Advances in High-Resolution Spatiotemporal Monitoring Techniques for Indoor PM2.5 Distribution
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. Mobile Monitoring Technologywith Indoor Positioning and Portable Sensors
3.2. Three-Dimensional I-LiDAR Monitoring
3.3. Technology Comparison and Integration Prospects
3.3.1. Fusion Workflow
3.3.2. Worked Case Study
4. Future Research Directions and Challenges
4.1. Intelligent Calibration and Data Processing
4.2. Technology Standardization and Cost Reduction
4.3. Application Verification in Complex Real-World Scenarios
4.4. Deep Integration with Health Research
4.5. Expansion into Occupational Safety
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gladson, L.A.; Cromar, K.R.; Ghazipura, M.; Knowland, K.E.; Keller, C.A.; Duncan, B. Communicating respiratory health risk among children using a global air quality index. Environ. Int. 2022, 159, 107023. [Google Scholar] [CrossRef]
- Xu, Z.; Li, D.; Liu, Q.; Li, S.; Li, Y.; Li, S.; Bian, Y.; Kan, X.; Wang, Y.; Liu, J. Global, regional, and national burden of neonatal diseases attributable to fine particulate matter air pollution, 1990–2050. Environ. Int. 2025, 202, 109638. [Google Scholar] [CrossRef] [PubMed]
- Yim, S.H.L.; Li, Y.; Huang, T.; Lim, J.T.; Lee, H.F.; Chotirmall, S.H.; Dong, G.H.; Abisheganaden, J.; Wedzicha, J.A.; Schuster, S.C.; et al. Global health impacts of ambient fine particulate pollution associated with climate variability. Environ. Int. 2024, 186, 108587. [Google Scholar] [CrossRef]
- Joshi, D.C.; Negi, P.; Devi, S.; Lohani, H.; Kumar, R.; Gupta, M.; Ming, L.C. Fine particulate matter (PM2.5, PM10): A silent catalyst for chronic lung diseases in India; a comprehensive review. Environ. Chall. 2025, 20, 101215. [Google Scholar] [CrossRef]
- Yun, X.; Shen, G.; Shen, H.; Meng, W.; Chen, Y.; Xu, H.; Ren, Y.; Zhong, Q.; Du, W.; Ma, J.; et al. Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China. Sci. Adv. 2020, 6, eaba7621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Staimer, N.; Gillen, D.L.; Tjoa, T.; Schauer, J.J.; Shafer, M.M.; Hasheminassab, S.; Pakbin, P.; Vaziri, N.D.; Sioutas, C.; et al. Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environ. Res. 2016, 150, 306–319. [Google Scholar] [CrossRef]
- Zhang, T.; Man, C.L.; Lui, K.H.; Ho, S.S.H.; Qu, L.; Choi, S.W.; Kwok, T.C.Y.; Ward, T.; Ho, K.F. Personal monitoring of exposure to PM2.5 and PMcoarse: A panel study of lung function and oxidative stress biomarkers in elderly Hong Kong residents. J. Hazard. Mater. Adv. 2025, 19, 100803. [Google Scholar] [CrossRef]
- Berg, C.D.; Schiller, J.H.; Boffetta, P.; Cai, J.; Connolly, C.; Kerpel-Fronius, A.; Kitts, A.B.; Lam, D.C.L.; Mohan, A.; Myers, R.; et al. Air Pollution and Lung Cancer: A Review by International Association for the Study of Lung Cancer Early Detection and Screening Committee. J. Thorac. Oncol. 2023, 18, 1277–1289. [Google Scholar] [CrossRef]
- Zhang, H.; Evangelopoulos, D.; Wood, D.; Chatzidiakou, L.; Varaden, D.; Quint, J.; de Nazelle, A.; Walton, H.; Katsouyanni, K.; Barratt, B. Estimating exposure to pollutants generated from indoor and outdoor sources within vulnerable populations using personal air quality monitors: A London case study. Environ. Int. 2025, 198, 109431. [Google Scholar] [CrossRef]
- He, J.; Huang, C.-H.; Yuan, N.; Austin, E.; Seto, E.; Novosselov, I. Network of low-cost air quality sensors for monitoring indoor, outdoor, and personal PM2.5 exposure in Seattle during the 2020 wildfire season. Atmos. Environ. 2022, 285, 119244. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Tseng, C.-H.; Hildemann, L.M. Using Indoor Positioning and Mobile Sensing for Spatial Exposure and Environmental Characterizations: Pilot Demonstration of PM2.5 Mapping. Environ. Sci. Technol. Lett. 2019, 6, 153–158. [Google Scholar] [CrossRef]
- Lu, C.; Xu, H.; Meng, W.; Hou, W.; Zhang, W.; Shen, G.; Cheng, H.; Wang, X.; Wang, X.; Tao, S. A novel model for regional indoor PM2.5 quantification with both external and internal contributions included. Environ. Int. 2020, 145, 106124. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cao, S.; Ma, J.; Huang, N.; Nie, J.; Wang, Z.; Duan, X. 5—Time-Activity Factors Related to Air Exposure. In Highlights of the Chinese Exposure Factors Handbook (Adults); Duan, X., Zhao, X., Wang, B., Chen, Y., Cao, S., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 31–39. [Google Scholar]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution—Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Fappiano, L.; Caracci, E.; Iannone, A.; Murru, A.; Avino, P.; Campagna, M.; Buonanno, G.; Stabile, L. Emission rates of particle-bound heavy metals and polycyclic aromatic hydrocarbons in PM fractions from indoor combustion sources. Build. Environ. 2024, 265, 112033. [Google Scholar] [CrossRef]
- Tofful, L.; Canepari, S.; Sargolini, T.; Perrino, C. Indoor air quality in a domestic environment: Combined contribution of indoor and outdoor PM sources. Build. Environ. 2021, 202, 108050. [Google Scholar] [CrossRef]
- Mazzeo, A.; Pfrang, C.; Nasir, Z.A. Towards developing an indoor emissions inventory for the UK: Challenges and future directions. Environ. Sci. Atmos. 2024, 5, 151–170. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Zhang, M. Personal exposure and source characteristics of carbonyl compounds and BTEXs within homes in Beijing, China. Build. Environ. 2013, 61, 210–216. [Google Scholar] [CrossRef]
- He, X.; Zheng, S.; Zhang, H.; Jiao, X.; Cheng, H.; Shen, G.; Tao, S. Three-Dimensional Dynamic Monitoring of Indoor PM2.5 with 3D I-LiDAR. Environ. Sci. Technol. Lett. 2022, 9, 533–537. [Google Scholar] [CrossRef]
- Relvas, H.; Lopes, D.; Armengol, J.M. Empowering communities: Advancements in air quality monitoring and citizen engagement. Urban Clim. 2025, 60, 102344. [Google Scholar] [CrossRef]
- Ameen, A.; Rashid, F.L.; Al-Obaidi, M.A.; Bouabidi, A.; Agyekum, E.B.; Chibani, A.; Kezzar, M. A review of impinging jet ventilation for indoor environment control. Int. J. Thermofluids 2025, 29, 101384. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Zhou, J.; Braham, W.W.; Ma, N. A spatial analysis of ozone and PM2.5 distribution for assessing design factors of healthy buildings. J. Build. Eng. 2024, 89, 109357. [Google Scholar] [CrossRef]
- Hu, X.; Assaad, R.H. A BIM-enabled digital twin framework for real-time indoor environment monitoring and visualization by integrating autonomous robotics, LiDAR-based 3D mobile mapping, IoT sensing, and indoor positioning technologies. J. Build. Eng. 2024, 86, 108901. [Google Scholar] [CrossRef]
- Brena, R.F.; García-Vázquez, J.P.; Galván-Tejada, C.E.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J., Jr. Evolution of Indoor Positioning Technologies: A Survey. J. Sens. 2017, 2017, 2630413. [Google Scholar] [CrossRef]
- Austin, E.; Novosselov, I.; Seto, E.; Yost, M.G. Laboratory Evaluation of the Shinyei PPD42NS Low-Cost Particulate Matter Sensor. PLoS ONE 2015, 10, e0137789. [Google Scholar]
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef]
- Zikova, N.; Hopke, P.K.; Ferro, A.R. Evaluation of new low-cost particle monitors for PM2.5 concentrations measurements. J. Aerosol Sci. 2017, 105, 24–34. [Google Scholar] [CrossRef]
- Lim, H.; Chang, H.; Choi, J.B.; Yeum, C.M. LiDAR-3DGS: LiDAR reinforcement for multimodal initialization of 3D Gaussian Splats. Comput. Graph. 2025, 132, 104293. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Susarla, P.; Mukherjee, A.; Cañellas, M.L.; Casado, C.Á.; Wu, X.; Silvén, O.; Jayagopi, D.B.; López, M.B. Non-contact multimodal indoor human monitoring systems: A survey. Inf. Fusion 2024, 110, 102457. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.-H.; Tian, Y.-F.; Zhao, Z.-H.; Dong, Z.-Y.; Liu, B.-L.; Yang, Y.-G.; Li, M.-F.; Yu, Y.-J. Dual-wavelength 3D single-pixel imaging based on gated photon counting. Opt. Lasers Eng. 2025, 195, 109269. [Google Scholar] [CrossRef]
- Sá, J.P.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Application of the low-cost sensing technology for indoor air quality monitoring: A review. Environ. Technol. Innov. 2022, 28, 102551. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, Y.; Wang, L.; Tang, J.; Li, G.; Ma, J.; Gao, H.; Huang, T.; Mao, X. A novel approach combining indoor mobile measurements and interpretable machine learning to unveil highly-resolved indoor air pollution. Build. Environ. 2025, 270, 112552. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Sepasgozar, S.M.E.; Li, H.; Trinder, J.; Tang, P. Comparative analysis of machine learning and point-based algorithms for detecting 3D changes in buildings over time using bi-temporal LiDAR data. Autom. Constr. 2019, 105, 102841. [Google Scholar] [CrossRef]
- Butt, F.A.; Jalil, M.; Liaquat, S.; Alawsh, S.A.; Naqvi, I.H.; Muzlifah Mahyuddin, N.; Muqaibel, A.H. Self-calibration of wireless sensor networks using adaptive filtering techniques. Results Eng. 2025, 25, 103775. [Google Scholar] [CrossRef]
- Hu, K.; Yan, C.; Ye, J.; Xu, Y.; Zhu, Z.; Gong, Y. Sensor fault diagnosis and calibration techniques in building energy systems: A review and future outlook. Build. Environ. 2025, 269, 112365. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Xia, Y.; Jia, Q.; Zhao, L.; Maboudia, R. Advances in micro- and nano-scale resonant mass-sensitive gas sensors: Mechanisms, materials, functionalization and applications. Sens. Actuators B Chem. 2025, 431, 137415. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Q.; Sun, J.; Zhou, X.; Zhang, B.; Lu, J.; Liu, F. Multi-scale and collaborative photon processing for 3D imaging through atmospheric obscurants using an array Gm-APD LiDAR. Opt. Laser Technol. 2025, 190, 113147. [Google Scholar] [CrossRef]
- Lin, Y. Tracking Darwin’s footprints but with LiDAR for booting up the 3D and even beyond-3D understanding of plant intelligence. Remote Sens. Environ. 2024, 311, 114246. [Google Scholar] [CrossRef]
- Ou, C.; Li, F.; Zhang, J.; Jiang, P.; Li, W.; Kong, S.; Guo, J.; Fan, W.; Zhao, J. Multi-scenario PM2.5 distribution and dynamic exposure assessment of university community residents: Development and application of intelligent health risk management system integrated low-cost sensors. Environ. Int. 2024, 185, 108539. [Google Scholar] [CrossRef] [PubMed]
- Habib, C.; Makhoul, A.; Darazi, R.; Couturier, R. Health risk assessment and decision-making for patient monitoring and decision-support using Wireless Body Sensor Networks. Inf. Fusion 2019, 47, 10–22. [Google Scholar] [CrossRef]
- Zhao, Z.; Pang, Y.; Qi, B.; Zhang, C.; Yang, M.; Ye, X. Vertical Profiling of PM1 and PM2.5 Dynamics: UAV-Based Observations in Seasonal Urban Atmosphere. Atmosphere 2025, 16, 968. [Google Scholar] [CrossRef]
- Mora, S.; deSouza, P.; Duarte, F.; Wang, A.; Paul, S.; Berrones, A.; Ratti, C. Air Quality Monitoring in Coal-Centric Cities: A Hybrid Approach. Sustainability 2023, 15, 12624. [Google Scholar] [CrossRef]
- Shikhovtsev, M.Y.; Makarov, M.M.; Aslamov, I.A.; Tyurnev, I.N.; Molozhnikova, Y.V. Application of Modern Low-Cost Sensors for Monitoring of Particle Matter in Temperate Latitudes: An Example from the Southern Baikal Region. Sustainability 2025, 17, 3585. [Google Scholar] [CrossRef]
- Sadeghi, S.; Soltanmohammadlou, N.; Nasirzadeh, F. Applications of wireless sensor networks to improve occupational safety and health in underground mines. J. Saf. Res. 2022, 83, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Adesoji, T.; Pearce, A.; Kleiner, B.; McGinnis, S. Assessing the impact of green building features on the occupational safety and health of construction workers. J. Saf. Res. 2025, 94, 59–69. [Google Scholar] [CrossRef] [PubMed]
Sensor Type | Accuracy | Response Time (T90) | Cost Range | Key Features |
---|---|---|---|---|
TSI SidePak AM510 | ≤±10% | ≤2 s | High (Research-grade) | Laser photometry, high accuracy |
Plantower PTSQ1005 | Varies by source | ~10 s | Low (1/50–1/100 of SidePak) | Laser scattering, compact, Wi-Fi enabled |
Parameter | Value/Description | Notes |
---|---|---|
Measurement Range | 3–500 µg/m3 | Signal saturation occurs beyond ~500 µg/m3 |
Limit of Detection (LOD) | 3 µg/m3 | Based on background noise level |
Limit of Quantification (LOQ) | 10 µg/m3 | R2 > 0.95 within this range |
Accuracy (NMB) | −0.05 to 0.03 | Validated with 21,543 data pairs |
Precision (NME) | 0.07 to 0.16 | Validated with 21,543 data pairs |
Linear Range | 3–500 µg/m3 (R2 ≥ 0.95) | Extrapolation or piecewise calibration needed beyond |
Inter-unit Variability | <10% (across 18 laser units) | Controlled via unified calibration model |
RH/Temperature Impact | Not explicitly quantified in model | Real-time compensation using sensors is recommended |
Cross-source Calibration | Specific factors for incense/cigarette smoke | Requires extension to other sources (e.g., cooking, dust) |
Drift Control | Relies on periodic background correction | Automatic background sampling every 6 h is advised |
Feature | Mobile Monitoring [11] | 3D I-LiDAR Monitoring [19] |
---|---|---|
Monitoring Paradigm | Lagrangian, human-centered | Eulerian, space-centric |
Spatial Dimension | 2D trajectory and interpolation plane | True 3D volumetric field |
Temporal Resolution | High (1 s) | Very high (up to video frame rate, e.g., 10 frames per second) |
Measurement Method | Direct contact measurement (point sampling) | Non-contact remote sensing (line/area scanning) |
Core Advantage | Directly reflects personal exposure, high flexibility, relatively low cost | No flow field interference, global visualization, full spatial continuous monitoring |
Main Limitation | Path dependency, sensor response delay, may interfere with personnel activities | Signal saturation at high concentrations, complex calibration, expensive equipment, potential laser safety risks |
Practical Applicability | Homes, offices, personal exposure tracking | Labs, industrial sites, source dynamics studies |
Best Application Scenario | Personal exposure assessment, microenvironment identification, unknown pollution source investigation | Dynamic emission process of pollution sources, turbulence and diffusion mechanism research, 3D dynamic visualization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q. Advances in High-Resolution Spatiotemporal Monitoring Techniques for Indoor PM2.5 Distribution. Atmosphere 2025, 16, 1196. https://doi.org/10.3390/atmos16101196
Liu Q. Advances in High-Resolution Spatiotemporal Monitoring Techniques for Indoor PM2.5 Distribution. Atmosphere. 2025; 16(10):1196. https://doi.org/10.3390/atmos16101196
Chicago/Turabian StyleLiu, Qingyang. 2025. "Advances in High-Resolution Spatiotemporal Monitoring Techniques for Indoor PM2.5 Distribution" Atmosphere 16, no. 10: 1196. https://doi.org/10.3390/atmos16101196
APA StyleLiu, Q. (2025). Advances in High-Resolution Spatiotemporal Monitoring Techniques for Indoor PM2.5 Distribution. Atmosphere, 16(10), 1196. https://doi.org/10.3390/atmos16101196