Characterization of VOC Emissions Based on Oil Depots Source Profiles Observations and Influence of Ozone Numerical Simulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis
2.1.1. Site Description
2.1.2. Sampling Procedures and Timeline
2.1.3. Analytical Methods
2.1.4. Quality Assurance and Control
2.2. Evaluation of VOC Chemical Reactivity
2.3. Construction of VOC Emission Inventory for Oil Depots
2.4. O3 Numerical Simulation
2.4.1. Model Parameterization
2.4.2. Scenario Design
2.4.3. Model Evaluation Methods
3. Results and Discussion
3.1. Emission Characteristics of VOCs in Oil Depots
3.1.1. Concentration Level of VOCs
3.1.2. Compositional Characteristics of VOC Species
3.1.3. VOC Emission Inventory and Model-Ready Speciation Profiles
3.2. O3 Formation Potential of VOCs
3.3. Numerical Simulation of O3 Contributions from Oil Depots
3.3.1. Model Performance
3.3.2. Impacts on O3 Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, Y.; Yuan, Q.; Li, T.; Zhou, Y.; Zong, L.; Wang, M.; Xie, Z.; Ho, H.C.; Gao, M.; et al. Substantially underestimated global health risks of current ozone pollution. Nat. Commun. 2025, 16, 102. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, C.; Lau, A.K.H.; Fung, J.C.H.; Chong, K.C.; Ren, C. Assessing the impact of compound heatwave-ozone event with varied definitions on mortality risk in Hong Kong. Environ. Int. 2025, 201, 109595. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, Y.; Kobayashi, K.; Dai, L.; Zhang, T.; Agathokleous, E.; Calatayud, V.; Paoletti, E.; Mukherjee, A.; Agrawal, M.; et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat. Food 2022, 3, 47–56. [Google Scholar] [CrossRef]
- Lyu, X.; Li, K.; Guo, H.; Morawska, L.; Zhou, B.; Zeren, Y.; Jiang, F.; Chen, C.; Goldstein, A.H.; Xu, X.; et al. A synergistic ozone-climate control to address emerging ozone pollution challenges. One Earth 2023, 6, 964–977. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Shen, L.; Lu, X.; De Smedt, I.; Liao, H. Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmos. Chem. Phys. 2020, 20, 11423–11433. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Feng, Z.; Dai, J.; Zhang, Y.; Tan, Y. Ground-level ozone pollution in China: A synthesis of recent findings on influencing factors and impacts. Environ. Res. Lett. 2022, 17, 063003. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, W.; Liu, H.-B. Spatial heterogeneous associations and spillover effects of ozone pollution in China. Environ. Res. 2025, 283, 122201. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Du, H.; Du, L.; Ni, X.; Hu, Y.; Pang, D.; Yao, L. Distribution characteristics of volatile organic compounds and its multidimensional impact on ozone formation in arid regions based on machine learning algorithms. Environ. Pollut. 2025, 373, 126159. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Chen, Q.; Zhu, Y.; Zhang, Y.; Zhang, Y.; Liu, Y.; Li, G.; Sun, W.; She, J. Chemical reactivity of volatile organic compounds and their effects on ozone formation in a petrochemical industrial area of Lanzhou, Western China. Sci. Total Environ. 2022, 839, 155901. [Google Scholar] [CrossRef] [PubMed]
- Ansari, T.; Nalam, A.; Lupaşcu, A.; Hinz, C.; Grasse, S.; Butler, T. Explaining trends and changing seasonal cycles of surface ozone in North America and Europe over the 2000–2018 period: A global modelling study with NOx and VOC tagging. EGUsphere 2024, 2024, 1–51. [Google Scholar] [CrossRef]
- Chang, K.L.; McDonald, B.C.; Harkins, C.; Cooper, O.R. Surface ozone trend variability across the United States and the impact of heat waves (1990–2023). Atmos. Chem. Phys. 2025, 25, 5101–5132. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, X.; Li, J.; Wang, F.; Liang, W.; Zhao, H.; Huang, B.; Wang, Z.; Feng, Y.; Shi, G. Quantitative evidence from VOCs source apportionment reveals O3 control strategies in northern and southern China. Environ. Int. 2023, 172, 107786. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Jeon, H.W.; Sung, U.J.; Sohn, J.-R. Impact of the COVID-19 Outbreak on Air Quality in Korea. Atmosphere 2020, 11, 1137. [Google Scholar] [CrossRef]
- Guo, J.; Xu, Q.; Yu, S.; Zhao, B.; Zhang, M. Investigation of atmospheric VOCs sources and ozone formation sensitivity during epidemic closure and control: A case study of Zhengzhou. Atmos. Pollut. Res. 2024, 15, 102035. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Q.; Chu, W.; Ning, M.; Liu, X.; Xiao, F.; Cai, N.; Wu, Z.; Yan, G. Identify the key emission sources for mitigating ozone pollution: A case study of urban area in the Yangtze River Delta region, China. Sci. Total Environ. 2023, 892, 164703. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, X.; Bai, H.; Nie, L.; Li, G. Process-specific volatile organic compounds emission characteristics, environmental impact and health risk assessments of the petrochemical industry in the Beijing-Tianjin-Hebei region. Environ. Sci. Pollut. Res. 2024, 31, 3938–3950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, H.; Chen, D.; Li, Q.; Thai, P.; Gong, D.; Li, Y.; Zhang, C.; Gu, Y.; Zhou, L.; et al. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China. Sci. Total Environ. 2017, 584, 1162–1174. [Google Scholar] [CrossRef]
- Jindamanee, K.; Keawboonchu, J.; Pinthong, N.; Meeyai, A.; Inchai, P.; Thepanondh, S. Environmental impacts and emission profiles of volatile organic compounds from petroleum refineries. Sci. Rep. 2025, 15, 15509. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Meng, X.; Chen, Q.; Xue, Q.; Wang, L.; Sun, J.; Guo, W.; Tao, H.; Yang, L.; Chen, F. Characteristics of volatile organic compounds under different operating conditions in a petrochemical industrial zone and their effects on ozone formation. Environ. Pollut. 2024, 363, 125254. [Google Scholar] [CrossRef]
- Fan, L.; Gu, S.; Yan, H.; Zhang, J.; Zhang, M.; Wei, X.; Zhang, G. A comprehensive analysis of O3 variation and source contributions of VOCs-oriented to O3 pollution episodes over Jinan city, China. Atmos. Pollut. Res. 2025, 16, 102552. [Google Scholar] [CrossRef]
- Cui, C.; Zhu, Y.; Yan, X.; Zhang, X.; Zhao, M.; Mu, J.; Zhong, X.; Tang, J.; Nie, Y.; An, C.; et al. Rapid formation of acetaldehyde and its influence on ozone formation in a petrochemical industrialized region. J. Environ. Sci. 2025, 157, 134–147. [Google Scholar] [CrossRef]
- Rajabi, H.; Hadi Mosleh, M.; Mandal, P.; Lea-Langton, A.; Sedighi, M. Emissions of volatile organic compounds from crude oil processing—Global emission inventory and environmental release. Sci. Total Environ. 2020, 727, 138654. [Google Scholar] [CrossRef] [PubMed]
- Paulauskiene, T.; Zabukas, V.; Vaitiekūnas, P. Investigation of volatile Organic Compound (VOC) emission in oil terminal storage tank parks. J. Environ. Eng. Landsc. Manag. 2009, 17, 81–88. [Google Scholar] [CrossRef]
- Tiwari, V.; Hanai, Y.; Masunaga, S. Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual. Atmos. Health 2010, 3, 65–75. [Google Scholar] [CrossRef]
- Pan, S.; Choi, Y.; Roy, A.; Li, X.; Jeon, W.; Souri, A.H. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas. Atmos. Environ. 2015, 120, 404–416. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Wang, F.; Zhao, Z.; Kang, S.; Yang, J.; Chang, Y.; Xia, D.; Li, K.; Zhang, X.; et al. Characterization and source analysis of VOCs and PM2.5 species in Lanzhou, northwestern China in 2017–2021: Implications for pollution control strategies. Environ. Pollut. 2025, 384, 126964. [Google Scholar] [CrossRef]
- Li, D.; Tao, X.; Song, X.; Liu, S.; Yuan, K.; Deng, F.; Guo, Y. Ambient volatile organic compounds concentration variation characteristics and source apportionment in Lanzhou, China during the COVID-19 lockdown. Atmos. Pollut. Res. 2024, 15, 102064. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, J.; Wang, H.; Li, H.; Zhang, H.; Chai, F.; Wang, S. The Characteristics of Ambient Non-Methane Hydrocarbons (NMHCs) in Lanzhou, China. Atmosphere 2019, 10, 745. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Zhang, J.; Han, K.; Yang, Y.; Chen, Q.; Li, S.; Zhu, Y. Effects of valley topography on ozone pollution in the Lanzhou valley: A numerical case study. Environ. Pollut. 2024, 363, 125225. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Chen, L.; Lian, L.; Li, Y.; Zhao, L.; Zhou, S.; Mao, X.; Huang, T.; Gao, H.; et al. WRF-Chem simulations of ozone pollution and control strategy in petrochemical industrialized and heavily polluted Lanzhou City, Northwestern China. Sci. Total Environ. 2020, 737, 139835. [Google Scholar] [CrossRef]
- Song, X.; Tian, P.; Yu, Z.; Liu, X.; Wang, T.; Zhang, M.; Li, J.; Cao, X.; Liang, J.; Ren, Y.; et al. Probing the mechanism of prolonged ozone pollution in arid and semi-arid urban areas. Urban Clim. 2025, 61, 102399. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Liu, X.; Shi, J. Enhancement of atmospheric oxidation capacity induced co-pollution of the O3 and PM2.5 in Lanzhou, northwest China. Environ. Pollut. 2024, 341, 122951. [Google Scholar] [CrossRef]
- She, Y.; Li, J.; Lyu, X.; Guo, H.; Qin, M.; Xie, X.; Gong, K.; Ye, F.; Mao, J.; Huang, L.; et al. Current status of model predictions of volatile organic compounds and impacts on surface ozone predictions during summer in China. Atmos. Chem. Phys. 2024, 24, 219–233. [Google Scholar] [CrossRef]
- Wu, R.; Xie, S. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. Environ. Sci. Technol. 2017, 51, 2574–2583. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, T. Worsening urban ozone pollution in China from 2013 to 2017—Part 2: The effects of emission changes and implications for multi-pollutant control. Atmos. Chem. Phys. 2020, 20, 6323–6337. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Shi, J.; Ma, J.; Liu, X.; Han, D.; Gao, H.; Huang, T. Predicting ozone formation in petrochemical industrialized Lanzhou city by interpretable ensemble machine learning. Environ. Pollut. 2023, 318, 120798. [Google Scholar] [CrossRef]
- HJ 1118-2020; Technical Specification for Application and Issuance of Pollutant Permit Bulk Oil Terminal and Filling Station. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/pwxk/202003/t20200310_768188.shtml (accessed on 9 July 2025).
- GB 20950-2020; Emission Standard of Air Pollutant for Bulk Petroleum Terminals. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqgdwrywrwpfbz/202012/t20201231_815623.shtml (accessed on 11 July 2025).
- Lee, H.E.; Kim, J.H.; Seo, D.; Yoon, S.J. Prioritization of Volatile Organic Compound Reduction in the Tire Manufacturing Industry through Speciation of Volatile Organic Compounds Emitted at the Fenceline. Atmosphere 2024, 15, 223. [Google Scholar] [CrossRef]
- Liang, Z.; Yu, Y.; Sun, B.; Yao, Q.; Lin, X.; Wang, Y.; Zhang, J.; Li, Y.; Wang, X.; Tang, Z.; et al. The underappreciated role of fugitive VOCs in ozone formation and health risk assessment emitted from seven typical industries in China. J. Environ. Sci. 2024, 136, 647–657. [Google Scholar] [CrossRef]
- You, G.; Jin, Z.; Lu, S.; Ren, J.; Zhang, Y.; Hu, K.; Xie, S. Emission factors and source profiles of volatile organic compounds from the automobile manufacturing industry. Sci. Total Environ. 2024, 927, 172183. [Google Scholar] [CrossRef]
- HJ 732-2014; Emission from Stationary Sources-Sampling of Volatile Organic Compounds-Bag Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2015. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201501/t20150115_294220.shtml (accessed on 11 July 2025).
- Wang, Z.; Shi, Z.; Wang, F.; Liang, W.; Shi, G.; Wang, W.; Chen, D.; Liang, D.; Feng, Y.; Russell, A.G. Implications for ozone control by understanding the survivor bias in observed ozone-volatile organic compounds system. NPJ Clim. Atmos. Sci. 2022, 5, 39. [Google Scholar] [CrossRef]
- HJ 1010-2018; Specifications and Test Procedures for Ambient Air Quality Continuous Monitoring System with Gas Chromatography for Volatile Organic Compounds. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2019. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201901/t20190105_688615.shtml (accessed on 11 July 2025).
- He, C.Q.; Zou, Y.; Lv, S.J.; Flores, R.M.; Yan, X.L.; Deng, T.; Deng, X.J. The importance of photochemical loss to source analysis and ozone formation potential: Implications from in-situ observations of volatile organic compounds (VOCs) in Guangzhou, China. Atmos. Environ. 2024, 320, 120320. [Google Scholar] [CrossRef]
- Carter, W. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. Calif. Air Resour. Board Contract 2010, 1, 07–339. [Google Scholar]
- Man, H.; Shao, X.; Cai, W.; Wang, K.; Cai, Z.; Xue, M.; Liu, H. Utilizing a optimized method for evaluating vapor recovery equipment control efficiency and estimating evaporative VOC emissions from urban oil depots via an extensive survey. J. Hazard. Mater. 2024, 479, 135710. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Yu, S.; Jiang, Y.; Chen, X.; Zhang, Y.; Li, M.; Li, Z.; Song, Z.; Li, P.; Chen, J.; et al. Impacts of Chemical Initial Conditions in the WRF-CMAQ Model on the Ozone Forecasts in Eastern China. Aerosol Air Qual. Res. 2022, 22, 210402. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, A.; Jin, Y.; Liu, Y.; Lu, X.; Fan, S.; Hong, Y.; Fan, Q. A quantitative assessment and process analysis of the contribution from meteorological conditions in an O3 pollution episode in Guangzhou, China. Atmos. Environ. 2023, 303, 119757. [Google Scholar] [CrossRef]
- Lu, X.; Gao, D.; Liu, Y.; Wang, S.; Lu, Q.; Yin, S.; Zhang, R.; Wang, S. A recent high-resolution PM2.5 and VOCs speciated emission inventory from anthropogenic sources: A case study of central China. J. Clean. Prod. 2023, 386, 135795. [Google Scholar] [CrossRef]
- Li, L.; Cao, J.; Hao, Y. Spatial and species-specific responses of biogenic volatile organic compound (BVOC) emissions to elevated ozone from 2014–2020 in China. Sci. Total Environ. 2023, 868, 161636. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, K.; Wang, H.; Liu, Y.; Gu, S.; Lu, Y.; Zhang, X.; Hu, Y.; Ou, Y.; Wang, S.; et al. Summertime ozone pollution in Sichuan Basin, China: Meteorological conditions, sources and process analysis. Atmos. Environ. 2020, 226, 117392. [Google Scholar] [CrossRef]
- Li, W.; Han, X.; Li, J.; Lun, X.; Zhang, M. Assessment of surface ozone production in Qinghai, China with satellite-constrained VOCs and NOx emissions. Sci. Total Environ. 2023, 905, 166602. [Google Scholar] [CrossRef]
- Qi, H.; Duan, W.; Cheng, S.; Cai, B. O3 transport characteristics in eastern China in 2017 and 2021 based on complex networks and WRF-CMAQ-ISAM. Chemosphere 2023, 337, 139258. [Google Scholar] [CrossRef]
- Liu, C.; Wu, C.; Kang, X.; Zhang, H.; Fang, Q.; Su, Y.; Li, Z.; Ye, Y.; Chang, M.; Guo, J. Evaluation of the prediction performance of air quality numerical forecast models in Shenzhen. Atmos. Environ. 2023, 314, 120058. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Han, X.; Yang, J.; Wu, X.; Yao, Q.; Zhao, C.; Zhong, Y.; Ning, P.; Tian, S. Differentiation analysis of VOCs in Kunming during rainy and dry seasons based on monitoring high temporal resolution. Atmos. Pollut. Res. 2024, 15, 101996. [Google Scholar] [CrossRef]
- Zhu, B.; Zhong, X.; Cai, W.; Shi, C.; Shao, X.; Chen, Z.; Yang, J.; Chen, Y.; Ni, E.; Guo, S.; et al. Characterization of VOC source profiles, chemical reactivity, and cancer risk associated with petrochemical industry processes in Southeast China. Atmos. Environ. X 2024, 21, 100236. [Google Scholar] [CrossRef]
- Feng, Y.; Ding, D.; Xiao, A.; Li, B.; Jia, R.; Guo, Y. Characteristics, influence factors, and health risk assessment of volatile organic compounds through one year of high-resolution measurement at a refinery. Chemosphere 2022, 296, 134004. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Lu, S.; He, S.; Song, K.; Shao, M.; Xie, S.; Gong, Y. Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China. Chemosphere 2021, 281, 130653. [Google Scholar] [CrossRef]
- Tang, J.; Shen, H.; Li, H.; Ji, Y.; Zhong, X.; Zhao, M.; Liu, Y.; Guo, M.; Shang, F.; Xue, L. Significant contributions of the petroleum industry to volatile organic compounds and ozone pollution: Insights from year-long observations in the Yellow River Delta. Atmos. Ocean. Sci. Lett. 2024, 17, 100523. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Dong, M.; Li, W.; Gao, X.; Ye, R.; Zhang, D. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos. Environ. 2018, 182, 234–241. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, N.; Zhang, H.; Li, G.; Xin, G. Spatiotemporal Distributions of Ambient Volatile Organic Compounds in China: Characteristics and Sources. Aerosol Air Qual. Res. 2022, 22, 210379. [Google Scholar] [CrossRef]
- Liang, X.; Sun, X.; Xu, J.; Ye, D. Improved emissions inventory and VOCs speciation for industrial OFP estimation in China. Sci. Total Environ. 2020, 745, 140838. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Zhang, Y.; Wang, L.; Sun, Z.; Wang, H. Review on Source Profiles of Volatile Organic Compounds (VOCs) in Typical Industries in China. Atmosphere 2023, 14, 878. [Google Scholar] [CrossRef]
- Yang, H.; Ren, B.; Huang, Y.; Zhang, Z.; Hu, W.; Liu, M.; Zhao, H.; Jiang, G.; Hao, Z. Volatile organic compounds (VOCs) emissions from internal floating-roof tank in oil depots in Beijing: Influencing factors and emission reduction strategies analysis. Sci. Total Environ. 2024, 916, 170222. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Lv, Z.; Bai, H.; Li, G. Characterization identification and speciated emission inventory construction of anthropogenic volatile organic compounds (VOCs) in Beijing, China. Atmos. Pollut. Res. 2025, 16, 102452. [Google Scholar] [CrossRef]
- Sun, X.; Liang, X.; Chen, L.; Liao, C.; Zhang, Y.; Ye, D. Historical emission and reduction of VOCs from the petroleum refining industry and their potential for secondary pollution formation in Guangdong, China. Sci. Total Environ. 2023, 904, 166416. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Hao, Q.; Xu, Z.; Zhang, G.; Liang, Z.; Gou, Y.; Wang, X.; Chen, F.; He, Y.; Jiang, C. Composition Characteristics of VOCs in the Atmosphere of the Beibei Urban District of Chongqing: Insights from Long-Term Monitoring. Atmosphere 2023, 14, 1452. [Google Scholar] [CrossRef]
- Hini, G.; Gao, K.; Zheng, Y.; Simayi, M.; Xie, S. Emission Characteristics, OFPs, and Mitigation Perspectives of VOCs from Refining Industry in China’s Petrochemical Bases. Aerosol Air Qual. Res. 2023, 23, 220347. [Google Scholar] [CrossRef]
- Wu, W.; Fu, T.-M.; Arnold, S.R.; Spracklen, D.V.; Zhang, A.; Tao, W.; Wang, X.; Hou, Y.; Mo, J.; Chen, J.; et al. Temperature-Dependent Evaporative Anthropogenic VOC Emissions Significantly Exacerbate Regional Ozone Pollution. Environ. Sci. Technol. 2024, 58, 5430–5441. [Google Scholar] [CrossRef]
- Tao, C.; Zhang, Y.; Zhang, X.; Guan, X.; Peng, Y.; Wang, G.; Zhang, Q.; Ren, Y.; Zhao, X.; Zhao, R.; et al. Discrepant Global Surface Ozone Responses to Emission- and Heatwave-Induced Regime Shifts. Environ. Sci. Technol. 2024, 58, 22288–22297. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, P.; Khare, M. Photo-chemical transport modelling of tropospheric ozone: A review. Atmos. Environ. 2017, 159, 34–54. [Google Scholar] [CrossRef]
- Ye, F.; Rupakheti, D.; Huang, L.; Nishanth, T.; Kumar MK, S.; Li, L.; Valsaraj, K.T.; Hu, J. Integrated process analysis retrieval of changes in ground-level ozone and fine particulate matter during the COVID-19 outbreak in the coastal city of Kannur, India. Environ. Pollut. 2022, 307, 119468. [Google Scholar] [CrossRef]
- Zhu, Z.; Do, K.; Ivey, C.E.; Collins, D.R. Assessing CMAQ model discrepancies in a heavily polluted air basin using UAV vertical profiles and sensitivity analyses. Environ. Sci. Atmos. 2024, 4, 1051–1063. [Google Scholar] [CrossRef]
- Xiong, K.; Xie, X.; Huang, L.; Hu, J. Improved O3 predictions in China by combining chemical transport model and multi-source data with machining learning techniques. Atmos. Environ. 2024, 318, 120269. [Google Scholar] [CrossRef]
- Xian, Y.; Zhang, Y.; Liu, Z.; Wang, H.; Wang, J.; Tang, C. Source apportionment and formation of warm season ozone pollution in Chengdu based on CMAQ-ISAM. Urban Clim. 2024, 56, 102017. [Google Scholar] [CrossRef]
- Wang, J.; Cai, Y.; Zou, S.; Zhou, X.; Fang, C. Source Attribution Analysis of an Ozone Concentration Increase Event in the Main Urban Area of Xi’an Using the WRF-CMAQ Model. Atmosphere 2024, 15, 1208. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, S.; Huang, L.; Lu, G.; Kasemsan, M.; Yaluk, E.A.; Liu, H.; Liao, J.; Bian, J.; Zhang, K.; et al. Differences between VOCs and NOx transport contributions, their impacts on O3, and implications for O3 pollution mitigation based on CMAQ simulation over the Yangtze River Delta, China. Sci. Total Environ. 2023, 872, 162118. [Google Scholar] [CrossRef] [PubMed]






| Model Group | Model Attribution | Configuration |
|---|---|---|
| WRF | Simulation period | 26 July–31 August, 2023 |
| Resolution | Horizontal resolution: 105 × 105 grids for domain1, resolution: 5 km, 125 × 125 grids for domain2, resolution: 1 km; Vertical resolution: 41 eta layers | |
| Microphysics | Lin et al. scheme | |
| Cumulus Convective | Kain-Fritsch(new) scheme | |
| Longwave/shortwave radiation | Rapid Radiative Transfer Model for GCMs (RRTMG) | |
| PBL physics scheme | Yonsei University (YSU) scheme | |
| sfclay_physics | Revised MM5 Monin-Obukhov scheme | |
| surface_physics | Unified Noah land-surface model | |
| Speciation Tool | Input options | Measured VOC species in crude oil depot and refines oil depot |
| Transition mechanism | cb6r3_ae6 | |
| Output options | VOC species profile based on the CB06 mechanism | |
| CMAQ | Simulation period | 1–31 August, 2023 |
| Resolution | Horizontal resolution: 100 × 100 grids for domain1, resolution: 5 km, 120 × 120 grids for domain2, resolution: 1 km; Vertical resolution: 41 eta layers | |
| Gas-phase chemistry | Carbon Bond 6 version r3 chemical reaction mechanism (CB6r3) | |
| Aerosol module | AERO6 modes | |
| Photolysis | Photolysis-inline | |
| Diffusion | Asymmetrical Convective Model Version 2 (ACM2) | |
| Initial and boundary conditions | Default global background concentration file in the model |
| Scenario | Oil Depot VOC Emissions | VOC Speciation |
|---|---|---|
| Baseline | Not included | Default MEIC profiles |
| Comparison | Included (crude + refined depots) | Oil depots: field-based (this study); others: MEIC default |
| Model Species Name | Description | MEIC Industry | Crude Oil Depot | Refined Oil Depot |
|---|---|---|---|---|
| ACET | Acetone (propanone) | 32.7% | 3.8% | 2.2% |
| ALD2 | Acetaldehyde (ethanal) | 0.0% | 2.9% | 1.9% |
| ALDX | Higher aldehyde group (-C-CHO) | 0.0% | 4.4% | 3.3% |
| BENZ | Benzene | 33.6% | 1.4% | 1.1% |
| CH4 | Methane | 0.0% | 0.0% | 0.0% |
| ETH | Ethene (ethylene) | 0.3% | 0.6% | 0.4% |
| ETHA | Ethane | 0.6% | 1.6% | 0.9% |
| ETHY | Ethyne (acetylene) | 6.2% | 0.3% | 0.2% |
| ETOH | Ethanol | 0.1% | 0.0% | 0.0% |
| FORM | Formaldehyde (methanal) | 0.0% | 0.9% | 0.8% |
| IOLE | Internal olefin group (R1R2 > C=C < R3R4) | 0.1% | 0.5% | 3.4% |
| ISOP | Isoprene (2-methyl-1,3-butadiene) | 0.0% | 0.4% | 0.1% |
| IVOC | Intermediate volatility organic compounds | 0.0% | 3.9% | 3.8% |
| KET | Ketone group (R1R2 > C=O) | 3.2% | 0.6% | 0.4% |
| MEOH | Methanol | 0.0% | 0.0% | 0.0% |
| NAPH | naphthalene | 0.0% | 0.6% | 0.4% |
| OLE | Terminal olefin group (R1R2 > C=C) | 0.2% | 1.8% | 1.8% |
| PAR | Paraffinic group (R1-C < R2R3) | 3.2% | 39.6% | 60.7% |
| PRPA | Propane | 15.6% | 1.7% | 0.7% |
| TERP | Monoterpenes | 0.0% | 0.0% | 0.0% |
| TOL | Toluene and other monoalkyl aromatics | 1.3% | 9.9% | 4.8% |
| UNR | Unreactive carbon groups (e.g., halogenated carbons) | 1.9% | 11.6% | 8.3% |
| XYLMN | Xylene and other polyalkyl aromatics | 0.7% | 13.5% | 4.8% |
| Category | Variable | R | NMB (%) | RMSE | IOA |
|---|---|---|---|---|---|
| Meteorology | Temperature | 0.91 | 1.96 | 2.16 | 0.94 |
| Relative humidity | 0.83 | −14.02 | 11.29 | 0.86 | |
| NO2 (Lanzhou city) | 0.66 | 16.62 | 13.67 | 0.79 | |
| NO2 (Lanlian Hotel site) | 0.49 | 18.74 | 18.45 | 0.69 | |
| Pollutants | O3 (Lanzhou city) | 0.85 | −51.87 | 50.69 | 0.61 |
| O3 (Lanlian Hotel site) | 0.75 | −50.86 | 53.98 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, W.; Tong, J.; Zhang, L.; Ma, L.; Liu, Y.; Yang, H.; Chen, M. Characterization of VOC Emissions Based on Oil Depots Source Profiles Observations and Influence of Ozone Numerical Simulation. Atmosphere 2025, 16, 1192. https://doi.org/10.3390/atmos16101192
An W, Tong J, Zhang L, Ma L, Liu Y, Yang H, Chen M. Characterization of VOC Emissions Based on Oil Depots Source Profiles Observations and Influence of Ozone Numerical Simulation. Atmosphere. 2025; 16(10):1192. https://doi.org/10.3390/atmos16101192
Chicago/Turabian StyleAn, Weiming, Jilong Tong, Lei Zhang, Lingyun Ma, Yongle Liu, Hong Yang, and Min Chen. 2025. "Characterization of VOC Emissions Based on Oil Depots Source Profiles Observations and Influence of Ozone Numerical Simulation" Atmosphere 16, no. 10: 1192. https://doi.org/10.3390/atmos16101192
APA StyleAn, W., Tong, J., Zhang, L., Ma, L., Liu, Y., Yang, H., & Chen, M. (2025). Characterization of VOC Emissions Based on Oil Depots Source Profiles Observations and Influence of Ozone Numerical Simulation. Atmosphere, 16(10), 1192. https://doi.org/10.3390/atmos16101192

