Weather Regimes of Extreme Wind Speed Events in Xinjiang: A 10–30 Year Return Period Analysis
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Derivation of Related Variables
2.2.2. K-Means Clustering Method
2.2.3. Calculation Scheme of Extreme Wind Speeds
3. Results
3.1. Climatic Characteristics and Long-Term Trends of Wind Speed in Xinjiang
3.2. Identification and Characteristics of Extreme Wind Speed Events
Return Wind Speed at 10–30 Year Levels
3.3. Local Synoptic Systems and Large-Scale Circulation Regimes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EWS | Extreme wind speed |
SLP | Sea level pressure |
BLH | Boundary layer height |
WPD | Wind power density |
References
- Deng, M.-J.; Ming, B.; Li, Y.; Huang, Q.; Li, P.; Wu, M. Pathways towards a cleaner energy system for Xinjiang under carbon peak and carbon neutrality goals. J. Nat. Resour. 2022, 37, 1107–1122. [Google Scholar] [CrossRef]
- Zhang, K.; Qu, Z.; Dong, Y.; Lu, H.; Leng, W.; Wang, J.; Zhang, W. Research on a combined model based on linear and nonlinear features-A case study of wind speed forecasting. Renew. Energy 2019, 130, 814–830. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, Y.; Wang, H.; Zhang, Y.; Shi, X. A research of climate change with wind farm development over Qinghai Tibet Plateau. Desert Oasis Meteorol. 2018, 12, 69–74. [Google Scholar]
- Feng, Y.; Wang, Z.; Xie, Z. Estimating extreme wind pressure for long-span roofs: Sample independence considerations. J. Wind Eng. Ind. Aerodyn. 2020, 205, 104341. [Google Scholar] [CrossRef]
- Outten, S.; Sobolowski, S. Extreme wind projections over Europe from the Euro-CORDEX regional climate models. Weather Clim. Extrem. 2021, 33, 100363. [Google Scholar] [CrossRef]
- Torrielli, A.; Repetto, M.P.; Solari, G. The Annual Rate of Independent Events for the analysis of the extreme wind speed. J. Wind Eng. Ind. Aerodyn. 2016, 156, 104–114. [Google Scholar] [CrossRef]
- Anastasiades, G.; McSharry, P.E. Extreme value analysis for estimating 50 year return wind speeds from reanalysis data. Wind Energy 2014, 17, 1231–1245. [Google Scholar] [CrossRef]
- Tzanis, C.G.; Koutsogiannis, I.; Philippopoulos, K.; Kalamaras, N. Multifractal detrended cross-correlation analysis of global methane and temperature. Remote. Sens. 2020, 12, 557. [Google Scholar] [CrossRef]
- Tzanis, C.G.; Kalamaras, N.; Philippopoulos, K.; Deligiorgi, D. The multifractal nature of dew point. Phys. A 2022, 604, 127922. [Google Scholar] [CrossRef]
- Chen, L.; Li, D.; Pryor, S.C. Wind speed trends over China: Quantifying the magnitude and assessing causality. J. Clim. 2013, 33, 2579–2590. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- de Brito Neto, F.A.; Mendes, D.; Spyrides, M.H.C. Analysis of extreme wind events in the Weddell Sea region (Antarctica) at Belgrano II Station. J. S. Am. Earth Sci. 2022, 116, 103804. [Google Scholar] [CrossRef]
- Blougouras, G.; Philippopoulos, K.; Tzanis, C.G. An extreme wind speed climatology: Atmospheric driver identification using neural networks. Sci. Total Environ. 2023, 875, 162590. [Google Scholar] [CrossRef] [PubMed]
- Philippopoulos, K.; Deligiorgi, D.; Mavrakou, T.; Cheliotis, J. Winter atmosphericcirculation patterns and their relationship with the meteorological conditions in Greece. Meteorog. Atmos. Phys. 2014, 124, 195–204. [Google Scholar] [CrossRef]
- Dai, A.; Deser, C. Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res. Atmos. 1999, 104, 31109–31125. [Google Scholar] [CrossRef]
- Desai, A.R.; Austin, J.A.; Bennington, V.; McKinley, J.A. Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nat. Geosci. 2009, 2, 855–858. [Google Scholar] [CrossRef]
- Morris, M.; Kushner, P.J.; Moore, G.W.K.; Mercan, O. Resolution Dependence of Extreme Wind Speed Projections in the Great Lakes Region. J. Clim. 2024, 37, 3153–3171. [Google Scholar] [CrossRef]
- Tsai, C.L.; Kim, K.; Liou, Y.C.; Kim, J.H.; Lee, Y.; Lee, G. Orographic-induced strong wind associated with a low-pressure system under clear-air condition during ICE-POP 2018. J. Geophys. Res. Atmos. 2022, 127, e2021JD036418. [Google Scholar] [CrossRef]
- Galina, S.; Aleksey, K. Extremely Strong Winds and Weather Patterns over Arctic seas. Geogr. Environ. Sustain. 2019, 12, 34–42. [Google Scholar]
- Couto, A.; Costa, P.; Simões, T. Identification of extreme wind events using a weather type classification. Energies 2021, 14, 3944. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Li, J.; Liu, S.M.; Du, M. Climate characteristics of wind over Dabancheng region during 1961–2008 and the Status of Wind Energy Resources. Desert Oasis Meteorol. 2009, 3, 29–33. [Google Scholar]
- Jia, J.; Li, G.; Yan, S.; Sheng, X. Rerecognition of the nine major wind zones in Xinjiang and delineation of three new wind zones. Wind Energy 2023, 54–60. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Zhang, Y. Distribution of wind energy resource in Wafangdian region, Liaoning province. J. Meteorol. Environ. 2008, 24, 33–37. [Google Scholar]
- Wang, P.; Ren, C.; Peng, M. Research on wind power dispatching and operation management of northwest power grid. Power Grid Clean Energy 2009, 25, 80–84. [Google Scholar]
- Zhang, Y.; Lou, J.; Zhang, X.; Wang, Y. Analysis of wind energy resource in Jinhua city. Desert Oasis Meteorol. 2023, 17, 98–105. [Google Scholar]
- Ding, Q.; Peng, T.; Shen, Y.; Piao, Z.; Wang, M.; Ding, X.; Li, D. Climatic characteristics of wind speed in the western region of Jilin province from 2012 to 2021 and their impact on wind power generation. J. Meteorol. Environ. 2024, 40, 108–112. [Google Scholar]
- Jiang, Y.; Miao, Y.; Zhao, Y.; Liu, J.; Gao, Y. Extreme-wind events in China in the past 50 years and their impacts on sandstorm variations. Front. Earth Sci. 2023, 10, 1058275. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Z.Y.; Zhang, X.; Yang, X. Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J. Geophys. Res. 2004, 109, D16210. [Google Scholar] [CrossRef]
- Caballero-Megido, C.; Hillier, J.; Wyncoll, D.; Bosher, L.; Gouldby, B. Technical note: Comparison of methods for threshold selection for extreme sea levels. J. Flood Risk Manag. 2018, 11, 127–140. [Google Scholar] [CrossRef]
- Morton, I.D.; Bowers, J. Extreme value analysis in a multivariate offshore environment. Appl. Ocean Res. 1996, 18, 303–317. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horanyi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 monthly averaged data on single levels from 1940 to present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2023, 10, 252–266. [Google Scholar] [CrossRef]
- National Geophysical Data Center. 5-Minute Gridded Global Relief Data (ETOPO5); National Geophysical Data Center, NOAA: Boulder, CO, USA, 1993. [Google Scholar]
- Vega-Bayo, M.; Pérez-Aracil, J.; Prieto-Godino, L.; Salcedo-Sanz, S. Improving the prediction of extreme wind speed events with generative data augmentation techniques. Renew. Energy 2024, 221, 119769. [Google Scholar] [CrossRef]
- Larsen, X.G.; Mann, J. The effects of disjunct sampling and averaging time on maximum mean wind speeds. J. Wind Eng. Ind. Aerodyn. 2006, 94, 581–602. [Google Scholar] [CrossRef]
- Friederichs, P.; Hense, A. Statistical Downscaling of Extreme Precipitation Events Using Censored Quantile Regression. Mon. Weather Rev. 2007, 135, 2365–2378. [Google Scholar] [CrossRef]
- Casson, E.; Coles, S. Spatial Regression Models for Extremes. Extremes 1999, 1, 449–468. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; 745p. [Google Scholar]
- Ye, W.; Yu, Y.; Cao, J. Region-dependent meteorological conditions of thunderstorm based on clustering analysis of stability and precipitable water indices. Int. J. Clim. 2024, 44, 2650–2665. [Google Scholar] [CrossRef]
- Govender, P.; Sivakumar, V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmos. Pollut. Res. 2020, 11, 40–56. [Google Scholar] [CrossRef]
- Zhai, Y.M.; Zhao, R.X.; Xiao, R.C.; Wang, L.W. K-nearest neighbor nonparametric regression for probability forecasting with its applications. J. Appl. Meteorol. Sci. 2005, 16, 453–460. [Google Scholar]
- Outten, S.; Esau, I. Extreme winds over europe in the ENSEMBLES regional climate models. Atmos. Chem. Phys. 2013, 13, 1–13. [Google Scholar] [CrossRef]
- Cui, X.; Sun, H.; Dong, Z.; Liu, Z.; Li, C.; Zhang, Z.; Li, X.; Li, L. Temporal variation of the wind environment and its possible causes in the Mu Us Dunefield of Northern China, 1960–2014. Theor. Appl. Climatol. 2019, 135, 1017–1029. [Google Scholar] [CrossRef]
- Guo, H.; Xu, M.; Hu, Q. Changes in near-surface wind speed in China: 1969–2005. Int. J. Climatol. 2021, 31, 349–358. [Google Scholar] [CrossRef]
- Zhang, Q.; Shin, C.-S.; van den Dool, H.; Cai, M. CFSv2 prediction skill of stratospheric temperature anomalies. Clim. Dyn. 2013, 41, 2231–2249. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Chipperfield, M.P.; Xie, F.; Huang, J. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Clim. Change 2016, 6, 1094–1099. [Google Scholar] [CrossRef]
- Tyrlis, E.; Bader, J.; Manzini, E.; Ukita, J.; Nakamura, H.; Matei, D. On the role of Ural Blocking in driving the Warm Arctic–Cold Siberia pattern. Q. J. R. Meteorol. Soc. 2020, 146, 2138–2153. [Google Scholar] [CrossRef]
- Zhang, G.; Azorin-Molina, C.; Chen, D.; Guijarro, J.A.; Kong, F.; Minola, L.; McVicar, T.R.; Son, S.-W.; Shi, P. Variability of daily maximum wind speed across China, 1975–2016: An examination of likely causes. J. Clim. 2020, 33, 2793–2816. [Google Scholar] [CrossRef]
- Tripathi, O.P.; Baldwin, M.; Charlton-Perez, A.; Charron, M.; Eckermann, S.D.; Gerber, E.; Harrison, R.G.; Jackson, D.R.; Kim, B.; Kuroda, Y.; et al. The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Q. J. R. Meteorol. Soc. 2014, 141, 987–1003. [Google Scholar] [CrossRef]
- Butler, A.; Charlton-Perez, A.; Domeisen, D.I.V.; Garfinkel, C.; Gerber, E.P.; Hitchcock, P.; Karpechko, A.Y.; Maycock, A.C.; Sigmond, M.; Simpson, I.; et al. Subseasonal Predictability and the Stratosphere. In Subseasonal to Seasonal Prediction: The Gap Between Weather and Climate Forecasting; Robertson, A., Vitart, F., Eds.; Elsevier Publications: Amsterdam, The Netherlands, 2018; pp. 224–238. [Google Scholar]
- Chen, D.; Qiao, S.; Tang, S.; Cheung, H.N.; Liu, J.; Feng, G. Predictability of the Strong Ural blocking Event in January 2012 in the Subseasonal to Seasonal Models of Europe and Canada. Atmosphere 2020, 11, 538. [Google Scholar] [CrossRef]
- Bevacqua, E.; Suarez-Gutierrez, L.; Jézéquel, A.; Lehner, F.; Vrac, M.; Yiou, P.; Zscheischler, J. Advancing research on compound weather and climate events via large ensemble model simulations. Nat. Commun. 2023, 14, 2145. [Google Scholar] [CrossRef] [PubMed]
- Sippel, S.; Mitchell, D.; Black, M.T.; Dittus, A.J.; Harrington, L.; Schaller, N.; Otto, F.E.L. Combining large model ensembles with extreme value statistics to improve attribution statements of rare events. Weather. Clim. Extrem. 2015, 9, 25–35. [Google Scholar] [CrossRef]
- Ahmad, I.; Salman, M.; Almanjahie, I.M.; Alshahrani, F.; Khan, M.S.U.R.; Fawad, M.; Haq, E.U. Regional frequency analysis of extreme wind in Pakistan using robust estimation methods. Sci. Rep. 2024, 14, 25882. [Google Scholar] [CrossRef]
- Anghel, C.G.; Ianculescu, D. Application of the GEV Distribution in Flood Frequency Analysis in Romania: An In-Depth Analysis. Climate 2025, 13, 152. [Google Scholar] [CrossRef]
- Singh, V.P.; Guo, H. Parameter estimation for 3-parameter generalized pareto distribution by the principle of maximum entropy (POME). Hydrol. Sci. J. 1995, 40, 165–181. [Google Scholar] [CrossRef]
Number | Node #1 40.75° N, 91.75° E | Node #2 39.75° N, 83.25° E | Node #3 47.00° N, 89.00° E | Node #4 43.00° N, 80.50° E |
---|---|---|---|---|
10-year return level | ||||
1 | 1996-08-30 5:00–9:00 UTC [13:00–17:00 LT] | 1982-05-10 3:00 UTC [11:00 LT] | 1984-04-24 9:00–10:00 UTC [17:00–18:00 LT] | 1982-5-10 7:00–8:00 UTC, 10:00 UTC [15:00–16:00 LT, 18:00 LT] |
2 | 2001-04-07 14:00–16:00 UTC [22:00–24:00 LT] | 1999-07-19 12:00 UTC [20:00 LT] | 2001-04-05 11:00 UTC [19:00 LT] | 1994-10-07 05:00–09:00 UTC [13:00–17:00 LT] |
3 | 2010-03-28 10:00 UTC [18:00 LT] | 2008-05-01 20:00 UTC [05-02 4:00 L] | 2015-04-27 3:00–4:00 UTC [11:00–12:00 LT] | 2007-04-21 06:00–10:00 UTC [14:00–18:00 LT] |
4 | 2023-04-18 11:00–12:00 UTC [19:00–20:00 LT] | 2014-07-16 8:00 UTC [16:00 LT] | 2018-11-30 22:00 UTC [12-01 6:00 LT] | 2012-04-22 06:00–09:00 UTC [14:00–17:00 LT] |
5 | - | 2020-06-28 12:00 UTC [20:00 LT] | 2014-05-16 05:00–10:00 UTC [13:00–18:00 LT] | |
20-year return level | ||||
1 | 1996-08-30 5:00–7:00 UTC [13:00–15:00 LT] | 1999-07-19 12:00 UTC [20:00 LT] | 2015-04-27 3:00–4:00 UTC [11:00–12:00 LT] | 1994-10-07 06:00–7:00 UTC [14:00–15:00 LT] |
2 | 2001-04-07 15:00 UTC [23:00 LT] | 2008-05-01 20:00 UTC [05-02 4:00 LT] | 2018-11-30 22:00 UTC [12-01 6:00 LT] | 2007-04-21 06:00–10:00 UTC [14:00–18:00 LT] |
3 | 2023-04-18 11:00 UTC [19:00 LT] | 2014-7-16 8:00 UTC [16:00 LT] | 2014-05-16 06:00–08:00 UTC [14:00–16:00 LT] | |
30-year return level | ||||
1 | 1996-08-30 6:00–7:00 UTC [14:00–15:00 LT] | 2014-07-16 8:00 UTC [16:00 LT] | 2015-04-27 3:00–4:00 UTC [11:00–12:00 LT] | 1994-10-07 07:00 UTC [15:00 LT] |
2 | 2018-11-30 22:00 UTC [12-01 6:00 LT] | 2007-04-021 07:00–09:00 UTC [15:00–17:00 LT] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, D.; Wang, D.; Xu, S.; Ma, B.; Yu, Y.; Li, J.; Li, Y. Weather Regimes of Extreme Wind Speed Events in Xinjiang: A 10–30 Year Return Period Analysis. Atmosphere 2025, 16, 1117. https://doi.org/10.3390/atmos16101117
Li Y, Liu D, Wang D, Xu S, Ma B, Yu Y, Li J, Li Y. Weather Regimes of Extreme Wind Speed Events in Xinjiang: A 10–30 Year Return Period Analysis. Atmosphere. 2025; 16(10):1117. https://doi.org/10.3390/atmos16101117
Chicago/Turabian StyleLi, Yajie, Dagui Liu, Donghan Wang, Sen Xu, Bin Ma, Yueyue Yu, Jianing Li, and Yafei Li. 2025. "Weather Regimes of Extreme Wind Speed Events in Xinjiang: A 10–30 Year Return Period Analysis" Atmosphere 16, no. 10: 1117. https://doi.org/10.3390/atmos16101117
APA StyleLi, Y., Liu, D., Wang, D., Xu, S., Ma, B., Yu, Y., Li, J., & Li, Y. (2025). Weather Regimes of Extreme Wind Speed Events in Xinjiang: A 10–30 Year Return Period Analysis. Atmosphere, 16(10), 1117. https://doi.org/10.3390/atmos16101117