiang, Warren E. Heilman, Brian E. Potter, Craig B. Clements, William A. Jackson, Nancy H. F. French, Scott L. Goodrick, Adam K. Kochanski, Narasimhan K. Larkin, Pete W. Lahm, and et al. 2025. "Recent Advances in Wildland Fire Smoke Dynamics Research in the United States" Atmosphere 16, no. 11: 1221. https://doi.org/10.3390/atmos16111221
APA StyleLiu, Y., Heilman, W. E., Potter, B. E., Clements, C. B., Jackson, W. A., French, N. H. F., Goodrick, S. L., Kochanski, A. K., Larkin, N. K., Lahm, P. W., Brown, T. J., Schwarz, J. P., Strachan, S. M., & Zhao, F. (2025). Recent Advances in Wildland Fire Smoke Dynamics Research in the United States. Atmosphere, 16(11), 1221. https://doi.org/10.3390/atmos16111221