Peatland Hydro-Climatological Parameters Variability in Response to 2019–2022 Climate Anomalies in the OKI Regency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method
2.2. Study Area
2.3. El Niño Southern Oscillation and Indian Ocean Dipole
3. Results
3.1. Rainfall Dynamics
3.2. Groundwater Level Dynamics
3.3. Relationship Between Rainfall and Groundwater Level
3.4. Rate of Groundwater Level Decline in 2019
3.5. Soil Moisture Dynamics
3.6. The Rate of Soil Moisture Decline in 2019
3.7. Correlation Between Rainfall and Groundwater Level
3.8. Correlation Between Groundwater Level and Soil Moisture
3.9. Hotspot Analysis
4. Discussion
5. Conclusions
- A positive correlation between rainfall and GWLs was established, with a stronger correlation observed with higher rainfall.
- The rate of GWL decline on peatlands in CJ2 OKI was 0.24 mm/d.
- The rate of SM decline on peatlands in CJ2 OKI was 0.06%/d, which prevented fires from occurring on peatlands in CJ2 OKI as long as the SM was maintained at a minimum of 20%.
- The empirical equation that connects the GWL (m) with the SM (%) on peatlands in CJ2 OKI was . This equation can be used to determine the soil moisture if the groundwater level is known for peatlands, especially in OKI Regency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hayasaka, H. Fire Weather Conditions in Plantation Areas in Northern Sumatra, Indonesia. Atmosphere 2023, 14, 1480. [Google Scholar] [CrossRef]
- Rossita, A.; Boer, R.; Hein, L.; Nurrochmat, D.R.; Riqqi, A. Peatland fire regime across Riau peat hydrological unit, Indonesia. For. Soc. 2023, 7, 76–94. [Google Scholar] [CrossRef]
- Laura; Graham, L.B.; Applegate, G.B.; Thomas, A.; Ryan, K.C.; Saharjo, B.H.; Cochrane, M.A. A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions. Fire 2022, 5, 62. [Google Scholar] [CrossRef]
- Nurhayati, A.D.; Saharjo, B.H.; Sundawati, L.; Syartinilia, S.; Cochrane, M.A. Forest and peatland fire dynamics in South Sumatra Province. For. Soc. 2021, 5, 591–603. [Google Scholar] [CrossRef]
- Minardi, A.; Taufik; Astuti, D.; Pamungkas, M.I. Singapore Country Assistance to Help Extinguish Forest Fire in South Sumatera. Sriwij. J. Environ. 2020, 5, 53–59. [Google Scholar] [CrossRef]
- Terzano, D.; Trezza, F.R.; Rezende, M.; Malatesta, L. Prioritization of peatland restoration and conservation interventions in Sumatra, Kalimantan and Papua. J. Nat. Conserv. 2023, 73, 126388. [Google Scholar] [CrossRef]
- Wicaksono, A.; Zainal. Peatlands Restoration Policies in Indonesia: Success or Failure? In IOP Conference Series: Earth and Environmental Science, Proceedings of the Sriwijaya Conference on Sustainable Environment, Agriculture and Farming System, Palembang, Indonesia, 29 September 2021; IOP Publishing: Bristol, UK, 2022; Volume 995, p. 012068. [Google Scholar] [CrossRef]
- Putra, R.; Nufutomo, T.K.; Lisa, F.Y. Rapid Land Cover Change in The South Sumatera Peat Area Associated with 2015 Peat Fires. J. Geosci. Eng. Environ. Technol. 2022, 7, 34–38. [Google Scholar] [CrossRef]
- Irfan, M.; Koriyanti, E.; Saleh, K. Dynamics of Peatland Fires in South Sumatra in 2019: Role of Groundwater Levels. Land 2024, 13, 373. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.; Wang, X.; Chen, S.J. Indian Ocean Dipole and ENSO’s mechanistic importance in modulating the ensuing-summer precipitation over Eastern China. npj Clim. Atmos. Sci. 2022, 5, 48. [Google Scholar] [CrossRef]
- An, S.I.; Park, H.J.; Kim, S.K. Intensity changes of Indian Ocean dipole mode in a carbon dioxide removal scenario. npj Clim. Atmos. Sci. 2022, 5, 20. [Google Scholar] [CrossRef]
- Suryadi, Y.; Soekarno, I.; Humam, I.A. Effectiveness analysis of canal blocking in sub-peatland hydrological unit 5 and 6 kahayan sebangau, central kalimantan, indonesia. J. Eng. Technol. Sci. 2021, 53, 210205. [Google Scholar] [CrossRef]
- Jannah, M.; Ismail1, N.; Asyqari, A.; Indahsari, F.N.; Abdullah, F. Identifying the influence of El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) Phenomena on Rainfall in TheAceh Region. Indones. J. Geosci. Eng. Environ. Technol. Sustain. 2024, 9, 582–590. [Google Scholar] [CrossRef]
- Davamani, V.; John, J.E.; Poornachandhra, C.; Gopalakrishnan, B. A Critical Review of Climate Change Impacts on Groundwater Resources: A Focus on the Current Status, Future Possibilities, and Role of Simulation. Atmosphere 2024, 15, 122. [Google Scholar] [CrossRef]
- Irfan, M.; Satya, O.C.; Virgo, F.; Sutopo. Is there a correlation between rainfall and soil moisture on peatlands in South Sumatra? In Journal of Physics: Conference Series, Proceedings of the 9th International Conference on Theoretical and Applied Physics (ICTAP), Bandar Lampung, Indonesia, 26–28 September 2019; IOP Publishing: Bristol, UK, 2020; Volume 1572, p. 012040. [Google Scholar] [CrossRef]
- Putra1, E.I.; Syakbandani, M.U.E.; Pramono, S.; Saad, A. Estimating groundwater level in peatlands by using submersible sensor. J. Trop. Silvic. 2024, 15, 65–69. [Google Scholar] [CrossRef]
- Irfan, M.; Iskandar, I. The Impact of Positive IOD and La Niña on the Dynamics of Hydro-Climatological Parameters on Peatland. Int. J. GEOMATE 2022, 23, 115–122. [Google Scholar] [CrossRef]
- Reddy, P.J.; Perkins-Kirkpatrick, S.E.; Sharples, J.J. Interactive influence of ENSO and IOD on contiguous heatwaves in Australia. Environ. Res. Lett. 2022, 17, 014004. [Google Scholar] [CrossRef]
- Putra, R.; Zurfi, A.; Nufutomo, T.K.; Lisafitri, Y.; Sari, N.K. Spatial Analysis of 2019 Peat Fire in South Sumatra Conservation Area. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on Science, Infrastructure Technology and Regional Development, South Lampung, Indonesia, 23–25 October 2020; IOP Publishing: Bristol, UK, 2021; Volume 830, p. 012038. [Google Scholar] [CrossRef]
- Widyastuti, K.; Imron, M.A.; Pradopo, S.T. PeatFire: An agent-based model to simulate fire ignition and spreading in a tropical peatland ecosystem. Int. J. Wildland Fire 2021, 30, 71–89. [Google Scholar] [CrossRef]
- Rumbang, N.; Asi, E.R.; Jaya, A.; Winarti, S. Estimation of Carbon pool in various agricultural crops in peatlands of West and Central Kalimantan, Indonesia. J. Exp. Biol. Agric. Sci. 2023, 11, 199–208. [Google Scholar] [CrossRef]
- Wulandari, C.; Novriyanti, N.; Iswandaru, D. Integrating ecological, social and policy aspects to develop peatland restoration strategies in orang kayo hitam forest park, jambi, indonesia. Biodiversitas 2021, 22, 4158–4168. [Google Scholar] [CrossRef]
- Syahza, A.; Suwondo; Bakce, D.; Nasrul, B. Utilization of peatlands based on local wisdom and community welfare in Riau Province, Indonesia. Int. J. Sustain. Dev. Plan. 2020, 15, 1119–1126. [Google Scholar] [CrossRef]
- Puryajati, A.D.; Wirastria, A.; Maslukah, L. The Effect of ENSO and IOD on the Variability of Sea Surface Temperature and Rainfall in the Natuna Sea. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 6th International Conference on Tropical Coastal Region Eco-Development 2020, Semarang, Indonesia, 27–28 October 2020; IOP Publishing: Bristol, UK, 2021; Volume 750, p. 012020. [Google Scholar] [CrossRef]
- Cao, T.; Zheng, F.; Fang, X. Key Processes on Triggering the Moderate 2020/21 La Niña Event as Depicted by the Clustering Approach. Front. Earth Sci. 2022, 10, 822854. [Google Scholar] [CrossRef]
- Polonsky, A.; Torbinsky, A. The iod–enso interaction: The role of the Indian Ocean current’s system. Atmosphere 2021, 12, 1662. [Google Scholar] [CrossRef]
- Sambah, A.B.; Noor’izzah, A.; Intyas, C.A.; Widhiyanuriyawan, D. Analysis of the effect of ENSO and IOD on the productivity of yellowfin tuna (Thunnus albacares) in the South Indian Ocean, East Java, Indonesia. Biodiversitas 2023, 24, 2689–2700. [Google Scholar] [CrossRef]
- Ratna, S.B.; Cherchi, A.; Osborn, T.J.; Joshi, M. The Extreme Positive Indian Ocean Dipole of 2019 and Associated Indian Summer Monsoon Rainfall Response. Geophys. Res. Lett. 2021, 48, e2020GL091497. [Google Scholar] [CrossRef]
- Kurniadi, A.; Weller, E.; Min, S.K.; Seong, M.G. Independent ENSO and IOD impacts on rainfall extremes over Indonesia. Int. J. Climatol. 2021, 41, 3640–3656. [Google Scholar] [CrossRef]
- Puspasari, R.; Rahmawati, P.F.; Prianto, E. The Effect of ENSO (El Nino Southern Oscillation) phenomenon on Fishing Season of Small Pelagic Fishes in Indonesia Waters. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 10th International and National Seminar on Fisheries and Marine Science (ISFM X 2021), Pekanbaru, Indonesia, 15–16 September 2021; IOP Publishing: Bristol, UK, 2021; Volume 934, p. 012018. [Google Scholar] [CrossRef]
- Shi, C.; Liew, S.C. Vegetation fires in the peatlands of sumatra in 2019. In Proceedings of the ACRS 2020—41st Asian Conference on Remote Sensing, Huzhou, China, 9–11 November 2020; Available online: https://scholarbank.nus.edu.sg/handle/10635/243421 (accessed on 12 June 2023).
- Uda, S.K.; Hein, L.; Atmoko, D. Assessing the health impacts of peatland fires: A case study for Central Kalimantan, Indonesia. Environ. Sci. Pollut. Res. 2019, 26, 31315–31327. [Google Scholar] [CrossRef]
- Yuwati, T.W.; Rahmanadi, D.; Pratiwi. Restoration of degraded tropical peatland in indonesia: A review. Land 2021, 10, 1170. [Google Scholar] [CrossRef]
- Budiningsih, K.; Putra, P.B.; Nurlia, A.; Ulya, N.A. Peatland restoration research: A global overview with insights from Indonesia. J. Ecol. Environ. 2024, 48, 263–276. [Google Scholar] [CrossRef]
- Sulaiman, A.; Osaki, M.; Takashi, H. Peatland groundwater level in the Indonesian maritime continent as an alert for El Niño and moderate positive Indian Ocean dipole events. Sci. Rep. 2023, 13, 939. [Google Scholar] [CrossRef]
- Hund, S.V.; Grossmann, I.; Steyn, D.G.; Allen, D.M.; Johnson, M.S. Changing Water Resources Under El Niño, Climate Change, and Growing Water Demands in Seasonally Dry Tropical Watersheds. Water Resour. Res. 2021, 57, e2020WR028535. [Google Scholar] [CrossRef]
- Kolusu, S.R.; Shamsudduha, M.; Todd, M.C.; Taylor, R.G.; Seddon, D.; Kashaigili, J.J. The El Niño event of 2015–2016: Climate anomalies and their impact on groundwater resources in East and Southern Africa. Hydrol. Earth Syst. Sci. 2019, 23, 1751–1762. [Google Scholar] [CrossRef]
- Nurdiati, S.; Bukhari, F.; Julianto, M.T.; Sopaheluwakan, A.; Aprilia, M.; Fajar, I.; Septiawan, P.; Najib, M.K. The impact of El Niño southern oscillation and Indian Ocean Dipole on the burned area in Indonesia. Terr. Atmos. Ocean. Sci. 2022, 33, 16. [Google Scholar] [CrossRef]
- Ricky Anak Kemarau, R.A.; Booa, W.H.; Sakawia, Z.; Dambulb, R.; Suabc, S.A.; Jaafara, W.S.W.M.; Eboyd, O.V.; Norzina, M.A.F. Impact of El Niño, Indian Ocean dipole, and Madden–Julian oscillation on land surface temperature in Kuching City Sarawak, during the periods of 1997/1998 and 2015/2016: A pilot study. J. Water Clim. Change 2024, 33, 3702–3723. [Google Scholar] [CrossRef]
Niño3.4 Index (°C) | ENSO Category | DMI (°C) | IOD Category |
---|---|---|---|
0.5 to 0.9 | Weak El Niño | 0.5 to 0.9 | Weak IOD+ |
1.0 to 1.5 | Moderate El Niño | 1.0 to 1.5 | Moderate IOD+ |
1.5 to 2.0 | Strong El Niño | 1.5 to 2.0 | Strong IOD+ |
≥2.0 | Very Strong El Niño | ≥2.0 | Very Strong IOD+ |
−0.5 to −0.9 | Weak La Niña | −0.5 to −0.9 | Weak IOD− |
−1.0 to −1.5 | Moderate La Niña | −1.0 to −1.5 | Moderate IOD− |
−1.5 to −2.0 | Strong La Niña | −1.5 to −2.0 | Strong IOD− |
≤−2.0 | Very strong La Niña | ≤−2.0 | Very strong IOD− |
Year | ENSO | IOD |
---|---|---|
2019 | Weak El Niño | Strong IOD+ |
2020 | Moderate La Niña | Weak IOD+ |
2021 | Moderate La Niña | Weak IOD− |
2022 | Moderate La Niña | Moderate IOD− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, M.; Khakim, M.Y.N.; Mardiansyah, W.; Kurniawati, N.; Awaluddin; Sulaiman, A.; Iskandar, I.; Suwignyo, R.A.; Yang, H.; Choi, E. Peatland Hydro-Climatological Parameters Variability in Response to 2019–2022 Climate Anomalies in the OKI Regency. Atmosphere 2025, 16, 81. https://doi.org/10.3390/atmos16010081
Irfan M, Khakim MYN, Mardiansyah W, Kurniawati N, Awaluddin, Sulaiman A, Iskandar I, Suwignyo RA, Yang H, Choi E. Peatland Hydro-Climatological Parameters Variability in Response to 2019–2022 Climate Anomalies in the OKI Regency. Atmosphere. 2025; 16(1):81. https://doi.org/10.3390/atmos16010081
Chicago/Turabian StyleIrfan, Muhammad, Mokhamad Yusup Nur Khakim, Wijaya Mardiansyah, Netty Kurniawati, Awaluddin, Albertus Sulaiman, Iskhaq Iskandar, Rujito Agus Suwignyo, Hyunyoung Yang, and Eunho Choi. 2025. "Peatland Hydro-Climatological Parameters Variability in Response to 2019–2022 Climate Anomalies in the OKI Regency" Atmosphere 16, no. 1: 81. https://doi.org/10.3390/atmos16010081
APA StyleIrfan, M., Khakim, M. Y. N., Mardiansyah, W., Kurniawati, N., Awaluddin, Sulaiman, A., Iskandar, I., Suwignyo, R. A., Yang, H., & Choi, E. (2025). Peatland Hydro-Climatological Parameters Variability in Response to 2019–2022 Climate Anomalies in the OKI Regency. Atmosphere, 16(1), 81. https://doi.org/10.3390/atmos16010081