A Transfer Learning–CNN Framework for Marine Atmospheric Pollutant Inversion Using Multi-Source Data Fusion
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Resource
2.2. Data Preprocessing
2.2.1. Missing Data Reconstruction
2.2.2. Data Matching and Fusion
2.2.3. Data Normalization
2.3. TL-CNN Model Design and Configuration
2.3.1. CNN Inversion Model Design
2.3.2. Input Variables
2.3.3. Transfer Learning Strategy
3. Results and Discussion
3.1. Evaluation of CNN Inversion Performance
3.2. Evaluation Against Other Modeling Approaches
3.3. Performance of the TL-CNN Model After Transfer Learning
3.4. Implications and Limitations of This Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Zhou, R.; Chen, J.; Rangel-Buitrago, N. The effectiveness of emission control policies in regulating air pollution over coastal ports of China: Spatiotemporal variations of NO2 and SO2. Ocean Coast. Manag. 2022, 219, 106064. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Wang, J.; Li, C.; Gupta, P.; Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless mapping and spatiotemporal variations. Atmos. Chem. Phys. 2023, 23, 1511–1532. [Google Scholar] [CrossRef]
- Tan, W.; Liu, C.; Wang, S.S.; Xing, C.Z.; Su, W.J.; Zhang, C.X.; Xia, C.Z.; Liu, H.R.; Cai, Z.N.; Liu, J.G. Tropospheric NO2, SO2, and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI and OMPS satellite data. Atmos. Chem. Phys. 2018, 18, 15387–15402. [Google Scholar] [CrossRef]
- Nguyen, D.-H.; Lin, C.; Vu, C.-T.; Cheruiyot, N.K.; Nguyen, M.K.; Le, T.H.; Lukkhasorn, W.; Vo, T.-D.-H.; Bui, X.-T. Tropospheric ozone and NOx: A review of worldwide variation and meteorological influences. Environ. Technol. Innov. 2022, 28, 102809. [Google Scholar] [CrossRef]
- Zhang, Q.; Xue, D.; Liu, X.H.; Gong, X.; Gao, H.W. Process analysis of PM2.5 pollution events in a coastal city of China using CMAQ. J. Environ. Sci. 2019, 79, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Cao, J.; Ma, M.; Liu, Y.; Liu, Y.; Chen, W.; Fan, Q.; Liao, W.; Jia, S.; Wang, X. Dry deposition of reactive nitrogen to different ecosystems across eastern China: A comparison of three community models. Sci. Total Environ. 2020, 720, 137548. [Google Scholar] [CrossRef]
- Brunelli, U.; Piazza, V.; Pignato, L.; Sorbello, F.; Vitabile, S. Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Atmos. Environ. 2007, 41, 2967–2995. [Google Scholar] [CrossRef]
- Rahimi, A. Short-term prediction of NO2 and NOx concentrations using multilayer perceptron neural network: A case study of Tabriz, Iran. Ecol. Process. 2017, 6, 4. [Google Scholar] [CrossRef]
- Navares, R.; Aznarte, J.L. Predicting air quality with deep learning LSTM: Towards comprehensive models. Ecol. Inform. 2020, 55, 101019. [Google Scholar] [CrossRef]
- Li, X.; Peng, L.; Yao, X.; Cui, S.; Hu, Y.; You, C.; Chi, T. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environ. Pollut. 2017, 231, 997–1004. [Google Scholar] [CrossRef]
- Reddy, V.; Yedavalli, P.; Mohanty, S.; Nakhat, U. Deep air: Forecasting air pollution in Beijing, China. Environ. Sci. 2018, 1564, 1–8. [Google Scholar]
- Sayeed, A.; Choi, Y.; Eslami, E.; Lops, Y.; Roy, A.; Jung, J. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Netw. 2020, 121, 396–408. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 2019, 664, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Iskandaryan, D.; Ramos, F.; Trilles, S. Graph neural network for air quality prediction: A case study in Madrid. IEEE Access 2023, 11, 2729–2742. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Sirjacobs, D.; Lenartz, F.; Beckers, J. Data Interpolating Empirical Orthogonal Functions (DINEOF): A tool for geophysical data analyses. Mediterr. Mar. Sci. 2011, 12, 5–11. [Google Scholar] [CrossRef]
- Chen, S.; Zou, B.; Tang, J. Impact of spatial interpolation methods on identifying structure of heavy metal polluted soil. Sci. Surv. Mapp. 2015, 40, 5. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, J.; Chen, P.; Wen, Y.; Kuang, H.; He, Y.; Zhang, Y. Spatiotemporal characteristics and relationships of main air-pollutants during a typical heavy air pollution in Xi’an City based on a spatial interpolation method. Res. Environ. Sci. 2020, 33, 809–819. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Wan, Z. A temporal-spatial interpolation and extrapolation method based on geographic long short-term memory neural network for PM2.5. J. Clean. Prod. 2019, 237, 117729. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Y.; Yuan, Q.; Zheng, L.; Li, T.; Shen, H.; Zhang, L. Reconstructing global PM2.5 monitoring dataset from OpenAQ using a two-step spatio-temporal model based on SES-IDW and LSTM. Environ. Res. Lett. 2022, 17, 034014. [Google Scholar] [CrossRef]
- Jia, X.; Gong, X.; Liu, X.; Zhao, X.; Meng, H.; Dong, Q.; Liu, G.; Gao, H. Deep sequence learning for prediction of daily NO2 concentration in coastal cities of northern China. Atmosphere 2023, 14, 467. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, R.; Gong, X.; Li, X.; Gao, Y.; Yin, W.; Wang, R.; Li, H.; Gao, H.; Zou, T. A new hybrid deep sequence model for decomposing, interpreting, and predicting sulfur dioxide decline in coastal cities of northern China. Sustainability 2025, 17, 2546. [Google Scholar] [CrossRef]
Types | Variables | Abbr. | Unit | Resolution |
---|---|---|---|---|
ERA5 | 10 Meter U Wind Component | U | M·s−1 | Spatial resolution: 0.25° × 0.25°; Time span: 1 January 2014–31 December 2021; Temporal resolution: 1 h. |
10 Meter V Wind Component | V | m·s−1 | ||
2 Meter Dewpoint Temperature | DPT | °C | ||
2 Meter Temperature | Temp | °C | ||
Sea Surface Temperature | SST | °C | ||
Mean Sea Level Pressure | MSL | Pa | ||
Surface Pressure | SP | Pa | ||
Mean Total Precipitation Rate | MTP | kg·m−2·s−1 | ||
Total Precipitation | TP | m | ||
EAC4 | NO2 | - | μg·m−3 | Spatial resolution: 0.75° × 0.75°; Time span: 1 January 2014–31 December 2021; Temporal resolution: 3 h. |
SO2 | - | μg·m−3 | ||
O3 | - | μg·m−3 | ||
CO | - | μg·m−3 |
SST | DPT | MSLP | SP | |
---|---|---|---|---|
Convergence level | 0.01 | 0.01 | 0.01 | 0.01 |
Optimal EOF modes | 4 | 4 | 5 | 5 |
Optimal iterations | 96 | 125 | 20 | 27 |
CV error | 0.77 | 0.75 | 19.44 | 15.53 |
Std. dev. | 5.16 | 6.22 | 301.39 | 256.98 |
Layer | Kernel/Size | Output Shape | Activation | Output Shape Explanation |
---|---|---|---|---|
Conv. | 2 × 2 | (Autoset, 12, 2, 32) | ReLU | Feature maps of height 12, width 2, 32 channels |
Average Pool | 2 × 2 | (Autoset, 6, 1, 32) | - | Downsampled feature maps, height 6, width 1, 32 channels |
Conv. | 2 × 2 | (Autoset, 3, 1, 32) | ReLU | Extracted features, height 3, width 1, 32 channels |
UpSampling | 2 × 2 | (Autoset, 6, 2, 32) | - | Upsampled feature maps, height 6, width 2, 32 channels |
Conv. | 2 × 2 | (Autoset, 6, 2, 32) | ReLU | Processed features, height 6, width 2, 32 channels |
Global Max Pooling | - | (Autoset, 32) | - | Collapsed spatial dimensions, 32-length vector |
Dense | - | (Autoset, 32) | Sigmoid | Fully connected layer with 32 neurons |
Dense (Output) | - | (Autoset, 1) | Sigmoid | Output layer, single predicted value |
Pollutant | Mean Concentration | RMSE | R2 |
---|---|---|---|
NO2 (µg·m−3) | 42.6 | 8.68 | 0.82 |
SO2 (µg·m−3) | 38.2 | 9.39 | 0.84 |
O3 (µg·m−3) | 73.5 | 17.21 | 0.81 |
CO (mg·m−3) | 0.93 | 0.25 | 0.80 |
Statistical Metrics | DNN | RF | ||||||
---|---|---|---|---|---|---|---|---|
NO2 | SO2 | O3 | CO | NO2 | SO2 | O3 | CO | |
RMSE | 12.3 | 13.65 | 26.35 | 0.75 | 16.85 | 14.35 | 21.26 | 0.86 |
R2 | 0.71 | 0.75 | 0.58 | 0.65 | 0.53 | 0.71 | 0.72 | 0.51 |
Evaluation Metrics | NO2 | SO2 | O3 | CO |
---|---|---|---|---|
RMSE | 13.86 | 22.36 | 23.36 | 0.36 |
R2 | 0.65 | 0.42 | 0.63 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, X.; Liu, X.; Zhu, Z.; Xiong, Y.; Hu, J.; Gong, X. A Transfer Learning–CNN Framework for Marine Atmospheric Pollutant Inversion Using Multi-Source Data Fusion. Atmosphere 2025, 16, 1168. https://doi.org/10.3390/atmos16101168
Li X, Liu X, Liu X, Zhu Z, Xiong Y, Hu J, Gong X. A Transfer Learning–CNN Framework for Marine Atmospheric Pollutant Inversion Using Multi-Source Data Fusion. Atmosphere. 2025; 16(10):1168. https://doi.org/10.3390/atmos16101168
Chicago/Turabian StyleLi, Xiaoling, Xiaoyu Liu, Xiaohuan Liu, Zhengyang Zhu, Yunhui Xiong, Jingfei Hu, and Xiang Gong. 2025. "A Transfer Learning–CNN Framework for Marine Atmospheric Pollutant Inversion Using Multi-Source Data Fusion" Atmosphere 16, no. 10: 1168. https://doi.org/10.3390/atmos16101168
APA StyleLi, X., Liu, X., Liu, X., Zhu, Z., Xiong, Y., Hu, J., & Gong, X. (2025). A Transfer Learning–CNN Framework for Marine Atmospheric Pollutant Inversion Using Multi-Source Data Fusion. Atmosphere, 16(10), 1168. https://doi.org/10.3390/atmos16101168