Assessing the Annual-Scale Insolation–Temperature Relationship over Northern Hemisphere in CMIP6 Models and Its Implication for Orbital-Scale Simulation
Abstract
1. Introduction
2. Data and Methods
3. Results
3.1. Possible Common Biases in CMIP6 Models
3.2. Implication for Middle Holocene Simulation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laepple, T.; Lohmann, G. Seasonal cycle as template for climate variability on astronomical timescales. Paleoceanography 2009, 24, PA4201. [Google Scholar] [CrossRef]
- Fasullo, J.T.; Trenberth, K.E. The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Clim. 2008, 21, 2297–2312. [Google Scholar] [CrossRef]
- Huybers, P.; Curry, W. Links between annual, Milankovitch and continuum temperature variability. Nature 2006, 441, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Berger, A.L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 1978, 35, 2362–2367. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef]
- Huybers, P.; Aharonson, O. Orbital tuning, eccentricity, and the frequency modulation of climatic precession. Paleoceanography 2010, 25, PA4205. [Google Scholar] [CrossRef]
- Huybers, P. Glacial variability over the last two million years: An extended depth-derived age model, continuous obliquity pacing, and the Pleistocene progression. Quat. Sci. Rev. 2007, 26, 37–55. [Google Scholar] [CrossRef]
- Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 2006, 313, 508–511. [Google Scholar] [CrossRef]
- Mudelsee, M.; Schulz, M. The Mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth Planet. Sci. Lett. 1997, 151, 117–123. [Google Scholar] [CrossRef]
- Hughes, P.D.; Gibbard, P.L. Global glacier dynamics during 100 ka Pleistocene glacial cycles. Quat. Res. 2018, 90, 222–243. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; Kong, X.; Shao, X.; Chen, S.; Wu, J.; Jiang, X.; Wang, X.; An, Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 2008, 451, 1090–1093. [Google Scholar] [CrossRef]
- Cheng, H.; Li, H.; Sha, L.; Sinha, A.; Shi, Z.; Yin, Q.; Lu, Z.; Zhao, D.; Cai, Y.; Hu, Y.; et al. Milankovitch theory and monsoon. Innovation 2022, 3, 100234. [Google Scholar] [CrossRef] [PubMed]
- Beaufort, L.; Van der Kaars, S.; Bassinot, F.C.; Moron, V. Past dynamics of the Australian monsoon: Precession, phase and links to the global monsoon concept. Clim. Past 2010, 6, 695–706. [Google Scholar] [CrossRef]
- Tabor, C.R.; Otto-Bliesner, B.L.; Brady, E.C.; Nusbaumer, J.; Zhu, J.; Erb, M.P.; Wong, T.E.; Liu, Z.; Noone, D. Interpreting precession-driven δ18O variability in the South Asian monsoon region. J. Geophys. Res. Atmos. 2018, 123, 5927–5946. [Google Scholar] [CrossRef]
- Hall, A. The role of surface albedo feedback in climate. J. Clim. 2004, 17, 1550–1568. [Google Scholar] [CrossRef]
- Rose, B.E.J.; Cronin, T.W.; Bitz, C.M. Ice Caps and Ice Belts: The effects of obliquity on ice–albedo feedback. Astrophys. J. 2017, 846, 28. [Google Scholar] [CrossRef]
- McGehee, R.; Lehman, C. A paleoclimate model of ice–albedo feedback forced by variations in Earth’s orbit. SIAM J. Appl. Dyn. Syst. 2012, 11, 684–707. [Google Scholar] [CrossRef]
- Jalihal, C.; Srinivasan, J.; Chakraborty, A. Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years. Nat. Commun. 2019, 10, 5701. [Google Scholar] [CrossRef]
- Kniffka, A.; Knippertz, P.; Fink, A.H. The role of low-level clouds in the West African monsoon system. Atmos. Chem. Phys. 2019, 19, 1623–1647. [Google Scholar] [CrossRef]
- Berger, M.; Brandefelt, J.; Nilsson, J. The sensitivity of the Arctic sea ice to orbitally induced insolation changes: A study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations. Clim. Past 2013, 9, 969–982. [Google Scholar] [CrossRef]
- Mohtadi, M.; Prange, M.; Steinke, S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 2016, 533, 191–199. [Google Scholar] [CrossRef]
- Brierley, C.M.; Zhao, A.; Harrison, S.P.; Braconnot, P.; Williams, C.J.; Thornalley, D.J.; Shi, X.; Peterschmitt, J.-Y.; Ohgaito, R.; Kaufman, D.S.; et al. Large-scale features and evaluation of the PMIP4-CMIP6 mid-Holocene simulations. Clim. Past 2020, 16, 1847–1876. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Zhao, A.; Brierley, C.M.; Axford, Y.; Capron, E.; Govin, A.; Hoffman, J.S.; Isaacs, E.; Kageyama, M.; et al. Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Clim. Past 2021, 17, 63–94. [Google Scholar] [CrossRef]
- Guarino, M.V.; Sime, L.C.; Schröeder, D.; Malmierca-Vallet, I.; Rosenblum, E.; Ringer, M.; Ridley, J.; Feltham, D.; Bitz, C.; Steig, E.J.; et al. Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nat. Clim. Change 2020, 10, 928–932. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Donohoe, A.; Dawson, E.; McMurdie, L.; Battisti, D.S.; Rhines, A. Seasonal asymmetries in the lag between insolation and surface temperature. J. Clim. 2020, 33, 3921–3945. [Google Scholar] [CrossRef]
- Stine, A.R.; Huybers, P.; Fung, I.Y. Changes in the phase of the annual cycle of surface temperature. Nature 2009, 457, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, D.; Sinsky, E.; Miller, J. Role of snow–albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia. Environ. Res. Lett. 2014, 9, 114008. [Google Scholar] [CrossRef]
- Minder, J.R.; Letcher, T.W.; Skiles, S.M.K. An evaluation of high-resolution regional climate model simulations of snow cover and albedo over the Rocky Mountains, with implications for the simulated snow-albedo feedback. J. Geophys. Res. Atmos. 2016, 121, 9069–9088. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, C.; Zhao, R.; Qin, P.; Qin, Y. Asymmetries of the lag between air temperature and insolation in gauge observations and reanalyses over China. Atmos. Res. 2023, 288, 106729. [Google Scholar] [CrossRef]
- Pak, G.; Noh, Y.; Lee, M.-I.; Yeh, S.-W.; Kim, D.; Kim, S.-Y.; Lee, J.-L.; Lee, H.J.; Hyun, S.-H.; Lee, K.-Y.; et al. Korea Institute of Ocean Science and Technology Earth System Model and its simulation characteristics. Ocean Sci. J. 2021, 56, 18–45. [Google Scholar] [CrossRef]
- Golaz, J.C.; Van Roekel, L.P.; Zheng, X.; Roberts, A.F.; Wolfe, J.D.; Lin, W.; Bradley, A.M.; Tang, Q.; Maltrud, M.E.; Forsyth, R.M.; et al. The DOE E3SM Model Version 2: Overview of the physical model and initial model evaluation. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003156. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Braconnot, P.; Harrison, S.P.; Lunt, D.J.; Abe-Ouchi, A.; Albani, S.; Bartlein, P.J.; Capron, E.; Carlson, A.E.; Dutton, A.; et al. The PMIP4 contribution to CMIP6–Part 2: Two interglacials, scientific objectives and experimental design for Holocene and Last Interglacial simulations. Geosci. Model Dev. 2017, 10, 3979–4003. [Google Scholar] [CrossRef]
- Tian, Z.; Jiang, D. Enhanced seasonality of surface air temperature over China during the mid-Holocene. Atmos. Ocean. Sci. Lett. 2023, 16, 100393. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.J.; Stewart, A.L.; Son, S.W.; Seo, K.H. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Sci. Adv. 2019, 5, eaax8203. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, S.J.; Seo, K.H.; Stewart, A.L.; Kim, S.Y.; Son, S.W. The impact of Arctic sea ice loss on mid-Holocene climate. Nat. Commun. 2018, 9, 4571. [Google Scholar] [CrossRef]
- Yoshimori, M.; Suzuki, M. The relevance of mid-Holocene Arctic warming to the future. Clim. Past 2019, 15, 1375–1394. [Google Scholar] [CrossRef]
- Zhao, Y.; Braconnot, P.; Marti, O.; Harrison, S.P.; Hewitt, C.; Kitoh, A.; Liu, Z.; Mikolajewicz, U.; Otto-Bliesner, B.; Weber, S.L. A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Clim. Dyn. 2005, 25, 777–800. [Google Scholar] [CrossRef]
- Jiang, D.; Lang, X.; Tian, Z.; Ju, L. Mid-Holocene East Asian summer monsoon strengthening: Insights from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 369, 422–429. [Google Scholar] [CrossRef]
- Ceppi, P.; Brient, F.; Zelinka, M.D.; Hartmann, D.L. Cloud feedback mechanisms and their representation in global climate models. WIREs Clim. Change 2017, 8, e465. [Google Scholar] [CrossRef]
- Stephens, G.L. Cloud feedbacks in the climate system: A critical review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef]
- Brient, F.; Bony, S. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim. Dyn. 2013, 40, 2415–2431. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef]
- Ceppi, P.; Myers, T.A.; Nowack, P.; Wall, C.J.; Zelinka, M.D. Implications of a pervasive climate model bias for low-cloud feedback. Geophys. Res. Lett. 2024, 51, e2024GL110525. [Google Scholar] [CrossRef]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.; Mauritsen, T.; Palmer, M.; Watanabe, M.; et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, V., Pirani, A., Conners, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- He, J.; Hong, L.; Shao, C.; Tang, W. Global evaluation of simulated surface shortwave radiation in CMIP6 models. Atmos. Res. 2023, 292, 106896. [Google Scholar] [CrossRef]
- Freidenreich, S.; Paynter, D.; Lin, P.; Ramaswamy, V.; Jones, A.L.; Feldman, D.; Collins, W.D. An investigation into biases in instantaneous aerosol radiative effects calculated by shortwave parameterizations in two Earth System Models. J. Geophys. Res. Atmos. 2021, 126, e2019JD032323. [Google Scholar] [CrossRef]







| Model Name | Country | Model Name | Reference |
|---|---|---|---|
| ACCESS-CM2 | Australia | FGOALS-f3-L | China |
| ACCESS-ESM1-5 | FGOALS-g3 | ||
| AWI-CM-1-1-MR | Germany | GFDL-CM4 | America |
| AWI-ESM-1-1-LR | GFDL-ESM4 | ||
| BCC-ESM1 | China | GISS-E2-2-G | America |
| CESM2-FV2 | America | IITM-ESM | India |
| CESM2-WACCM-FV2 | INM-CM4-8 | Russia | |
| CESM2-WACCM | INM-CM5-0 | ||
| CESM2 | IPSL-CM5A2-INCA | France | |
| CMCC-CM2-HR4 | Italy | IPSL-CM6A-LR | |
| CMCC-CM2-SR5 | KIOST-ESM | South Korea | |
| CMCC-ESM2 | MPI-ESM-1-2-HAM | Germany | |
| CanESM5 | Canada | MPI-ESM1-2-HR | |
| E3SM-1-0 | America | MPI-ESM1-2-LR | |
| E3SM-2-0-NARRM | NESM3 | China | |
| E3SM-2-0 | NorCPM1 | Norway | |
| EC-Earth3-AerChem | EC-Earth consortium | NorESM2-LM | |
| EC-Earth3-CC | NorESM2-MM | ||
| EC-Earth3-Veg-LR | SAM0-UNICON | South Korea | |
| EC-Earth3-Veg | TaiESM1 | China | |
| EC-Earth3 |
| PI | MH | ||
|---|---|---|---|
| Orbital parameters | Eccentricity | 0.016764 | 0.018682 |
| Obliquity (°) | 23.459 | 24.105 | |
| Perihelion—180 (°) | 100.33 | 0.97 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Shi, J. Assessing the Annual-Scale Insolation–Temperature Relationship over Northern Hemisphere in CMIP6 Models and Its Implication for Orbital-Scale Simulation. Atmosphere 2025, 16, 1167. https://doi.org/10.3390/atmos16101167
Li S, Shi J. Assessing the Annual-Scale Insolation–Temperature Relationship over Northern Hemisphere in CMIP6 Models and Its Implication for Orbital-Scale Simulation. Atmosphere. 2025; 16(10):1167. https://doi.org/10.3390/atmos16101167
Chicago/Turabian StyleLi, Shengmei, and Jian Shi. 2025. "Assessing the Annual-Scale Insolation–Temperature Relationship over Northern Hemisphere in CMIP6 Models and Its Implication for Orbital-Scale Simulation" Atmosphere 16, no. 10: 1167. https://doi.org/10.3390/atmos16101167
APA StyleLi, S., & Shi, J. (2025). Assessing the Annual-Scale Insolation–Temperature Relationship over Northern Hemisphere in CMIP6 Models and Its Implication for Orbital-Scale Simulation. Atmosphere, 16(10), 1167. https://doi.org/10.3390/atmos16101167

