Comprehensive Health Risk Assessment of PM2.5 Chemical Composition in an Urban Megacity: A Case Study from Greater Cairo Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Sampling Strategy
2.3. Chemical Analysis
2.4. Health Risk Assessment Methodology
2.4.1. Non-Cancer Risk Assessment
2.4.2. Cancer Risk Assessment
3. Results
3.1. Atmospheric Concentrations
3.2. Health Risk Assessment
3.2.1. Non-Carcinogenic Risk Assessment
- Major and trace elements
- 2.
- PAHs
- 3.
- PCDD/Fs and DL-PCBs
3.2.2. Carcinogenic Risk Assessment
- Major and trace elements
- 2.
- PAHs
- 3.
- Phthalates
- 4.
- PCDD/Fs and DL-PCBs
3.3. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADD | Average Daily Dose |
EC | Exposure Concentration |
RfD | Reference Dose |
RfC | Reference Concentration |
HQi | Hazard Quotient |
HI | Hazard Index |
LADD | Lifetime Average Daily Dose |
CSF | Cancer Slope Factor |
IUR | Inhalation Unit Risk |
ILCR | Individual Lifetime Cancer Risk |
PAHs | Polycyclic Aromatic Hydrocarbons |
PCDDs | Polychlorinated Dibenzo-p-dioxins |
PCDFs | Polychlorinated Dibenzofurans |
DL-PCBs | Dioxin-like Polychlorinated Biphenyls |
B[a]P | Benzo[a]pyrene |
B[a]Peq | Benzo[a]pyrene equivalent |
DEHP | Bis(2-ethylhexyl)phthalate |
References
- Lala, M.A.; Onwunzo, C.S.; Adesina, O.A.; Sonibare, J.A. Particulate matters pollution in selected areas of Nigeria: Spatial analysis and risk assessment. Case Stud. Chem. Environ. Eng. 2023, 7, 100288. [Google Scholar] [CrossRef]
- WHO. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. In World Health Organization Global Air Quality Guidelines; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Edlund, K.K.; Killman, F.; Molnár, P.; Boman, J.; Stockfelt, L.; Wichmann, J. Health Risk Assessment of PM(2.5) and PM(2.5)-Bound Trace Elements in Thohoyandou, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 1359. [Google Scholar] [CrossRef]
- Borgie, M.; Dagher, Z.; Ledoux, F.; Verdin, A.; Cazier, F.; Martin, P.; Hachimi, A.; Shirali, P.; Greige-Gerges, H.; Courcot, D. Comparison between ultrafine and fine particulate matter collected in Lebanon: Chemical characterization, in vitro cytotoxic effects and metabolizing enzymes gene expression in human bronchial epithelial cells. Environ. Pollut. 2015, 205, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Godri, K.J.; Harrison, R.M.; Evans, T.; Baker, T.; Dunster, C.; Mudway, I.S.; Kelly, F.J. Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London. PLoS ONE 2011, 6, e21961. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, N.; Stevens, R.; Downey, A.; Oikonomou, K.; Sciare, J.; Afif, C.; Hayes, P.L. Source apportionment of PM2.5 in Montréal, Canada, and health risk assessment for potentially toxic elements. Atmos. Chem. Phys. 2024, 24, 1193–1212. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Review of Evidence on Health Aspects of Air Pollution-REVIHAAP Project Technical Report; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Khairy, M.A.; Lohmann, R. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere 2013, 91, 895–903. [Google Scholar] [CrossRef]
- Gul, N.; Khan, B.; Khan, H.; Muhammad, S.; Ahmad, I.; Gul, N. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in municipal waste dumping site, incinerator and brick kiln residues: Evaluation for potential risk assessment. Arab. J. Geosci. 2021, 14, 741. [Google Scholar] [CrossRef]
- Van den Berg, M.; Birnbaum, L.; Bosveld, A.T.; Brunström, B.; Cook, P.; Feeley, M.; Giesy, J.P.; Hanberg, A.; Hasegawa, R.; Kennedy, S.W.; et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 1998, 106, 775–792. [Google Scholar] [CrossRef]
- Xie, Z.; Ebinghaus, R.; Temme, C.; Caba, A.; Ruck, W. Atmospheric concentrations and air–sea exchanges of phthalates in the North Sea (German Bight). Atmos. Environ. 2005, 39, 3209–3219. [Google Scholar] [CrossRef]
- Molina, L.T. Introductory lecture: Air quality in megacities. Faraday Discuss. 2021, 226, 9–52. [Google Scholar] [CrossRef]
- CAPMAS—Central Agency for Public Mobilization and Statistics Egypt. Statistical Yearbook, December (2023); CAPMAS: Cairo, Egypt, 2024. [Google Scholar]
- CAPMAS—Central Agency for Public Mobilization and Statistics Egypt. Statistical Yearbook, December (2020); CAPMAS: Cairo, Egypt, 2021. [Google Scholar]
- Abu-Allaban, M.; Gertler, A.W.; Lowenthal, D.H. A preliminary apportionment of the sources of ambient PM10, PM2.5, and VOCs in Cairo. Atmos. Environ. 2002, 36, 5549–5557. [Google Scholar] [CrossRef]
- Abu-Allaban, M.; Lowenthal, D.H.; Gertler, A.W.; Labib, M. Sources of PM10 and PM2.5 in Cairo’s ambient air. Environ. Monit. Assess. 2007, 133, 417–425. [Google Scholar] [CrossRef]
- Hassan, S.K. Sources and cancer risk of heavy metals in total suspended particulate in some square areas of greater Cairo, Egypt. Indian J. Environ. Prot. 2018, 38, 1040–1050. [Google Scholar]
- Shetaya, W.H.; El-Mekawy, A.; Hassan, S.K. Tempo-Spatial Variability and Health Risks of PM2.5 and Associated Metal(loid)s in Greater Cairo, Egypt. Expo. Health 2024, 16, 973–988. [Google Scholar] [CrossRef]
- Wheida, A.; Nasser, A.; El Nazer, M.; Borbon, A.; Abo El Ata, G.A.; Abdel Wahab, M.; Alfaro, S.C. Tackling the mortality from long-term exposure to outdoor air pollution in megacities: Lessons from the Greater Cairo case study. Environ. Res. 2018, 160, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Farah, E.; Fadel, M.; Mansour, G.; Fakhri, N.; Hassan, S.K.; Boraiy, M.; El-Nazer, M.; Wheida, A.; Abdelwahab, M.; Oikonomou, K.; et al. Corrigendum to ‘Unveiling the organic chemical composition and sources of organic carbon in PM2.5 at an urban site in Greater Cairo (Egypt): A comprehensive analysis of primary and secondary compounds’. Environ. Res. 2025, 265, 120495, Erratum in: Environ. Res. 2024, 263, 120118. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, T.E.; Jaoui, M.; Lewandowski, M.; Offenberg, J.H.; Lewis, C.W.; Bhave, P.V.; Edney, E.O. Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos. Environ. 2007, 41, 8288–8300. [Google Scholar] [CrossRef]
- Fadel, M.; Ledoux, F.; Farhat, M.; Kfoury, A.; Courcot, D.; Afif, C. PM2.5 characterization of primary and secondary organic aerosols in two urban-industrial areas in the East Mediterranean. J. Environ. Sci. 2021, 101, 98–116. [Google Scholar] [CrossRef]
- Iakovides, M.; Iakovides, G.; Stephanou, E.G. Atmospheric particle-bound polycyclic aromatic hydrocarbons, n-alkanes, hopanes, steranes and trace metals: PM2.5 source identification, individual and cumulative multi-pathway lifetime cancer risk assessment in the urban environment. Sci. Total Environ. 2021, 752, 141834. [Google Scholar] [CrossRef]
- USEPA. General Quantitative Risk Assessment Guidelines for Noncancer Health Effects; External Review Draft, Risk Assessment Forum Technical Panel on Risk Assessment Guidelines for Noncancer Health Effects; U.S. Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals) Publication 9285.7-01B; NTIS PB92-963333; Office of Emergency and Remedial Response: Washington, DC, USA, 1991. [Google Scholar]
- USEPA. Exposure Factors Handbook, 2011 ed.; Final Report, EPA/600/R-09/052F; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, N.; Fadel, M.; Öztürk, F.; Keleş, M.; Iakovides, M.; Pikridas, M.; Abdallah, C.; Karam, C.; Sciare, J.; Hayes, P.L.; et al. Comprehensive chemical characterization of PM2.5 in the large East Mediterranean-Middle East city of Beirut, Lebanon. J. Environ. Sci. 2023, 133, 118–137. [Google Scholar] [CrossRef]
- Roy, D.; Singh, G.; Seo, Y.-C. Carcinogenic and non-carcinogenic risks from PM10-and PM2.5-Bound metals in a critically polluted coal mining area. Atmos. Pollut. Res. 2019, 10, 1964–1975. [Google Scholar] [CrossRef]
- Fadel, M.; Ledoux, F.; Afif, C.; Courcot, D. Human health risk assessment for PAHs, phthalates, elements, PCDD/Fs, and DL-PCBs in PM2.5 and for NMVOCs in two East-Mediterranean urban sites under industrial influence. Atmos. Pollut. Res. 2022, 13, 101261. [Google Scholar] [CrossRef]
- USEPA. Exposure Factors Handbook; Office of Research and Development, National Center for Environmental Assessment: Washington, DC, USA, 1997. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund Volume, I. Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); Final EPA/540/R/99/005; Office of Solid Waste and Emergency Response: Washington, DC, USA, 2004; PB99–963312. [Google Scholar]
- Dahmardeh Behrooz, R.; Kaskaoutis, D.G.; Grivas, G.; Mihalopoulos, N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere 2021, 262, 127835. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, X.; Ku, T.; Li, G.; Sang, N. Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity. Environ. Pollut. 2016, 216, 380–390. [Google Scholar] [CrossRef]
- Teffahi, A.; Kerchich, Y.; Moussaoui, Y.; Romagnoli, P.; Balducci, C.; Malherbe, C.; Kerbachi, R.; Eppe, G.; Cecinato, A. Exposure levels and health risk of PAHs associated with fine and ultrafine aerosols in an urban site in northern Algeria. Air Qual. Atmos. Health 2021, 14, 1375–1391. [Google Scholar] [CrossRef]
- Mila, A.; Cao, R.; Geng, N.; Zhu, X.; Chen, J. Characteristics of PAHs, PCDD/Fs, PCBs and PCNs in atmospheric fine particulate matter in Dalian, China. Chemosphere 2022, 288, 132488. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Keshavarzi, B.; Hale, B.A. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol. Environ. Saf. 2017, 136, 92–103. [Google Scholar] [CrossRef]
- Motesaddi Zarandi, S.; Shahsavani, A.; Khodagholi, F.; Fakhri, Y. Concentration, sources and human health risk of heavy metals and polycyclic aromatic hydrocarbons bound PM2.5 ambient air, Tehran, Iran. Environ. Geochem. Health 2019, 41, 1473–1487. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Hassan, S.K.; Alzahrani, N.A.; Almehmadi, F.M.; Khoder, M.I. Risk Assessment and Implications of Schoolchildren Exposure to Classroom Heavy Metals Particles in Jeddah, Saudi Arabia. Int. J. Environ. Res. Public Health 2019, 16, 5017. [Google Scholar] [CrossRef] [PubMed]
- Montano, L.; Baldini, G.M.; Piscopo, M.; Liguori, G.; Lombardi, R.; Ricciardi, M.; Esposito, G.; Pinto, G.; Fontanarosa, C.; Spinelli, M.; et al. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics 2025, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Amani Room, S.; Huang, K.T.; Pan, S.Y.; Chen, P.J.; Hsu, Y.-C.; Chi, K.H. Health assessment of emerging persistent organic pollutants (POPs) in PM2.5 in northern and central Taiwan. Chemosphere 2024, 353, 141573. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2024. [Google Scholar]
- Long, F.; Ren, Y.; Ji, Y.; Bai, X.; Li, H.; Wang, G.; Yan, X.; Chen, Y.; Li, J.; Zhang, H.; et al. The characteristics of phthalate acid esters and bisphenol A in PM2.5 of a petrochemical city: Concentrations, compositions, and health risk assessment in Dongying. Environ. Pollut. 2025, 367, 125568. [Google Scholar] [CrossRef]
- Chou, C.K.; Yang, Y.T.; Yang, H.C.; Liang, S.S.; Wang, T.N.; Kuo, P.L.; Wang, H.D.; Tsai, E.M.; Chiu, C.C. The Impact of Di(2-ethylhexyl)phthalate on Cancer Progression. Arch. Immunol. Ther. Exp. 2018, 66, 183–197. [Google Scholar] [CrossRef]
- Christodoulou, A.; Bezantakos, S.; Bourtsoukidis, E.; Stavroulas, I.; Pikridas, M.; Oikonomou, K.; Iakovides, M.; Hassan, S.K.; Boraiy, M.; El-Nazer, M.; et al. Submicron aerosol pollution in Greater Cairo (Egypt): A new type of urban haze? Environ. Int. 2024, 186, 108610. [Google Scholar] [CrossRef]
- USEPA. Human Health Risk Assessment for the Romic Southwest Facility (Chandler, Arizona); USEPA: Washington, DC, USA, 2006. [Google Scholar]
- Ishtiaq, J.; Syed, J.H.; Jadoon, W.A.; Hamid, N.; Iqbal Chaudhry, M.J.; Shahnawaz, M.; Nasir, J.; Haider Rizvi, S.H.; Chakraborty, P.; Li, J.; et al. Atmospheric polycyclic aromatic hydrocarbons (PAHs) at urban settings in Pakistan: Spatial variations, sources and health risks. Chemosphere 2021, 274, 129811. [Google Scholar] [CrossRef]
- Zhang, N.; Cao, J.; Li, L.; Ho, S.S.H.; Wang, Q.; Zhu, C.; Wang, L. Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons and n-Alkanes in PM2.5 in Xiamen. Aerosol Air Qual. Res. 2018, 18, 1673–1683. [Google Scholar] [CrossRef]
- Mo, Z.; Wang, Z.; Mao, G.; Pan, X.; Wu, L.; Xu, P.; Chen, S.; Wang, A.; Zhang, Y.; Luo, J.; et al. Characterization and health risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons in 5 urban cities of Zhejiang Province, China. Sci. Rep. 2019, 9, 7296. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Chen, Y.; Zhao, Z.; Li, Q.; Zhou, Q.; Ye, Z.; Ge, X. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and winter in an industrial area. Chemosphere 2020, 238, 124620. [Google Scholar] [CrossRef]
- Azimi-Yancheshmeh, R.; Moeinaddini, M.; Feiznia, S.; Riyahi-Bakhtiari, A.; Savabieasfahani, M.; van Hullebusch, E.D.; Asgari Lajayer, B. Seasonal and spatial variations in atmospheric PM2.5-bound PAHs in Karaj city, Iran: Sources, distributions, and health risks. Sustain. Cities Soc. 2021, 72, 103020. [Google Scholar] [CrossRef]
- Öztürk, F.; Keleş Özgül, M. Assessing long term trends of air pollutants and associated health risks imposed on residents in Bolu (Turkey) during winter. Turk. J. Public Health 2019, 17, 102–122. [Google Scholar] [CrossRef]
- Aldekheel, M.; Farahani, V.J.; Sioutas, C. Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities. Toxics 2023, 11, 697. [Google Scholar] [CrossRef]
- Fryer, M.; Collins, C.D.; Ferrier, H.; Colvile, R.N.; Nieuwenhuijsen, M.J. Human exposure modelling for chemical risk assessment: A review of current approaches and research and policy implications. Environ. Sci. Policy 2006, 9, 261–274. [Google Scholar] [CrossRef]
- Koukoulakis, K.G.; Kanellopoulos, P.G.; Chrysochou, E.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Bakeas, E. Atmospheric Concentrations and Health Implications of PAHs, PCBs and PCDD/Fs in the Vicinity of a Heavily Industrialized Site in Greece. Appl. Sci. 2020, 10, 9023. [Google Scholar] [CrossRef]
- Safo-Adu, G.; Attiogbe, F.; Ofosu, F.G.; Emahi, I.; Palm, L.N.D.M.; Enimil, E. Polycyclic aromatic compounds in ambient PM2.5 in the central region of Ghana: Molecular distribution, origin and cancer risk assessment. Atmospheric Environment 2025, 343, 120973. [Google Scholar] [CrossRef]
- Ho, C.-C.; Chan, C.-C.; Chio, C.-P.; Lai, Y.-C.; Chang-Chien, G.-P.; Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chen, P.-C.; Wu, C.-F. Source apportionment of mass concentration and inhalation risk with long-term ambient PCDD/Fs measurements in an urban area. J. Hazard. Mater. 2016, 317, 180–187. [Google Scholar] [CrossRef]
Exposure Parameters | Abbreviation | Unit | Newborn | Child | Adolescent | Adult | Reference |
---|---|---|---|---|---|---|---|
0 to <1 Year | 1 to <12 Years | 12 to <18 Years | 18–70 Years | ||||
Inhalation intake rate | IRinhalation | m3/day | 5.4 | 11.2 | 15.6 | 15.5 | USEPA [26] |
Body weight | BW | kg | 7.8 | 25 | 61 | 72 | USEPA [32] |
Exposure frequency | EF | Days/year | 350 | 350 | 350 | 350 | USEPA [33] |
Exposure time | ET | h/day | 6 | 6 | 8 | 8 | Dahmardeh Behrooz et al. [34] |
Exposure duration | ED | Years | 1 | 11 | 6 | 52 | USEPA [26] |
Average timing | AT | Days | AT = ED × 365 days for non-carcinogens AT = 70 years × 365 for carcinogens | USEPA [24] | |||
Conversion factor | CF | kg/mg | 10−6 |
Pollutant | Mean (ng/m3) | Minimum (ng/m3) | Maximum (ng/m3) |
---|---|---|---|
Elements | |||
Al | 3861 | 1041 | 21359 |
Zn | 322 | 39 | 1366 |
Pb | 182 | 9.1 | 1473 |
Mn | 83 | 20 | 320 |
Cu | 69 | 8.5 | 353 |
V | 12.1 | 2.9 | 42 |
Cr | 8.7 | 2.3 | 34.1 |
Ni | 8.2 | 2.3 | 23 |
As | 4 | 0.5 | 12.5 |
Sb | 3.6 | 0.3 | 14 |
Co | 1.7 | 0.3 | 6.9 |
Cd | 1.1 | 0.2 | 3.4 |
PAHs | |||
∑PAHs | 59 | 7.3 | 617 |
B[a]Peq | 14 | 0.8 | 16 |
Phthalates | |||
Bis(2-ethylhexyl)phthalate (DEHP) | 598 | 99 | 2201 |
Dibutylphthalate (DnBP) | 36 | <D.L. | 252 |
n-butylbenzylphthalate (BBP) | 0.5 | <D.L. | 2 |
Compounds | Abbreviation | Mean (fg/m3) |
---|---|---|
PCDDs | ||
2,3,7,8-tetrachlorinated dibenzo-p-dioxin | 2,3,7,8 TCDD | 11 |
1,2,3,7,8-pentachlorinated dibenzo-p-dioxin | 1,2,3,7,8 PeCDD | 60 |
1,2,3,4,7,8-hexachlorinated dibenzo-p-dioxin | 1,2,3,4,7,8 HxCDD | 52 |
1,2,3,6,7,8-hexachlorinated dibenzo-p-dioxin | 1,2,3,6,7,8 HxCDD | 110 |
1,2,3,7,8,9-hexachlorinated dibenzo-p-dioxin | 1,2,3,7,8,9 HxCDD | 72 |
1,2,3,4,6,7,8-heptachlorinated dibenzo-p-dioxin | 1,2,3,4,6,7,8 HpCDD | 519 |
octachlorinated dibenzo-p-dioxin | OCDD | 646 |
Sum PCDDs | 1469 | |
TEQ PCDDs | 99.5 | |
PCDFs | ||
2,3,7,8 tetrachlorinated dibenzofuran | 2,3,7,8 TCDF | 419 |
1,2,3,7,8 pentachlorinated dibenzofuran | 1,2,3,7,8 PeCDF | 348 |
2,3,4,7,8 pentachlorinated dibenzofuran | 2,3,4,7,8 PeCDF | 536 |
1,2,3,4,7,8 hexachlorinated dibenzofuran | 1,2,3,4,7,8 HxCDF | 612 |
1,2,3,6,7,8 hexachlorinated dibenzofuran | 1,2,3,6,7,8 HxCDF | 575 |
2,3,4,6,7,8 hexachlorinated dibenzofuran | 2,3,4,6,7,8 HxCDF | 521 |
1,2,3,7,8,9 hexachlorinated dibenzofuran | 1,2,3,7,8,9 HxCDF | 176 |
1,2,3,4,6,7,8-heptachlorinated dibenzofuran | 1,2,3,4,6,7,8 HpCDF | 1398 |
1,2,3,4,7,8,9-heptachlorinated dibenzofuran | 1,2,3,4,7,8,9 HpCDF | 213 |
octachlorinated dibenzofuran | OCDF | 620 |
Sum PCDFs | 5418 | |
TEQ PCDFs | 417.9 | |
DL-PCBs | ||
3,4,4′,5-tetrachlorobiphenyl | PCB 81 | 57 |
3,3′,4,4′-tetrachlorobiphenyl | PCB 77 | 157 |
2,3′,4,4′,5′-pentachlorobiphenyl | PCB 123 | 176 |
2,3′,4,4′,5-pentachlorobiphenyl | PCB 118 | 3336 |
2,3,4,4′,5-pentachlorobiphenyl | PCB 114 | <D.L. |
2,3,3′,4,4′-pentachlorobiphenyl | PCB 105 | 1485 |
3,3′,4,4′,5-pentachlorobiphenyl | PCB 126 | <D.L. |
2,3′,4,4′,5,5′-hexachlorobiphenyl | PCB 167 | 414 |
2,3,3′,4,4′,5-hexachlorobiphenyl | PCB 156 | 492 |
2,3,3′,4,4′,5′-hexachlorobiphenyl | PCB 157 | 131 |
3,3′,4,4′,5,5′-hexachlorobiphenyl | PCB 169 | <D.L. |
2,3,3′,4,4′,5,5′-heptachlorobiphenyl | PCB 189 | 220 |
Sum DL-PCBs | 6577 | |
TEQ DL-PCBs | 4.5 | |
Average Total TEQ for PCDDs, PCDFs, and DL-PCBs | 521.9 |
Age Category | Class of Compounds | Inhalation |
---|---|---|
Newborns | PAHs | 1.7 |
Phthalates | - | |
Major and trace elements | 8.0 | |
PCDDs, PCDFs, and DL-PCBs | 0.003 | |
∑HI | 9.7 | |
Children | PAHs | 1.7 |
Phthalates | - | |
Major and trace elements | 5.2 | |
PCDDs, PCDFs, and DL-PCBs | 0.003 | |
∑HI | 6.9 | |
Adolescents | PAHs | 2.2 |
Phthalates | - | |
Major and trace elements | 3.2 | |
PCDDs, PCDFs, and DL-PCBs | 0.004 | |
∑HI | 5.4 | |
Adults | PAHs | 2.2 |
Phthalates | - | |
Major and trace elements | 2.7 | |
PCDDs, PCDFs, and DL-PCBs | 0.004 | |
∑HI | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farah, E.; Fadel, M.; Dhaini, H.R.; Fakhri, N.; Iakovides, M.; Hassan, S.K.; Boraiy, M.; El-Nazer, M.; Wheida, A.; Abdelwahab, M.; et al. Comprehensive Health Risk Assessment of PM2.5 Chemical Composition in an Urban Megacity: A Case Study from Greater Cairo Area. Atmosphere 2025, 16, 1214. https://doi.org/10.3390/atmos16101214
Farah E, Fadel M, Dhaini HR, Fakhri N, Iakovides M, Hassan SK, Boraiy M, El-Nazer M, Wheida A, Abdelwahab M, et al. Comprehensive Health Risk Assessment of PM2.5 Chemical Composition in an Urban Megacity: A Case Study from Greater Cairo Area. Atmosphere. 2025; 16(10):1214. https://doi.org/10.3390/atmos16101214
Chicago/Turabian StyleFarah, Eliane, Marc Fadel, Hassan R. Dhaini, Nansi Fakhri, Minas Iakovides, Salwa K. Hassan, Mohamed Boraiy, Mostafa El-Nazer, Ali Wheida, Magdy Abdelwahab, and et al. 2025. "Comprehensive Health Risk Assessment of PM2.5 Chemical Composition in an Urban Megacity: A Case Study from Greater Cairo Area" Atmosphere 16, no. 10: 1214. https://doi.org/10.3390/atmos16101214
APA StyleFarah, E., Fadel, M., Dhaini, H. R., Fakhri, N., Iakovides, M., Hassan, S. K., Boraiy, M., El-Nazer, M., Wheida, A., Abdelwahab, M., Sauvage, S., Borbon, A., Sciare, J., Ledoux, F., Afif, C., & Courcot, D. (2025). Comprehensive Health Risk Assessment of PM2.5 Chemical Composition in an Urban Megacity: A Case Study from Greater Cairo Area. Atmosphere, 16(10), 1214. https://doi.org/10.3390/atmos16101214