Mapping Heatwave Socioeconomic Exposure in the Chinese Mainland for the Period of 2000–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Drea and Data
2.2. Method to Calculate Heatwaves
2.3. Climate and Socioeconomic Effects on Changes in Heatwave Exposure
2.4. Other Methods
3. Results
3.1. Spatial Distribution of Socioeconomic Heatwave Exposures
3.2. Observed Increasing Trends of Heatwave Exposures
3.3. Contribution Rates of Climate and Socioeconomic Factors to the Exposure
3.4. Ranking Heatwave Socioeconomic Exposure Levels of China
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Index | City | Mean | Slope | Index | City | Mean | Slope |
---|---|---|---|---|---|---|---|
1 | ** Shanghai, | 2258.088 | 224.623 | 51 | Zhenjiang, Jiangsu | 199.119 | 7.371 |
2 | Beijing, | 2051.135 | 62.409 | 52 | Zhuzhou, Hunan | 196.232 | 3.007 |
3 | Chongqing, | 1979.879 | 49.056 | 53 | * Huizhou, Guangdong | 193.569 | 11.382 |
4 | * Guangzhou, Guangdong | 1332.409 | 79.198 | 54 | Xuchang, Henan | 188.428 | 2.143 |
5 | * Wuhan, Hubei | 1242.755 | 50.731 | 55 | Yangzhou, Jiangsu | 188.339 | 5.754 |
6 | ** Zhengzhou, Henan | 1134.124 | 42.675 | 56 | * Nantong, Jiangsu | 186.246 | 13.722 |
7 | Hangzhou, Zhejiang | 1098.011 | 28.188 | 57 | Jiaozuo, Henan | 185.441 | 3.276 |
8 | * Xi’an, Shaanxi | 1029.313 | 31.811 | 58 | Shantou, Guangdong | 185.136 | 6.304 |
9 | ** Suzhou, Jiangsu | 997.072 | 84.431 | 59 | Xianyang, Shaanxi | 183.985 | 3.514 |
10 | Tianjin, Tianjin | 940.835 | 33.539 | 60 | Fuyang, Anhui | 183.766 | 1.743 |
11 | * Nanjing, Jiangsu | 874.412 | 36.318 | 61 | Wuhu, Anhui | 183.437 | 1.309 |
12 | Dongguan, Guangdong | 842.763 | 29.695 | 62 | Kaifeng, Henan | 181.754 | 3.100 |
13 | * Foshan, Guangdong | 795.933 | 53.404 | 63 | Baoji, Shaanxi | 179.104 | 1.336 |
14 | Changsha, Hunan | 776.707 | 11.842 | 64 | Yichang, Hubei | 174.637 | 2.229 |
15 | Shijiazhuang, Hebei | 675.982 | 4.146 | 65 | Xingtai, Hebei | 170.246 | 0.183 |
16 | Shenzhen, Guangdong | 661.249 | 36.922 | 66 | Zhumadian, Henan | 168.909 | 2.119 |
17 | Chengdu, Sichuan | 652.318 | −2.172 | 67 | Changde, Hunan | 164.962 | 3.075 |
18 | Ningbo, Zhejiang | 612.580 | 20.516 | 68 | Huzhou, Zhejiang | 164.597 | 6.302 |
19 | Jinhua, Zhejiang | 568.015 | 8.150 | 69 | Liaocheng, Shandong | 164.496 | 1.138 |
20 | ** Wuxi, Jiangsu | 559.915 | 40.799 | 70 | Xiangtan, Hunan | 163.202 | 2.249 |
21 | Hefei, Anhui | 544.250 | 10.332 | 71 | Jieyang, Guangdong | 162.451 | 4.666 |
22 | Nanchang, Jiangxi | 523.819 | 15.210 | 72 | Jiangmen, Guangdong | 160.791 | 7.564 |
23 | Fuzhou, Fujian | 522.523 | 11.506 | 73 | Taizhou, Jiangsu | 154.782 | 8.684 |
24 | ** Wenzhou, Zhejiang | 461.785 | 30.907 | 74 | ** Haikou, Hainan | 154.486 | 12.615 |
25 | Shaoxing, Zhejiang | 458.643 | 5.740 | 75 | Zhoukou, Henan | 152.966 | 2.877 |
26 | Jinan, Shandong | 440.830 | −0.205 | 76 | Heze, Shandong | 150.138 | 4.196 |
27 | Shenyang, Liaoning | 400.188 | 11.784 | 77 | Xiangyang, Hubei | 147.959 | −0.535 |
28 | * Changzhou, Jiangsu | 389.053 | 21.510 | 78 | Taiyuan, Shanxi | 141.580 | 4.037 |
29 | Luoyang, Henan | 372.312 | 3.603 | 79 | Taizhou, Zhejiang | 139.186 | 6.977 |
30 | Weifang, Shandong | 346.848 | 3.838 | 80 | Maanshan, Anhui | 138.658 | 0.158 |
31 | * Ganzhou, Jiangxi | 333.987 | 9.318 | 81 | Binzhou, Shandong | 137.481 | −0.580 |
32 | Nanning, Guangxi | 326.584 | 13.932 | 82 | Dongying, Shandong | 135.167 | 2.552 |
33 | Handan, Hebei | 325.405 | 4.199 | 83 | Cangzhou, Hebei | 134.394 | −0.963 |
34 | Xuzhou, Jiangsu | 323.390 | 4.864 | 84 | Suzhou, Anhui | 130.049 | 1.783 |
35 | Anyang, Henan | 302.602 | 4.551 | 85 | Huangshi, Hubei | 129.248 | 2.188 |
36 | Zibo, Shandong | 280.687 | 1.825 | 86 | Dezhou, Shandong | 129.092 | −0.341 |
37 | ** Jiaxing, Zhejiang | 274.750 | 17.293 | 87 | Xiaogan, Hubei | 127.077 | 1.870 |
38 | * Xinxiang, Henan | 266.132 | 6.177 | 88 | Jian, Jiangxi | 125.635 | 2.848 |
39 | Baoding, Hebei | 256.170 | −1.095 | 89 | Luohe, Henan | 123.405 | 3.197 |
40 | Tangshan, Hebei | 250.187 | −1.857 | 90 | Dazhou, Sichuan | 123.236 | 4.599 |
41 | Zhongshan, Guangdong | 248.705 | 9.682 | 91 | Shangrao, Jiangxi | 122.860 | 2.495 |
42 | Urumqi, Xinjiang | 247.201 | 14.201 | 92 | * Yueyang, Hunan | 122.071 | 5.167 |
43 | Jining, Shandong | 244.407 | 4.846 | 93 | Fuzhou, Jiangxi | 119.190 | 2.432 |
44 | Linyi, Shandong | 239.063 | 2.395 | 94 | * Huaian, Jiangsu | 118.684 | 7.886 |
45 | Nanchong, Sichuan | 233.189 | 5.817 | 95 | Bengbu, Anhui | 118.301 | −0.138 |
46 | Hengyang, Hunan | 233.047 | 3.372 | 96 | Linfen, Shanxi | 117.865 | 0.822 |
47 | Nanyang, Henan | 228.271 | 5.674 | 97 | * Huaibei, Anhui | 115.655 | 3.904 |
48 | Liuzhou, Guangxi | 218.712 | 4.019 | 98 | Yuncheng, Shanxi | 114.963 | 0.086 |
49 | Mianyang, Sichuan | 207.870 | 1.029 | 99 | Puyang, Henan | 113.076 | 2.262 |
50 | Pingdingshan, Henan | 206.766 | 2.098 | 100 | Langfang, Hebei | 113.019 | 0.695 |
Index | City | Mean | Slope | Index | City | Mean | Slope |
---|---|---|---|---|---|---|---|
1 | * Shanghai, | 2600.355 | 318.023 | 51 | Pingdingshan, Henan | 65.610 | 5.284 |
2 | * Beijing, | 2267.727 | 326.328 | 52 | Dongying, Shandong | 63.966 | 1.692 |
3 | Guangzhou, Guangdong | 1538.518 | 222.985 | 53 | Wuhu, Anhui | 63.763 | 4.274 |
4 | Shenzhen, Guangdong | 912.061 | 149.387 | 54 | ** Taizhou, Jiangsu | 63.233 | 8.439 |
5 | Zhengzhou, Henan | 877.589 | 113.516 | 55 | Yichang, Hubei | 60.611 | 8.116 |
6 | Wuhan, Hubei | 842.243 | 152.994 | 56 | Zhuzhou, Hunan | 59.228 | 6.856 |
7 | ** Suzhou, Jiangsu | 799.626 | 87.783 | 57 | Chengdu, Sichuan | 58.307 | −1.957 |
8 | Foshan, Guangdong | 769.993 | 102.483 | 58 | Puyang, Henan | 57.309 | 4.838 |
9 | Dongguan, Guangdong | 744.187 | 100.092 | 59 | Jining, Shandong | 55.132 | 5.669 |
10 | * Hangzhou, Zhejiang | 732.994 | 75.359 | 60 | Huangshi, Hubei | 55.027 | 7.406 |
11 | Tianjin, Tianjin | 723.944 | 84.485 | 61 | ** Xianyang, Shaanxi | 54.892 | 5.803 |
12 | * Xi’an, Shaanxi | 637.138 | 91.901 | 62 | Hengyang, Hunan | 54.860 | 7.733 |
13 | Chongqing, Chongqing | 543.415 | 79.415 | 63 | Jiangmen, Guangdong | 52.898 | 5.545 |
14 | * Wuxi, Jiangsu | 532.493 | 64.775 | 64 | Huizhou, Guangdong | 50.489 | 6.518 |
15 | Nanjing, Jiangsu | 498.534 | 68.813 | 65 | * Kaifeng, Henan | 50.319 | 4.926 |
16 | Changsha, Hunan | 412.337 | 53.015 | 66 | Cangzhou, Hebei | 50.076 | 3.952 |
17 | * Ningbo, Zhejiang | 359.505 | 29.662 | 67 | Xiangtan, Hunan | 50.012 | 6.797 |
18 | Shijiazhuang, Hebei | 356.421 | 31.045 | 68 | ** Haikou, Hainan | 49.207 | 5.901 |
19 | * Changzhou, Jiangsu | 297.441 | 29.641 | 69 | Yueyang, Hunan | 49.189 | 9.026 |
20 | Urumqi, Xinjiang | 280.437 | 37.136 | 70 | Xingtai, Hebei | 48.591 | 3.992 |
21 | Jinan, Shandong | 262.957 | 29.111 | 71 | Binzhou, Shandong | 46.738 | 3.027 |
22 | Fuzhou, Fujian | 245.380 | 33.105 | 72 | Zhuhai, Guangdong | 44.350 | 7.642 |
23 | Hefei, Anhui | 241.732 | 35.281 | 73 | Huaian, Jiangsu | 43.577 | 6.293 |
24 | Shenyang, Liaoning | 239.438 | 31.245 | 74 | Zhangzhou, Fujian | 43.123 | 6.962 |
25 | Luoyang, Henan | 208.839 | 17.026 | 75 | * Langfang, Hebei | 40.253 | 4.081 |
26 | Zhongshan, Guangdong | 185.664 | 22.807 | 76 | * Mianyang, Sichuan | 38.693 | 5.204 |
27 | * Nanchang, Jiangxi | 174.530 | 20.684 | 77 | * Jieyang, Guangdong | 38.531 | 4.320 |
28 | Xuzhou, Jiangsu | 171.905 | 25.354 | 78 | Maanshan, Anhui | 38.300 | 1.746 |
29 | * Zibo, Shandong | 163.281 | 12.440 | 79 | Dezhou, Shandong | 37.969 | 4.228 |
30 | * Shaoxing, Zhejiang | 141.812 | 8.434 | 80 | * Panzhihua, Sichuan | 36.940 | 4.984 |
31 | * Xinxiang, Henan | 119.803 | 11.913 | 81 | ** Huzhou, Zhejiang | 35.341 | 3.150 |
32 | Yangzhou, Jiangsu | 113.172 | 8.588 | 82 | Changde, Hunan | 34.907 | 5.950 |
33 | * Nantong, Jiangsu | 108.497 | 16.027 | 83 | * Zhanjiang, Guangdong | 34.674 | 5.319 |
34 | ** Jiaxing, Zhejiang | 107.659 | 9.442 | 84 | Zhaoqing, Guangdong | 33.447 | 4.902 |
35 | Liuzhou, Guangxi | 106.640 | 14.660 | 85 | * Ganzhou, Jiangxi | 32.461 | 3.767 |
36 | Handan, Hebei | 105.442 | 3.895 | 86 | Bengbu, Anhui | 32.111 | 2.746 |
37 | Jinhua, Zhejiang | 103.390 | 4.904 | 87 | Guilin, Guangxi | 31.747 | 5.369 |
38 | Anyang, Henan | 102.969 | 9.122 | 88 | * Heze, Shandong | 31.022 | 3.525 |
39 | Weifang, Shandong | 102.104 | 8.727 | 89 | * Zhoukou, Henan | 30.685 | 2.644 |
40 | * Wenzhou, Zhejiang | 101.315 | 12.300 | 90 | Karamay, Xinjiang | 30.651 | 1.822 |
41 | * Baoding, Hebei | 92.912 | 5.239 | 91 | Harbin, Heilongjiang | 30.382 | −0.660 |
42 | Xiamen, Fujian | 88.966 | 18.304 | 92 | Lanzhou, Gansu | 30.140 | 1.650 |
43 | Zhenjiang, Jiangsu | 88.627 | 7.078 | 93 | Huaibei, Anhui | 29.919 | 3.564 |
44 | Taiyuan, Shanxi | 88.377 | 7.748 | 94 | Beihai, Guangxi | 28.589 | 5.117 |
45 | Tangshan, Hebei | 84.989 | 7.148 | 95 | * Taizhou, Zhejiang | 28.587 | 3.049 |
46 | Xuchang, Henan | 83.336 | 8.002 | 96 | Liaoyang, Liaoning | 28.545 | 3.082 |
47 | * Shantou, Guangdong | 81.471 | 9.875 | 97 | Liaocheng, Shandong | 28.289 | 1.881 |
48 | Linyi, Shandong | 76.239 | 7.904 | 98 | * Chaozhou, Guangdong | 28.127 | 3.248 |
49 | * Nanning, Guangxi | 75.720 | 9.455 | 99 | Panjin, Liaoning | 27.762 | 1.020 |
50 | Jiaozuo, Henan | 72.136 | 7.227 | 100 | Luohe, Henan | 27.447 | 1.906 |
Index | County | Mean | Slope | Index | County | Mean | Slope |
---|---|---|---|---|---|---|---|
1 | ** Pudong New District, Shanghai | 473.178 | 52.180 | 51 | * Liwan District, Guangzhou, Guangdong | 136.747 | 8.228 |
2 | Chaoyang District, Beijing | 472.633 | 15.341 | 52 | * Qiaokou District, Wuhan, Hubei | 136.134 | 6.133 |
3 | ** Jinshui District, Zhengzhou, Henan | 395.140 | 15.137 | 53 | ** Gusu District, Suzhou, Jiangsu | 135.984 | 11.990 |
4 | Haidian District, Beijing | 390.696 | 11.270 | 54 | Yanta District, Xi’an, Shaanxi | 135.255 | 3.679 |
5 | * Nanhai District, Foshan, Guangdong | 337.868 | 22.894 | 55 | * Zhanggong District, Ganzhou, Jiangxi | 134.542 | 4.029 |
6 | Fengtai District, Beijing | 283.885 | 9.020 | 56 | Wucheng District, Jinhua, Zhejiang | 133.943 | 2.781 |
7 | * Shunde District, Foshan, Guangdong | 270.315 | 17.302 | 57 | ** Xuhui District, Shanghai | 133.426 | 12.844 |
8 | ** Minhang District, Shanghai | 261.311 | 23.018 | 58 | Longgang District, Shenzhen, Guangdong | 132.493 | 7.389 |
9 | * Baiyun District, Guangzhou, Guangdong | 245.558 | 14.908 | 59 | Zhangdian District, Zibo, Shandong | 132.252 | 0.716 |
10 | Yubei District, Chongqing | 240.110 | 5.993 | 60 | Jianxi District, Luoyang, Henan | 131.552 | 1.020 |
11 | Wuchang District, Wuhan, Hubei | 219.999 | 8.663 | 61 | Shushan District, Hefei, Anhui | 131.126 | 3.008 |
12 | Hongshan District, Wuhan, Hubei | 215.713 | 8.294 | 62 | Gongshu District, Hangzhou, Zhejiang | 130.567 | 3.242 |
13 | Baoan District, Shenzhen, Guangdong | 211.695 | 13.163 | 63 | * Lucheng District, Wenzhou, Zhejiang | 130.271 | 6.865 |
14 | ** Baoshan District, Shanghai | 211.427 | 22.510 | 64 | Yaohai District, Hefei, Anhui | 129.220 | 2.100 |
15 | Shapingba District, Chongqing | 210.219 | 5.126 | 65 | Donghu District, Nanchang, Jiangxi | 128.363 | 3.686 |
16 | Yuhua District, Changsha, Hunan | 208.362 | 2.920 | 66 | Xinhua District, Shijiazhuang, Hebei | 127.687 | 0.555 |
17 | ** Wuzhong District, Suzhou, Jiangsu | 206.143 | 18.681 | 67 | Xixiangtang District, Nanning, Guangxi | 127.207 | 5.173 |
18 | * Haizhu District, Guangzhou, Guangdong | 203.525 | 12.311 | 68 | * Wujin District, Changzhou, Jiangsu | 126.553 | 7.155 |
19 | Jiulongpo District, Chongqing | 201.504 | 4.479 | 69 | * Jiangan District, Wuhan, Hubei | 126.353 | 5.417 |
20 | Xiaoshan District, Hangzhou, Zhejiang | 196.696 | 5.289 | 70 | ** Liangxi District, Wuxi, Jiangsu | 126.182 | 9.200 |
21 | Binhai New District, Tianjin | 188.376 | 7.920 | 71 | Yuhua District, Shijiazhuang, Hebei | 123.533 | 0.806 |
22 | ** Kunshan, Suzhou, Jiangsu | 187.672 | 15.037 | 72 | Qingshanhu District, Nanchang, Jiangxi | 123.425 | 3.336 |
23 | Yiwu City, Jinhua, Zhejiang | 187.310 | 1.927 | 73 | Xihu District, Hangzhou, Zhejiang | 122.811 | 3.191 |
24 | * Weiyang District, Xi’an, Shaanxi | 178.527 | 5.827 | 74 | Chang’an District, Shijiazhuang, Hebei | 122.096 | 0.778 |
25 | ** Putuo District, Shanghai | 173.974 | 17.796 | 75 | * Jianghan District, Wuhan, Hubei | 120.200 | 5.179 |
26 | ** Zhongyuan District, Zhengzhou, Henan | 173.749 | 6.259 | 76 | Keqiao District, Shaoxing, Zhejiang | 119.877 | 2.124 |
27 | * Beilin District, Xi’an, Shaanxi | 169.248 | 5.561 | 77 | Daxing District, Beijing | 119.503 | 4.110 |
28 | Yuecheng District, Shaoxing, Zhejiang | 168.409 | 2.337 | 78 | Fucheng District, Mianyang, Sichuan | 118.388 | 0.652 |
29 | Jiangbei District, Chongqing | 167.741 | 3.393 | 79 | Yinzhou District, Ningbo, Zhejiang | 116.801 | 3.870 |
30 | * Panyu District, Guangzhou, Guangdong | 165.442 | 9.997 | 80 | * Chancheng District, Foshan, Guangdong | 116.719 | 7.982 |
31 | * Gulou District, Nanjing, Jiangsu | 164.786 | 6.890 | 81 | Rencheng District, Jining, Shandong | 116.615 | 2.362 |
32 | ** Songjiang District, Shanghai | 164.546 | 13.254 | 82 | Baohu District, Hefei, Anhui | 116.047 | 2.638 |
33 | Qiaoxi District, Shijiazhuang, Hebei | 163.595 | 0.899 | 83 | Jinan District, Fuzhou, Fujian | 115.759 | 2.382 |
34 | Xicheng District, Beijing | 163.232 | 5.100 | 84 | Dongcheng District, Beijing | 113.668 | 3.763 |
35 | Wangcheng District, Changsha, Hunan | 163.165 | 2.750 | 85 | Gulou District, Fuzhou, Fujian | 113.403 | 1.817 |
36 | Jianggan District, Hangzhou, Zhejiang | 156.939 | 4.104 | 86 | * Huicheng District, Huizhou, Guangdong | 111.643 | 6.899 |
37 | Qinhuai District, Nanjing, Jiangsu | 155.355 | 6.140 | 87 | Banan District, Chongqing | 111.290 | 2.292 |
38 | Nanan District, Chongqing | 154.848 | 3.741 | 88 | Kaifu District, Changsha, Hunan | 111.164 | 1.603 |
39 | * Yuexiu District, Guangzhou, Guangdong | 154.348 | 9.127 | 89 | ** Changshu District, Suzhou, Jiangsu | 110.487 | 8.662 |
40 | Changping District, Beijing | 154.197 | 4.036 | 90 | Haishu District, Ningbo, Zhejiang | 109.749 | 3.350 |
41 | Yuzhong District, Chongqing | 152.904 | 3.098 | 91 | Tiexi District, Shenyang, Liaoning | 109.086 | 3.750 |
42 | Yuhang District, Hangzhou, Zhejiang | 150.265 | 4.457 | 92 | Shunqing District, Nanchong, Sichuan | 108.939 | 2.951 |
43 | * Tianhe District, Guangzhou, Guangdong | 149.996 | 8.691 | 93 | Jiangxia District, Wuhan, Hubei | 108.814 | 3.847 |
44 | * Lianhu District, Xi’an, Shaanxi | 149.873 | 5.137 | 94 | ** Jing’an District, Shanghai | 108.615 | 11.327 |
45 | * Xincheng District, Xi’an, Shaanxi | 146.671 | 4.824 | 95 | * Hanyang District, Wuhan, Hubei | 108.463 | 4.659 |
46 | ** Yangpu District, Shanghai | 146.356 | 15.778 | 96 | ** Jiangyin District, Wuxi, Jiangsu | 106.284 | 9.174 |
47 | ** Jiading District, Shanghai | 146.329 | 13.648 | 97 | Xiacheng District, Hangzhou, Zhejiang | 106.085 | 2.972 |
48 | Cixi City, Ningbo, Zhejiang | 145.407 | 4.256 | 98 | Cangshan District, Fuzhou, Fujian | 104.500 | 2.056 |
49 | ** Guanchenghuizi District, Zhengzhou, Henan | 144.373 | 5.518 | 99 | Weidu, Xuchang, Henan | 103.683 | 1.310 |
50 | ** Erqi District, Zhengzhou, Henan | 140.498 | 5.533 | 100 | Lianchi, Baoding, Hebei | 102.900 | −0.369 |
Index | County | Mean | Slope | Index | County | Mean | Slope |
---|---|---|---|---|---|---|---|
1 | * Pudong New District, Shanghai | 718.968 | 97.487 | 51 | Yuzhong District, Chongqing | 102.228 | 19.133 |
2 | * Chaoyang District, Beijing | 622.394 | 91.499 | 52 | * Zhangdian District, Zibo, Shandong | 99.562 | 9.249 |
3 | * Haidian District, Beijing | 462.510 | 69.659 | 53 | Hongshan District, Wuhan, Hubei | 98.984 | 16.433 |
4 | * Xicheng District, Beijing | 392.431 | 63.145 | 54 | Liwan District, Guangzhou, Guangdong | 97.207 | 14.085 |
5 | * Binhai New District, Tianjin | 346.719 | 46.273 | 55 | ** Songjiang District, Shanghai | 96.976 | 7.538 |
6 | Tianhe District, Guangzhou, Guangdong | 339.376 | 56.338 | 56 | Wuzhong District, Suzhou, Jiangsu | 94.562 | 5.958 |
7 | Jinshui District, Zhengzhou, Henan | 330.147 | 48.129 | 57 | Shushan District, Hefei, Anhui | 92.099 | 14.524 |
8 | Nanhai District, Foshan, Guangdong | 294.239 | 36.169 | 58 | Shangcheng District, Hangzhou, Zhejiang | 87.440 | 11.876 |
9 | * Minhang District, Shanghai | 264.734 | 25.472 | 59 | Furong District, Changsha, Hunan | 87.145 | 13.865 |
10 | Shunde District, Foshan, Guangdong | 261.456 | 35.519 | 60 | * Yuhang District, Hangzhou, Zhejiang | 86.637 | 8.118 |
11 | * Kunshan City, Suzhou, Jiangsu | 259.578 | 29.158 | 61 | Xiacheng District, Hangzhou, Zhejiang | 84.837 | 10.776 |
12 | Yuexiu District, Guangzhou, Guangdong | 241.868 | 41.156 | 62 | Jiangbei District, Chongqing | 84.509 | 13.103 |
13 | Dongcheng District, Beijing | 232.009 | 38.057 | 63 | * Jianggan District, Hangzhou, Zhejiang | 83.884 | 7.702 |
14 | Jing’an District, Shanghai, China | 220.741 | 30.315 | 64 | Lixia District, Jinan, Shandong | 83.346 | 13.077 |
15 | * Yanta District, Xi’an, Shaanxi | 209.401 | 31.498 | 65 | Beilin District, Xi’an, Shaanxi | 82.966 | 13.883 |
16 | * Jiading District, Shanghai | 204.036 | 19.892 | 66 | Gulou District, Fuzhou, Fujian | 81.949 | 13.050 |
17 | Huangpu District, Guangzhou, Guangdong | 195.110 | 28.540 | 67 | Qiaokou District, Wuhan, Hubei | 81.603 | 15.711 |
18 | Guancheng Huizu District, Zhengzhou, Henan | 193.564 | 27.165 | 68 | * Huqiu District, Suzhou, Jiangsu | 81.518 | 10.943 |
19 | * Fengtai District, Beijing, China | 190.931 | 23.532 | 69 | Hanyang District, Wuhan, Hubei | 80.123 | 13.243 |
20 | Haizhu District, Guangzhou, Guangdong | 189.168 | 29.564 | 70 | Qixia District, Nanjing, Jiangsu | 79.643 | 9.148 |
21 | Baoshan District, Shanghai | 177.678 | 15.940 | 71 | * Yubei District, Chongqing | 76.062 | 9.527 |
22 | Baiyun District, Guangzhou, Guangdong | 174.711 | 18.603 | 72 | Hongkou District, Shanghai | 75.882 | 10.748 |
23 | Longgang District, Shenzhen, Guangdong | 174.180 | 25.870 | 73 | ** Cixi City, Ningbo, Zhejiang | 74.841 | 6.248 |
24 | Chancheng District, Foshan, Guangdong | 172.088 | 25.488 | 74 | Chang’an District, Shijiazhuang, Hebei | 72.902 | 5.405 |
25 | Nanshan District, Shenzhen, Guangdong | 172.045 | 33.033 | 75 | Dongli District, Tianjin | 71.831 | 5.262 |
26 | Futian District, Shenzhen, Guangdong | 168.581 | 31.446 | 76 | Yuecheng District, Shaoxing, Zhejiang | 71.339 | 3.348 |
27 | * Huangpu District, Shanghai | 165.727 | 26.004 | 77 | Xinhua District, Shijiazhuang, Hebei | 70.158 | 5.225 |
28 | Panyu District, Guangzhou, Guangdong | 164.036 | 19.444 | 78 | * Gongshu District, Hangzhou, Zhejiang | 69.477 | 6.462 |
29 | * Yangpu District, Shanghai | 162.899 | 23.062 | 79 | * Xihu District, Hangzhou, Zhejiang | 68.700 | 5.964 |
30 | * Xuhui District, Shanghai | 160.993 | 22.767 | 80 | ** Wujiang District, Suzhou, Jiangsu | 68.296 | 6.781 |
31 | Zhongyuan District, Zhengzhou, Henan | 151.620 | 17.461 | 81 | Nanan District, Chongqing | 68.005 | 9.946 |
32 | Wuchang District, Wuhan, Hubei | 146.719 | 27.018 | 82 | * Changshu City, Suzhou, Jiangsu | 67.862 | 7.083 |
33 | New Downtown, Urumqi, Xinjiang | 141.533 | 19.474 | 83 | Qinhuai District, Nanjing, Jiangsu | 67.843 | 11.469 |
34 | ** Jiangyin City, Wuxi, Jiangsu | 136.917 | 18.306 | 84 | * Lianhu District, Xi’an, Shaanxi | 67.737 | 10.376 |
35 | Bao’an District, Shenzhen, Guangdong | 136.839 | 18.738 | 85 | ** Yinzhou District, Ningbo, Zhejiang | 67.608 | 6.450 |
36 | * Weiyang District, Xi’an, Shaanxi | 133.598 | 17.374 | 86 | * Qingpu District, Shanghai | 67.512 | 5.072 |
37 | Jiangan District, Wuhan, Hubei | 126.465 | 24.392 | 87 | * Zhangjiagang City, Suzhou, Jiangsu | 67.297 | 9.381 |
38 | Jianghan District, Wuhan, Hubei | 126.376 | 24.863 | 88 | Huadu District, Guangzhou, Guangdong | 66.779 | 6.616 |
39 | ** Xiaoshan District, Hangzhou, Zhejiang | 123.029 | 8.703 | 89 | Kaifu District, Changsha, Hunan | 66.408 | 7.216 |
40 | Putuo District, Shanghai, China | 122.009 | 14.675 | 90 | ** Shunyi District, Beijing | 65.801 | 6.710 |
41 | * Binjiang District, Hangzhou, Zhejiang | 119.847 | 15.289 | 91 | Luohu District, Shenzhen, Guangdong | 65.140 | 11.940 |
42 | * Xinwu District, Wuxi, Jiangsu | 117.225 | 15.207 | 92 | * Xinbei District, Changzhou, Jiangsu | 64.892 | 6.819 |
43 | Changning District, Shanghai | 116.156 | 14.799 | 93 | Wangcheng District, Changsha, Hunan | 64.199 | 7.006 |
44 | * Liangxi District, Wuxi, Jiangsu | 110.816 | 15.538 | 94 | * Shijingshan District, Beijing | 64.130 | 8.554 |
45 | * Daxing District, Beijing, China | 110.582 | 13.950 | 95 | * Gusu District, Suzhou, Jiangsu | 64.094 | 8.035 |
46 | Gulou District, Nanjing, Jiangsu | 109.536 | 17.910 | 96 | * Cangshan District, Fuzhou, Fujian | 63.415 | 7.207 |
47 | Longhua District, Shenzhen, Guangdong | 108.919 | 16.890 | 97 | Jianxi District, Luoyang, Henan | 62.566 | 6.272 |
48 | Qiaoxi District, Shijiazhuang, Hebei | 108.873 | 11.334 | 98 | Erqi District, Zhengzhou, Henan | 62.031 | 7.122 |
49 | Yuhua District, Changsha, Hunan | 108.205 | 14.109 | 99 | * Shapingba District, Chongqing | 60.458 | 7.867 |
50 | ** Wujin District, Changzhou, Jiangsu | 105.131 | 11.475 | 100 | Gulou District, Xuzhou, Jiangsu | 59.920 | 8.413 |
References
- Kumar, P.; Sharma, A. Assessing the monthly heat stress risk to society using thermal comfort indices in the hot semi-arid climate of India. Mater. Today Proc. 2022, 61, 132–137. [Google Scholar] [CrossRef]
- Nandi, S.; Swain, S. Analysis of heatwave characteristics under climate change over three highly populated cities of South India: A CMIP6-based assessment. Environ. Sci. Pollut. Res. 2022, 30, 99013–99025. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Domeisen, D. A global comparison of heatwave magnitude indices using ERA5 reanalysis data (EMS2022-176). EMS2022. Copernic. Meet. 2022, 19, 176. [Google Scholar]
- Ma, F.; Yuan, X. Impact of climate and population changes on the increasing exposure to summertime compound hot extremes. Sci. Total Environ. 2021, 772, 145004. [Google Scholar] [CrossRef]
- Thompson, V.; Kennedy-Asser, A.T.; Vosper, E.; Lo, Y.T.E.; Huntingford, C.; Andrews, O.; Collins, M.; Hegerl, G.C.; Mitchell, D. The 2021 western North America heatwave among the most extreme events ever recorded globally. Sci. Adv. 2022, 8, eabm6860. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Mo, R.; Vitart, F. The 2021 Western North American Heatwave and Its Subseasonal Predictions. Geophys. Res. Lett. 2022, 49, e2021GL097036. [Google Scholar] [CrossRef]
- Silberner, J. Heatwave causes hundreds of deaths and hospitalisations in Pacific north west. Br. Med. J. 2021, 374, n1696. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Chen, D.; Sachindra, D.A.; AghaKouchak, A.; Kang, S.; Li, M.; Zhai, P.; Ullah, W. Future Population Exposure to Daytime and Nighttime Heatwaves in South Asia. Earth’s Future 2022, 10, e2021EF002511. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 2017, 7, 12256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mao, G.; Chen, C.; Lu, Z.; Luo, Z.; Zhou, W. Population exposure to concurrent daytime and nighttime heatwaves in Huai River Basin, China. Sustain. Cities Soc. 2020, 61, 102309. [Google Scholar] [CrossRef]
- Yaglou, C.P.; Minaed, D. Control of Heat Casualties at Military Training Centers. Arch. Indust. Health 1957, 16, 302–316. [Google Scholar]
- Huang, Z.; Chen, H.; Tian, H. Research on the Heatwave Index. Meteorol. Mon. 2011, 37, 345–351. [Google Scholar]
- Wang, L.; Rohli, R.V.; Lin, Q.; Jin, S.; Yan, X. Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming. Sustainability 2022, 14, 11458. [Google Scholar] [CrossRef]
- Yin, C.; Yang, F.; Wang, J.; Ye, Y. Spatiotemporal distribution and risk assessment of heatwaves based on apparent temperature in the One Belt and One Road Region. Remote Sens. 2020, 12, 1174. [Google Scholar] [CrossRef]
- Krummenauer, L.; Costa, L.; Prahl, B.F.; Kropp, J.P. Future heat adaptation and exposure among urban populations and why a prospering economy alone won’t save us. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Change 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Nishant, N.; Ji, F.; Guo, Y.; Herold, N.; Green, D.; Virgilio, G.D.; Beyer, K.; Riley, M.L.; Perkins-Kirkpatrick, S. Future population exposure to Australian heatwaves. Environ. Res. Lett. 2022, 17, 064030. [Google Scholar] [CrossRef]
- Ullah, I.; Saleem, F.; Iyakaremye, V.; Yin, J.; Ma, X.; Syed, S.; Hina, S.; Asfaw, T.G.; Omer, A. Projected Changes in Socioeconomic Exposure to Heatwaves in South Asia Under Changing Climate. Earth’s Future 2022, 10, e2021EF002240. [Google Scholar] [CrossRef]
- Raei, E.; Nikoo, M.R.; AghaKouchak, A.; Mazdiyasni, O.; Sadegh, M. GHWR, a multi-method global heatwave and warm-spell record and toolbox. Sci. Data 2018, 5, 180206. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Q.; Li, H.; Huang, C. Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019. Int. J. Environ. Res. Public Health 2023, 20, 1532. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zha, Y. Population exposure to extreme heat in China: Frequency, intensity, duration and temporal trends. Sustain. Cities Soc. 2020, 60, 102282. [Google Scholar] [CrossRef]
- Sun, S.; Dai, T.-L.; Wang, Z.-Y.; Chou, J.-M.; Chao, Q.-C.; Shi, P.-J. Projected increases in population exposure of daily climate extremes in eastern China by 2050. Adv. Clim. Change Res. 2021, 12, 804–813. [Google Scholar] [CrossRef]
- Brandt, L.; Lim, K. Opening up in the 21st century: A quantitative accounting of Chinese export growth. J. Int. Econ. 2024, 150, 103895. [Google Scholar] [CrossRef]
- Sang, M.; Jiang, J.; Huang, X.; Zhu, F.; Wang, Q. Spatial and temporal changes in population distribution and population projection at county level in China. Humanit. Soc. Sci. Commun. 2024, 11, 1–15. [Google Scholar] [CrossRef]
- Duan, R.; Huang, G.; Li, Y.; Zheng, R.; Wang, G.; Xin, B.; Tian, C.; Ren, J. Ensemble Temperature and Precipitation Projection for Multi-Factorial Interactive Effects of GCMs and SSPs: Application to China. Front. Environ. Sci. 2021, 9, 742326. [Google Scholar] [CrossRef]
- Ding, T.; Qian, W. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv. Atmos. Sci. 2011, 28, 322–337. [Google Scholar] [CrossRef]
- Liao, W.; Li, D.; Malyshev, S.; Shevliakova, E.; Zhang, H.; Liu, X. Amplified Increases of Compound Hot Extremes Over Urban Land in China. Geophys. Res. Lett. 2021, 48, e2020GL091252. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zwiers, F.W.; Song, L.; Wan, H.; Hu, T.; Yin, H.; Ren, G. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Change 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Wang, J.X.L.; Gaffen, D.J. Trends in Extremes of Surface Humidity, Temperature, and Summertime Heat Stress in China. Adv. Atmos. Sci. 2001, 18, 742–751. [Google Scholar] [CrossRef]
- Bibi, S.; Wang, L.; Li, X.; Zhou, J.; Chen, D.; Yao, T. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review. Int. J. Climatol. 2018, 38, e1–e17. [Google Scholar] [CrossRef]
- Fan, Z.-X.; Bräuning, A.; Thomas, A.; Li, J.-B.; Cao, K.-F. Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004. Int. J. Climatol. 2011, 31, 2078–2090. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P.-M.; Qin, D.-H. New perspectives on ‘warming–wetting’ trend in Xinjiang, China. Adv. Clim. Change Res. 2020, 11, 252–260. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Z.; Wu, L.; Yang, K. Summer high temperature extremes over Northeastern China predicted by spring soil moisture. Sci. Rep. 2019, 9, 12577. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tang, Q.; Zhang, X.; Sun, S. Projected Changes in Extreme High Temperature and Heat Stress in China. J. Meteorol. Res. 2018, 32, 351–366. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.-C. Characteristics of summer heat stress in China during 1979–2014: Climatology and long-term trends. Clim. Dyn. 2019, 53, 5375–5388. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Sippel, S.; Barcikowska, M.J.; Ghisetti, C.; Smid, M.; O’Neill, B. Half a degree and rapid socioeconomic development matter for heatwave risk. Nat. Commun. 2019, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tian, Z.; Sun, L.; Chen, B.; Tubiello, F.N.; Xu, Y. The impacts of increased heat stress events on wheat yield under climate change in China. Clim. Change 2017, 140, 605–620. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, F.; Liu, W.; Chen, J.; Wang, H.; Guo, Q.; Wang, Y.; Zhang, Q.; Sang, Y.-F. Changes in compound hot and dry day and population exposure across China under climate change. Int. J. Climatol. 2022, 42, 2935–2949. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; King, A.; Sorichetta, A.; Linard, C.; Tatem, A.J. Comparisons of two global built area land cover datasets in methods to disaggregate human population in eleven countries from the global South. Int. J. Digit. Earth 2020, 13, 78–100. [Google Scholar] [CrossRef]
- Yi, L.; Xiong, L.; Yang, X. Method of Pixelizing GDP Data Based on the GIS. J. Gansu Sci. 2006, 2, 54–58. [Google Scholar]
- The Rising Lab. Index Model of Cities’ Business Attractiveness in China; The Rising Lab.: Southbank, VIC, Australia, 2021. [Google Scholar]
- He, C.; Liu, Z.; Xu, M.; Lu, W. Dataset of urban built-up area in China (1992–2020) V1.0. In A Big Earth Data Platform for Three Poles; Dataset; A Big Earth Data Platform for Three Poles: Lanzhou, China, 2022. [Google Scholar]
- Chen, Y.; Guo, F.; Wang, J.; Cai, W.; Wang, C.; Wang, K. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 2020, 7, 83. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Zhang, W.; Liu, J.; He, P.; Wang, J.; Huang, L.; Zhang, B. Analysis and intervention of heatwave related economic loss: Comprehensive insights from supply, demand, and public expenditure into the relationship between the influencing factors. J. Environ. Manag. 2023, 326, 116654. [Google Scholar]
- Sun, X.; Ge, F.; Fan, Y.; Zhu, S.; Chen, Q. Will population exposure to heat extremes intensify over Southeast Asia in a warmer world? Environ. Res. Lett. 2022, 17, 044006. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Guan, D.; Tinoco, D.M.; Xia, J.; Yan, Z.; Yang, J.; Liu, Q.; Huo, H. Assessment of the economic impacts of heatwaves: A case study of Nanjing, China. J. Clean. Prod. 2018, 171, 811–819. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Increased population exposure to precipitation extremes in China under global warming scenarios. Atmos. Ocean. Sci. Lett. 2020, 13, 63–70. [Google Scholar] [CrossRef]
- Luo, K.; Li, G.; Fang, C.; Sun, S. PM2.5 mitigation in China: Socioeconomic determinants of concentrations and differential control policies. J. Environ. Manag. 2018, 213, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Pan, T.; Ciais, P.; Ma, T.; Liu, Y.; Yamazaki, D.; Ge, Q.; Peñuelas, J. Global socioeconomic exposure of heat extremes under climate change. J. Clean. Prod. 2020, 277, 123275. [Google Scholar] [CrossRef]
- Yin, C.; Yang, Y.; Chen, X.; Yue, X.; Liu, Y.; Xin, Y. Changes in global heatwaves and its socioeconomic exposure in a warmer future. Clim. Risk Manag. 2022, 38, 100459. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, B.; Han, Z.; Xu, Y. Substantial increase in daytime-nighttime compound heatwaves and associated population exposure in China projected by the CMIP6 multimodel ensemble. Environ. Res. Lett. 2022, 17, 045007. [Google Scholar] [CrossRef]
- You, H.; Yang, J.; Xue, B.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Spatial evolution of population change in Northeast China during 1992–2018. Sci. Total Environ. 2021, 776, 146023. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, M.; Ren, Z.; Li, M.; Wang, B.; Liu, D.L.; Ou, C.-Q.; Yin, P.; Sun, J.; Tong, S.; et al. Projecting heat-related excess mortality under climate change scenarios in China. Nat. Commun. 2021, 12, 1039. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sultan, B.; Vautard, R.; Braconnot, P.; Wang, H.J.; Ducharne, A. Potential escalation of heat-related working costs with climate and socioeconomic changes in China. Proc. Natl. Acad. Sci. USA 2016, 113, 4640–4645. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liu, L.; Wu, S. Hazards of extreme events in China under different global warming targets. Big Earth Data 2020, 4, 153–174. [Google Scholar] [CrossRef]
- Wu, D.; Hu, Z. Increasing compound drought and hot event over the Tibetan Plateau and its effects on soil water. Ecol. Indic. 2023, 153, 110413. [Google Scholar] [CrossRef]
- You, Q.; Wu, F.; Shen, L.; Pepin, N.; Jiang, Z.; Kang, S. Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C. Glob. Planet. Change 2020, 192, 103261. [Google Scholar] [CrossRef]
- Gao, C.; Ge, H.; Lu, Y.; Wang, W.; Zhang, Y. Decoupling of provincial energy-related CO2 emissions from economic growth in China and its convergence from 1995 to 2017. J. Clean. Prod. 2021, 297, 126627. [Google Scholar] [CrossRef]
- Wu, Y.; Tam, V.; Shuai, C.; Shen, L.; Zhang, Y.; Liao, S. Decoupling China’s economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Sci. Total Environ. 2019, 656, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Change 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Wang, A.; Tao, H.; Wu, Q.; Huang, J.; Zhang, B.; Wang, Y. Increasing urban and rural population exposures to warm-season concurrent hot days and nights on the North China Plain. Int. J. Climatol. 2022, 42, 7938–7950. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. The Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gu, S.; Bi, P.; Yang, J.; Liu, Q. Heatwaves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review. Int. J. Environ. Res. Public Health 2015, 12, 5256–5283. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J. Global and cross-country analysis of exposure of vulnerable populations to heatwaves from 1980 to 2018. Clim. Change 2020, 163, 539–558. [Google Scholar] [CrossRef]
- Fischer, E.M.; Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Lin, L.; Ge, E.; Liu, X.; Liao, W.; Luo, M. Urbanization effects on heatwaves in Fujian Province, Southeast China. Atmos. Res. 2018, 210, 123–132. [Google Scholar] [CrossRef]
- Trigo, R.M.; García-Herrera, R.; Díaz, J.; Trigo, I.F.; Valente, M.A. How exceptional was the early August 2003 heatwave in France? Geophys. Res. Lett. 2005, 32, L10701. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N.; Wu, C.; Quan, J.; Chen, M. Future population exposure to heatwaves in 83 global megacities. Sci. Total Environ. 2023, 888, 164142. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, N.; Yin, X.; Wu, C.; Chen, M.; Jiao, Y.; Yue, T. Global future population exposure to heatwaves. Environ. Int. 2023, 178, 108049. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, N.; Wang, Y.; Chen, M. Variations in summertime compound heat extremes and their connections to urbanization in China during 1980–2020. Environ. Res. Lett. 2022, 17, 064024. [Google Scholar] [CrossRef]
- Wang, A.; Tao, H.; Ding, G.; Zhang, B.; Huang, J.; Wu, Q. Global cropland exposure to extreme compound drought heatwave events under future climate change. Weather. Clim. Extrem. 2023, 40, 100559. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Tett, S.F.B.; Stone, D.; Nie, J.; Feng, J.; Yan, Z.; Zhai, P.; Ge, Q. Storyline attribution of human influence on a record-breaking spatially compounding flood-heat event. Sci. Adv. 2023, 9, eadi2714. [Google Scholar] [CrossRef] [PubMed]
Index | City | Index | City | Index | City | Index | City |
---|---|---|---|---|---|---|---|
1 | ** Shanghai | 14 | Changsha, Hunan | 27 | Shenyang, Liaoning | 40 | ** Xiamen, Fujian |
2 | Beijing | 15 | Shijiazhuang, Hebei | 28 | * Changzhou, Jiangsu | 41 | Lanzhou, Gansu |
3 | Chongqing | 16 | Shenzhen, Guangdong | 29 | Nanning, Guangxi | 42 | Yantai, Shandong |
4 | * Guangzhou, Guangdong | 17 | Chengdu, Sichuan | 30 | Xuzhou, Jiangsu | 43 | Harbin, Heilongjiang |
5 | * Wuhan, Hubei | 18 | Ningbo, Zhejiang | 31 | ** Jiaxing, Zhejiang | 44 | Quanzhou, Fujian |
6 | ** Zhengzhou, Henan | 19 | Jinhua, Zhejiang | 32 | Zhongshan, Guangdong | 45 | Zhuhai, Guangdong |
7 | Hangzhou, Zhejiang | 20 | ** Wuxi, Jiangsu | 33 | * Huizhou, Guangdong | 46 | * Dalian, Liaoning |
8 | * Xi’an, Shaanxi | 21 | Hefei, Anhui | 34 | Yangzhou, Jiangsu | 47 | Guiyang, Guizhou |
9 | ** Suzhou, Jiangsu | 22 | Nanchang, Jiangxi | 35 | * Nantong, Jiangsu | 48 | Changchun, Jilin |
10 | Tianjin, Tianjin | 23 | Fuzhou, Fujian | 36 | ** Haikou, Hainan | 49 | * Kunming, Yunnan |
11 | * Nanjing, Jiangsu | 24 | ** Wenzhou, Zhejiang | 37 | Taiyuan, Shanxi | ||
12 | Dongguan, Guangdong | 25 | Shaoxing, Zhejiang | 38 | Taizhou, Zhejiang | ||
13 | * Foshan, Guangdong | 26 | Jinan, Shandong | 39 | Qingdao, Shandong |
Index | City | Index | City | Index | City | Index | City |
---|---|---|---|---|---|---|---|
1 | * Shanghai | 14 | * Wuxi, Jiangsu | 27 | * Shaoxing, Zhejiang | 40 | Harbin, Heilongjiang |
2 | * Beijing | 15 | Nanjing, Jiangsu | 28 | Yangzhou, Jiangsu | 41 | Lanzhou, Gansu |
3 | Guangzhou, Guangdong | 16 | Changsha, Hunan | 29 | * Nantong, Jiangsu | 42 | * Taizhou, Zhejiang |
4 | Shenzhen, Guangdong | 17 | * Ningbo, Zhejiang | 30 | ** Jiaxing, Zhejiang | 43 | Yantai, Shandong |
5 | Zhengzhou, Henan | 18 | Shijiazhuang, Hebei | 31 | Jinhua, Zhejiang | 44 | Qingdao, Shandong |
6 | Wuhan, Hubei | 19 | * Changzhou, Jiangsu | 32 | * Wenzhou, Zhejiang | 45 | Quanzhou, Fujian |
7 | ** Suzhou, Jiangsu | 20 | Jinan, Shandong | 33 | Xiamen, Fujian | 46 | Dalian, Liaoning |
8 | Foshan, Guangdong | 21 | Fuzhou, Fujian | 34 | Taiyuan, Shanxi | 47 | * Kunming, Yunnan |
9 | Dongguan, Guangdong | 22 | Hefei, Anhui | 35 | * Nanning, Guangxi | 48 | Changchun, Jilin |
10 | * Hangzhou, Zhejiang | 23 | Shenyang, Liaoning | 36 | Chengdu, Sichuan | 49 | Guiyang, Guizhou |
11 | Tianjin, Tianjin | 24 | Zhongshan, Guangdong | 37 | Huizhou, Guangdong | ||
12 | * Xi’an, Shaanxi | 25 | * Nanchang, Jiangxi | 38 | ** Haikou, Hainan | ||
13 | Chongqing | 26 | Xuzhou, Jiangsu | 39 | Zhuhai, Guangdong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Liu, Q.; Li, H.; Huang, C.; Cheng, W. Mapping Heatwave Socioeconomic Exposure in the Chinese Mainland for the Period of 2000–2019. Atmosphere 2025, 16, 28. https://doi.org/10.3390/atmos16010028
Wu W, Liu Q, Li H, Huang C, Cheng W. Mapping Heatwave Socioeconomic Exposure in the Chinese Mainland for the Period of 2000–2019. Atmosphere. 2025; 16(1):28. https://doi.org/10.3390/atmos16010028
Chicago/Turabian StyleWu, Wei, Qingsheng Liu, He Li, Chong Huang, and Weiming Cheng. 2025. "Mapping Heatwave Socioeconomic Exposure in the Chinese Mainland for the Period of 2000–2019" Atmosphere 16, no. 1: 28. https://doi.org/10.3390/atmos16010028
APA StyleWu, W., Liu, Q., Li, H., Huang, C., & Cheng, W. (2025). Mapping Heatwave Socioeconomic Exposure in the Chinese Mainland for the Period of 2000–2019. Atmosphere, 16(1), 28. https://doi.org/10.3390/atmos16010028