Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Instrumentation
2.3. Multiple Linear Regression Model
3. Results and Discussion
3.1. General Characteristics
3.2. Correlations with Representative Parameters
3.3. Source Apportionment of HCHO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mellouki, A.; Wallington, T.J.; Chen, J. Atmospheric Chemistry of Oxygenated Volatile Organic Compounds: Impacts on Air Quality and Climate. Chem. Rev. 2015, 115, 3984–4014. [Google Scholar] [CrossRef]
- Wu, Y.; Huo, J.; Yang, G.; Wang, Y.; Wang, L.; Wu, S.; Yao, L.; Fu, Q.; Wang, L. Measurement Report: Production and Loss of Atmospheric Formaldehyde at a Suburban Site of Shanghai in Summertime. Atmos. Chem. Phys. 2023, 23, 2997–3014. [Google Scholar] [CrossRef]
- Wang, J.; Li, O.; Zhang, P.; Yang, X.; Yadav, R.; Chen, S.; Liu, Y.; Zhu, C.; Ren, Y.; Mellouki, A. Atmospheric chemistry of the coastal area is influenced by the convergence between the inland and marine air: Insight into carbonyl compounds. J. Environ. Sci. 2025, 154, 859–870. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, K.; Liao, D.; Chen, G.; Zhao, M.; Lin, Y.; Ji, X.; Xu, K.; Wu, Y.; Yu, R.; et al. Exploring the Amplified Role of HCHO in the Formation of HMS and O3 during the Co-Occurring PM2.5 and O3 Pollution in a Coastal City of Southeast China. Atmos. Chem. Phys. 2023, 23, 10795–10807. [Google Scholar] [CrossRef]
- Peng, W.-X.; Yue, X.; Chen, H.; Ma, N.L.; Quan, Z.; Yu, Q.; Wei, Z.; Guan, R.; Lam, S.S.; Rinklebe, J.; et al. A Review of Plants Formaldehyde Metabolism: Implications for Hazardous Emissions and Phytoremediation. J. Hazard. Mater. 2022, 436, 129304. [Google Scholar] [CrossRef]
- Liao, J.; Wolfe, G.M.; Hannun, R.A.; St. Clair, J.M.; Hanisco, T.F.; Gilman, J.B.; Lamplugh, A.; Selimovic, V.; Diskin, G.S.; Nowak, J.B.; et al. Formaldehyde Evolution in US Wildfire Plumes during the Fire Influence on Regional to Global Environments and Air Quality Experiment (FIREX-AQ). Atmos. Chem. Phys. 2021, 21, 18319–18331. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, J.; Qiao, X.; Sun, M.; Zhang, J. Real-World Emission Characteristics of Carbonyl Compounds from on-Road Vehicles in Beijing and Zhengzhou, China. Sci. Total Environ. 2024, 916, 170135. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Zhao, W.; Yao, Q.; Wang, H.; Wang, B. Open Biomass Burning Emissions and Their Contribution to Ambient Formaldehyde in Guangdong Province, China. Sci. Total Environ. 2022, 838, 155904. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, P.; Zhang, Y.; Dong, C.; Han, G.; Li, H.; Yang, X.; Liu, Y.; Sun, J.; Li, H.; et al. Characteristics and Formation Mechanisms of Atmospheric Carbonyls in an Oilfield Region of Northern China. Atmos. Environ. 2022, 274, 118958. [Google Scholar] [CrossRef]
- Huang, S.; Song, S.; Nielsen, C.P.; Zhang, Y.; Xiong, J.; Weschler, L.B.; Xie, S.; Li, J. Residential Building Materials: An Important Source of Ambient Formaldehyde in Mainland China. Environ. Int. 2022, 158, 106909. [Google Scholar] [CrossRef]
- Gopikrishnan, G.S.; Kuttippurath, J. A Decade of Satellite Observations Reveal Significant Increase in Atmospheric Formaldehyde from Shipping in Indian Ocean. Atmos. Environ. 2021, 246, 118095. [Google Scholar] [CrossRef]
- Chen, W.T.; Shao, M.; Lu, S.H.; Wang, M.; Zeng, L.M.; Yuan, B.; Liu, Y. Understanding Primary and Secondary Sources of Ambient Carbonyl Compounds in Beijing Using the PMF Model. Atmos. Chem. Phys. 2014, 14, 3047–3062. [Google Scholar] [CrossRef]
- Yang, Z.; Cheng, H.R.; Wang, Z.W.; Peng, J.; Zhu, J.X.; Lyu, X.P.; Guo, H. Chemical Characteristics of Atmospheric Carbonyl Compounds and Source Identification of Formaldehyde in Wuhan, Central China. Atmos. Res. 2019, 228, 95–106. [Google Scholar] [CrossRef]
- Cui, Y.; Hua, J.; He, Q.; Guo, L.; Wang, Y.; Wang, X. Comparison of Three Source Apportionment Methods Based on Observed and Initial HCHO in Taiyuan, China. Sci. Total Environ. 2024, 926, 171828. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M.; Lu, S.; Chang, C.-C.; Dasgupta, P.K. Variations and Sources of Ambient Formaldehyde for the 2008 Beijing Olympic Games. Atmos. Environ. 2010, 44, 2632–2639. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Abbhishek, K.; Gopikrishnan, G.S.; Pathak, M. Investigation of long–term trends and major sources of atmospheric HCHO over India. Environ. Chall. 2022, 7, 100477. [Google Scholar]
- Dutta, C.; Chatterjee, A.; Jana, T.K.; Mukherjee, A.K.; Sen, S. Contribution from the Primary and Secondary Sources to the Atmospheric Formaldehyde in Kolkata, India. Sci. Total Environ. 2010, 408, 4744–4748. [Google Scholar] [CrossRef]
- Liu, D.; Wang, M.; Hu, K.; Liu, Z. Sources and Budget Analysis of Ambient Formaldehyde in the East-Central Area of the Yangtze River Delta Region, China. Atmos. Environ. 2023, 305, 119801. [Google Scholar] [CrossRef]
- Huang, H.; Yang, C.; Wang, Z.; Lian, S.; Li, X.; Liu, Y.; Cheng, H. The Chemical Characteristics and Sources of Formaldehyde on O3 and Non-O3 Polluted Days in Wuhan, Central China. Atmos. Environ. 2024, 338, 120809. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, M.; Zhao, M.; Jing, S.; Wang, H.; Lu, K.; Shen, H. Determination of Urban Formaldehyde Emission Ratios in the Shanghai Megacity. Environ. Sci. Technol. 2023, 57, 16489–16499. [Google Scholar] [CrossRef]
- Ma, Y.; Diao, Y.; Zhang, B.; Wang, W.; Ren, X.; Yang, D.; Wang, M.; Shi, X.; Zheng, J. Detection of Formaldehyde Emissions from an Industrial Zone in the Yangtze River Delta Region of China Using a Proton Transfer Reaction Ion-Drift Chemical Ionization Mass Spectrometer. Atmos. Meas. Tech. 2016, 9, 6101–6116. [Google Scholar] [CrossRef]
- Rappenglück, B.; Dasgupta, P.K.; Leuchner, M.; Li, Q.; Luke, W. Formaldehyde and Its Relation to CO, PAN, and SO2 in the Houston-Galveston Airshed. Atmos. Chem. Phys. 2010, 10, 2413–2424. [Google Scholar] [CrossRef]
- de Gouw, J.A.; Middlebrook, A.M.; Warneke, C.; Goldan, P.D.; Kuster, W.C.; Roberts, J.M.; Fehsenfeld, F.C.; Worsnop, D.R.; Canagaratna, M.R.; Pszenny, A.A.P.; et al. Budget of Organic Carbon in a Polluted Atmosphere: Results from the New England Air Quality Study in 2002. J. Geophys. Res. Atmos. 2005, 110, D16305. [Google Scholar] [CrossRef]
- Huang, X.-F.; Zhang, B.; Xia, S.-Y.; Han, Y.; Wang, C.; Yu, G.-H.; Feng, N. Sources of Oxygenated Volatile Organic Compounds (OVOCs) in Urban Atmospheres in North and South China. Environ. Pollut. 2020, 261, 114152. [Google Scholar] [CrossRef]
- Jiang, Z.; Grosselin, B.; Daële, V.; Mellouki, A.; Mu, Y. Seasonal, Diurnal and Nocturnal Variations of Carbonyl Compounds in the Semi-Urban Environment of Orléans, France. J. Environ. Sci. 2016, 40, 84–91. [Google Scholar] [CrossRef]
- Lui, K.H.; Ho, S.S.H.; Louie, P.K.K.; Chan, C.S.; Lee, S.C.; Hu, D.; Chan, P.W.; Lee, J.C.W.; Ho, K.F. Seasonal Behavior of Carbonyls and Source Characterization of Formaldehyde (HCHO) in Ambient Air. Atmos. Environ. 2017, 152, 51–60. [Google Scholar] [CrossRef]
- Cheng, Y.; Lee, S.C.; Huang, Y.; Ho, K.F.; Ho, S.S.H.; Yau, P.S.; Louie, P.K.K.; Zhang, R.J. Diurnal and Seasonal Trends of Carbonyl Compounds in Roadside, Urban, and Suburban Environment of Hong Kong. Atmos. Environ. 2014, 89, 43–51. [Google Scholar] [CrossRef]
- Wang, C.; Huang, X.; Han, Y.; Zhu, B.; He, L. Sources and Potential Photochemical Roles of Formaldehyde in an Urban Atmosphere in South China. J. Geophys. Res. Atmos. 2017, 122, 11934–11947. [Google Scholar] [CrossRef]
- Ma, J.; Dörner, S.; Donner, S.; Jin, J.; Cheng, S.; Guo, J.; Zhang, Z.; Wang, J.; Liu, P.; Zhang, G.; et al. MAX-DOAS Measurements of NO2, SO2, HCHO, and BrO at the Mt. Waliguan WMO GAW Global Baseline Station in the Tibetan Plateau. Atmos. Chem. Phys. 2020, 20, 6973–6990. [Google Scholar] [CrossRef]
- Shen, H.; Xue, L.; Zhang, G.; Zhu, Y.; Zhao, M.; Zhong, X.; Nie, Y.; Tang, J.; Liu, Y.; Yuan, Q.; et al. Marine Sources of Formaldehyde in the Coastal Atmosphere. Sci. Bull. 2025, 70, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Hong, Y.; Lin, Y.; Xu, K.; Chen, G.; Liu, T.; Xu, L.; Li, M.; Fan, X.; Wang, H.; et al. Impacts of Synoptic Patterns and Meteorological Factors on Distribution Trends of Ozone in Southeast China During 2015–2020. J. Geophys. Res. Atmos. 2023, 128, e2022JD037961. [Google Scholar] [CrossRef]
- Liu, T.; Lin, Y.; Chen, J.; Chen, G.; Yang, C.; Xu, L.; Li, M.; Fan, X.; Zhang, F.; Hong, Y. Pollution Mechanisms and Photochemical Effects of Atmospheric HCHO in a Coastal City of Southeast China. Sci. Total Environ. 2023, 859, 160210. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, Y.; He, Q.; Guo, L.; Gao, X.; Feng, Y.; Wang, Y.; Wang, X. Seasonal Variations of Carbonyls and Their Contributions to the Ozone Formation in Urban Atmosphere of Taiyuan, China. Atmosphere 2021, 12, 510. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, X.; Zhai, H.; Wang, Y.; Wang, Q.; Yang, Z. Seasonal and Diurnal Characteristics of Carbonyls in the Urban Atmosphere of Changsha, a Mountainous City in South-Central China. Environ. Pollut. 2019, 253, 259–267. [Google Scholar] [CrossRef]
- Possanzini, M.; Palo, V.D.; Cecinato, A. Sources and Photodecomposition of Formaldehyde and Acetaldehyde in Rome Ambient Air. Atmos. Environ. 2002, 36, 3195–3201. [Google Scholar] [CrossRef]
- Legreid, G.; Lööv, J.B.; Staehelin, J.; Hueglin, C.; Hill, M.; Buchmann, B.; Prevot, A.S.H.; Reimann, S. Oxygenated Volatile Organic Compounds (OVOCs) at an Urban Background Site in Zürich (Europe): Seasonal Variation and Source Allocation. Atmos. Environ. 2007, 41, 8409–8423. [Google Scholar] [CrossRef]
- Shen, H.; Liu, Y.; Zhao, M.; Li, J.; Zhang, Y.; Yang, J.; Jiang, Y.; Chen, T.; Chen, M.; Huang, X.; et al. Significance of Carbonyl Compounds to Photochemical Ozone Formation in a Coastal City (Shantou) in Eastern China. Sci. Total Environ. 2021, 764, 144031. [Google Scholar] [CrossRef] [PubMed]
- Bastien, L.A.J.; Brown, N.J.; Harley, R.A. Contributions to Local- and Regional-Scale Formaldehyde Concentrations. Atmos. Chem. Phys. 2019, 19, 8363–8381. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, H.; Liu, C.; Zhang, L.; Cheng, Y.; Palm, M.; Notholt, J.; Lu, X.; Vigouroux, C.; Zheng, B.; et al. Mapping the Drivers of Formaldehyde (HCHO) Variability from 2015 to 2019 over Eastern China: Insights from Fourier Transform Infrared Observation and GEOS-Chem Model Simulation. Atmos. Chem. Phys. 2021, 21, 6365–6387. [Google Scholar] [CrossRef]
- Hong, Q.; Liu, C.; Chan, K.L.; Hu, Q.; Xie, Z.; Liu, H.; Si, F.; Liu, J. Ship-Based MAX-DOAS Measurements of Tropospheric NO2, SO2, and HCHO Distribution along the Yangtze River. Atmos. Chem. Phys. 2018, 18, 5931–5951. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Zhang, C.; Xue, C.; Liu, P.; Zhang, C.; Mu, Y.; Wu, H.; Wang, D.; Chen, H.; et al. The Pollution Levels, Variation Characteristics, Sources and Implications of Atmospheric Carbonyls in a Typical Rural Area of North China Plain during Winter. J. Environ. Sci. 2020, 95, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xue, L.; Yao, L.; Li, Q.; Wen, L.; Zhu, Y.; Chen, T.; Wang, X.; Yang, L.; Wang, T.; et al. Carbonyl Compounds at Mount Tai in the North China Plain: Characteristics, Sources, and Effects on Ozone Formation. Atmos. Res. 2017, 196, 53–61. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, T.; Luo, Y.; Miao, C.; Su, P.; Liu, F.; Zhang, G.; Qin, S.; Song, Y.; Bu, N.; et al. Identification of Ozone Sensitivity for NO2 and Secondary HCHO Based on MAX-DOAS Measurements in Northeast China. Environ. Int. 2022, 160, 107048. [Google Scholar] [CrossRef]
- Chen, G.; Xu, L.; Yu, S.; Xue, L.; Lin, Z.; Yang, C.; Ji, X.; Fan, X.; Tham, Y.; Wang, H.; et al. Increasing Contribution of Chlorine Chemistry to Wintertime Ozone Formation Promoted by Enhanced Nitrogen Chemistry. Environ. Sci. Technol. 2024, 58, 22714–22721. [Google Scholar] [CrossRef] [PubMed]
Season | β0 | β1 | β2 | R2 | Sig. |
---|---|---|---|---|---|
Spring | 0.57 | 0.00403 | 0.822 | 0.58 | 0.000 |
Summer | 0.57 | 0.00412 | 2.26 | 0.72 | 0.000 |
Autumn | 0.57 | 0.00300 | 0.0207 | 0.46 | 0.000 |
Winter | 0.57 | 0.00137 | 0.791 | 0.41 | 0.000 |
Location | Mean ± SD | Range | Spring | Summer | Autumn | Winter | References |
---|---|---|---|---|---|---|---|
Xiamen, China | 1.59 ± 1.49 | 0.25–8.34 | 2.54 ± 1.30 | 3.38 ± 1.89 | 2.53 ± 1.18 | 1.98 ± 1.06 | This study |
Hong Kong, China 1 | 2.23 ± 2.87 | 3.29 ± 0.99 | 8.80 ± 2.12 | 3.23 ± 0.77 | 2.95 ± 1.29 | [27] | |
Shenzhen, China | 3.4 ± 1.6 | 5.0 ± 4.4 | 5.1 ± 3.1 | 4.2 ± 2.2 | [28] | ||
Taiyuan, China 1 | 6.27 ± 3.89 | 5.29 ± 2.98 | 10.44 ± 4.62 | 5.42 ± 2.57 | 4.30 ± 1.97 | [33] | |
Changsha, China 1 | 1.50–21.67 | 5.35 ± 1.74 | 11.47 ± 4.19 | 7.52 ± 2.62 | 4.79 ± 1.47 | [34] | |
Orléans, France | 2.16 ± 0.59 | 3.08 ± 2.21 | 2.28 ± 0.82 | 1.46 ± 0.4 | [25] | ||
Dongying, China | 8.59 ± 3.37 | 3.17 ± 2.12 | [9] | ||||
Kolkata, India 1 | 18.84 ± 9.90 | 14.24 ± 3.79 | [17] | ||||
Rome, Italy | 18 ± 6 | 10 ± 4 | [35] | ||||
Zurich, Switzerland | 2.35 | 1.83 | [36] | ||||
Wuhan, China (2017) | 4.90 ± 2.36 | 1.39–12.00 | [13] | ||||
Nanjing, China | 1.8–12.8 | 4.1 ± 1.6 | [37] | ||||
Shanghai, China | NA 2–9.4 | 2.2 ± 1.8 | [2] | ||||
Wuhan, China (2023) | 0.56–5.92 | 2.36 ± 1.34 | [19] | ||||
Qingdao, China | 2.4 ± 0.9 | [30] | |||||
Changzhou, China | 4.02–13.89 | 9.65 ± 2.70 | [18] | ||||
Shantou, China | 2.56–7.31 | 4.12 ± 1.02 | [38] |
Location | Season | Background Source (%) | Primary Source (%) | Secondary Source (%) | R2 | References |
---|---|---|---|---|---|---|
Xiamen, China | Spring/Winter | 23.0 | 47.6 | 29.4 | 0.41–0.72 | This study |
Hong Kong, China (YL) | Spring/Winter | 24 | 39.8 | 36.2 | 0.35 | [26] |
Hong Kong, China (TC) | Spring/Winter | 48.3 | 21.3 | 30.4 | 0.21 | [26] |
Anhui, China | Spring/Winter | 29.0 | 49.2 | 21.8 | NA 1 | [39] |
Beijing, China | Summer | 5 | 76 | 18 | 0.65 | [15] |
Wuhan, China (ZY) | Summer | 15.2 | 17.5 | 67.2 | 0.78 | [13] |
Wuhan, China (JX) | Summer | 20.2 | 32.4 | 47.4 | 0.60 | [13] |
Wuhan, China (ZY) | Winter | 9.5 | 73.5 | 17.1 | 0.74 | [13] |
Wuhan, China (JX) | Winter | 15.2 | 58.6 | 26.2 | 0.71 | [13] |
Pearl River Delta (PRD) | Winter | 6.2 | 54.4 | 39.3 | 0.77–0.79 | [40] |
Baoding, China | Winter | 41.1 | 50.6 | 8.4 | 0.33 | [41] |
Mount Tai, China | Summer | 34 | 22 | 44 | 0.83 | [42] |
Season | Period | Spring | Summer | Autumn | Winter | Mean |
---|---|---|---|---|---|---|
Daytime | 18.8 | 14.5 | 20.9 | 31.1 | 21.3 | |
Background (%) | Nighttime | 22.8 | 21.1 | 22.4 | 33.1 | 24.9 |
Difference | −4.0 | −6.6 | −1.5 | −2.0 | −3.6 | |
Daytime | 50.9 | 45.5 | 41.9 | 34.4 | 43.2 | |
Primary (%) | Nighttime | 59.8 | 67.2 | 47.6 | 35.8 | 52.6 |
Difference | −8.9 | −21.7 | −5.6 | −1.4 | −9.4 | |
Daytime | 30.3 | 40.0 | 37.2 | 34.5 | 35.5 | |
Secondary (%) | Nighttime | 17.4 | 11.7 | 30.0 | 31.1 | 22.6 |
Difference | 13.0 | 28.3 | 7.2 | 3.4 | 12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Chen, Q.; Hong, Y.; Chen, Y.; Yin, L.; Chen, J.; Hu, G.; Liao, D.; Yu, R. Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China. Atmosphere 2025, 16, 1131. https://doi.org/10.3390/atmos16101131
Lin Y, Chen Q, Hong Y, Chen Y, Yin L, Chen J, Hu G, Liao D, Yu R. Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China. Atmosphere. 2025; 16(10):1131. https://doi.org/10.3390/atmos16101131
Chicago/Turabian StyleLin, Yiling, Qiaoling Chen, Youwei Hong, Yanting Chen, Liqian Yin, Jinfang Chen, Gongren Hu, Dan Liao, and Ruilian Yu. 2025. "Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China" Atmosphere 16, no. 10: 1131. https://doi.org/10.3390/atmos16101131
APA StyleLin, Y., Chen, Q., Hong, Y., Chen, Y., Yin, L., Chen, J., Hu, G., Liao, D., & Yu, R. (2025). Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China. Atmosphere, 16(10), 1131. https://doi.org/10.3390/atmos16101131