Assessment of Observed and Projected Extreme Droughts in Perú—Case Study: Candarave, Tacna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Gridded-Based Meteorological Data
2.2.2. Meteorological Data
2.2.3. Virtual Weather Stations
- Performing correlation between gridded-based meteorological data (PISCO and RAIN4PE datasets) and data from actual weather stations. According to these results, the adequate dataset was used to extract data from the location of the proposed virtual weather station;
- Assessment of rainfall features; for this purpose, the sum of the average rainfall of the months where the wet season occurs (December to March) was evaluated. This sum was compared among the weather stations;
- Setting the location of the virtual weather stations according to their climatic zones and altitudes (Figure 5). Virtual weather stations are located within the same climatic zones as the actual weather station having considered a similar altitude as well;
- The gridded-based data for the virtual station location were corrected using the same linear correlation model found in Step 1 for each actual weather station.
2.2.4. Climate Data
2.2.5. Satellite Data
2.3. Data Quality Control
2.4. Drought Indicators
2.4.1. Standardized Precipitation Index (SPI)
2.4.2. Standardized Precipitation Evapotranspiration Index (SPEI)
2.4.3. Vegetation Condition Index (VCI)
3. Results and Discussion
3.1. Data Quality
3.1.1. Gridded-Based Meteorological Data
3.1.2. Meteorological Data
3.1.3. Climate Data
3.2. Drought Assessment
3.2.1. Observed Drought
3.2.2. Projected Drought
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Correlation Coefficient |
CMIP6 | Coupled Model Intercomparison Project—Phase 6 |
ENSO | El Niño Southern Oscillation |
GCMs | Global Climate Models |
MME | Multi-Model Ensemble |
NDVI | Normalized Difference Vegetation Index |
PET | Potential Evapotranspiration |
PISCO | Peruvian Interpolated data of SENAMHI’s Climatological and Hydrological Observations |
RAIN4PE | Rain for Peru and Ecuador |
RB | Relative Bias |
RMSE | Root Mean Square Error |
SENAMHI | Servicio Nacional de Meteorología e Hidrología del Perú/National Service of Meteorology and Hydrology of Peru |
SSP | Shared Socioeconomic Pathway |
SPEI | Standardized Precipitation Evapotranspiration Index |
SPI | Standardized Precipitation Index |
VCI | Vegetation Condition Index |
References
- Eslamian, S.; Eslamian, F. Handbook of Drought and Water Scarcity Principles of Drought and Water Scarcity; CRC Press: New York, NY, USA, 2017. [Google Scholar]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal Drought Analysis by the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Sadiqi, S.S.J.; Hong, E.-M.; Nam, W.-H.; Kim, T. Review: An Integrated Framework for Understanding Ecological Drought and Drought Resistance. Sci. Total Environ. 2022, 846, 157477. [Google Scholar] [CrossRef]
- Wang, L.; Shu, Z.; Wang, G.; Sun, Z.; Yan, H.; Bao, Z. Analysis of Future Meteorological Drought Changes in the Yellow River Basin under Climate Change. Water 2022, 14, 1896. [Google Scholar] [CrossRef]
- Fiorella, V.J. Análisis Del Riesgo de Sequías En El Sur Del Perú; Senamhi: Lima, Perú, 2016. [Google Scholar]
- Zubieta, R.; Molina-Carpio, J.; Laqui, W.; Sulca, J.; Ilbay, M. Comparative Analysis of Climate Change Impacts on Meteorological, Hydrological, and Agricultural Droughts in the Lake Titicaca Basin. Water 2021, 13, 175. [Google Scholar] [CrossRef]
- Shen, M.; Chen, J.; Zhuan, M.; Chen, H.; Xu, C.-Y.; Xiong, L. Estimating Uncertainty and Its Temporal Variation Related to Global Climate Models in Quantifying Climate Change Impacts on Hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Viloria, J.A.; Olivares, B.O.; García, P.; Paredes-Trejo, F.; Rosales, A. Mapping Projected Variations of Temperature and Precipitation Due to Climate Change in Venezuela. Hydrology 2023, 10, 96. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, B.; Feng, X.; Pan, N. Response of Ecohydrological Variables to Meteorological Drought under Climate Change. Remote Sens. 2022, 14, 1920. [Google Scholar] [CrossRef]
- Xu, F.; Bento, V.A.; Qu, Y.; Wang, Q. Projections of Global Drought and Their Climate Drivers Using CMIP6 Global Climate Models. Water 2023, 15, 2272. [Google Scholar] [CrossRef]
- Mathbout, S.; Martin-Vide, J.; Bustins, J.A.L. Drought Characteristics Projections Based on CMIP6 Climate Change Scenarios in Syria. J. Hydrol. Reg. Stud. 2023, 50, 101581. [Google Scholar] [CrossRef]
- Abara, M.; Komariah; Budiastuti, S. Drought Frequency, Severity, and Duration Monitoring Based on Climate Change in Southern and Southeastern Ethiopia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 477, p. 012011. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Bai, J.; Li, S. Performance of Different Drought Indices for Agriculture Drought in the North China Plain. J. Arid Land 2018, 10, 507–516. [Google Scholar] [CrossRef]
- Montes-Vega, M.J.; Guardiola-Albert, C.; Rodríguez-Rodríguez, M. Calculation of the SPI, SPEI, and GRDI Indices for Historical Climatic Data from Doñana National Park: Forecasting Climatic Series (2030–2059) Using Two Climatic Scenarios RCP 4.5 and RCP 8.5 by IPCC. Water 2023, 15, 2369. [Google Scholar] [CrossRef]
- Senhorelo, A.P.; Sousa, E.F.; Santos, A.R.D.; Ferrari, J.L.; Peluzio, J.B.E.; Zanetti, S.S.; Carvalho, R.d.C.F.; Camargo Filho, C.B.; Barbosa de Souza, K.; Moreira, T.R.; et al. Application of the Vegetation Condition Index in the Diagnosis of Spatiotemporal Distribution of Agricultural Droughts: A Case Study Concerning the State of Espírito Santo, Southeastern Brazil. Diversity 2023, 15, 460. [Google Scholar] [CrossRef]
- Sh, S. Comparison of the Vegetation Condition Index with Meteorological Drought Indices:A Case Study in Henan Province. J. Glaciol. Geocryol. 2013, 35, 990–998. [Google Scholar]
- Fiorella, V.J. Regionalización y Caracterización de Sequías En El Perú; Senamshi: Lima, Perú, 2015. [Google Scholar]
- Chucuya, S.; Vera, A.; Pino-Vargas, E.; Steenken, A.; Mahlknecht, J.; Montalván, I. Hydrogeochemical Characterization and Identification of Factors Influencing Groundwater Quality in Coastal Aquifers, Case: La Yarada, Tacna, Peru. Int. J. Environ. Res. Public Health 2022, 19, 2815. [Google Scholar] [CrossRef]
- Pocco, V.; Chucuya, S.; Huayna, G.; Ingol-Blanco, E.; Pino-Vargas, E. A Multi-Criteria Decision-Making Technique Using Remote Sensors to Evaluate the Potential of Groundwater in the Arid Zone Basin of the Atacama Desert. Water 2023, 15, 1344. [Google Scholar] [CrossRef]
- Consorcio, R.L. Estudio de Los Recursos Hídricos Superficiales y Subterráneos e Infraestructura Hidráulica Para El Plan de Aprovechamiento En La Cuenca Del Río Locumba, En La Región de Tacna; Autoridad Nacional del Agua: Lima, Perú, 2016. [Google Scholar]
- Pino-Vargas, E.; Chávarri-Velarde, E.; Ingol-Blanco, E.; Mejía, F.; Cruz, A.; Vera, A. Impacts of Climate Change and Variability on Precipitation and Maximum Flows in Devil’s Creek, Tacna, Peru. Hydrology 2022, 9, 10. [Google Scholar] [CrossRef]
- Fernandez-Palomino, C.A.; Hattermann, F.F.; Krysanova, A.L.; Vega-Jácome, F.; Lavado, W.; Santini, W.; Aybar, C.; Bronstert, A. A Novel High-Resolution Gridded Precipitation Dataset for Peruvian and Ecuadorian Watersheds–Development and Hydrological Evaluation. J. Hydrometeorol. 2021, 23, 309–336. [Google Scholar] [CrossRef]
- Llauca, H.; Lavado-Casimiro, W.; Montesinos, C.; Santini, W.; Rau, P. PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020). Water 2021, 13, 1048. [Google Scholar] [CrossRef]
- Fernandez-Palomino, C.A.; Hattermann, F.F.; Krysanova, V.; Vega-Jácome, F.; Menz, C.; Gleixner, S.; Bronstert, A. High-Resolution Climate Projection Dataset Based on CMIP6 for Peru and Ecuador: BASD-CMIP6-PE. Sci. Data 2024, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Escoto Castillo, A.; Sánchez Peña, L.; Gachuz Delgado, S. Shared Socioeconomic Pathways (SSP): New Ways to Assess Climate and Social Change. Estud. Demogr. Urbanos Col. Mex. 2017, 32, 669–693. [Google Scholar] [CrossRef]
- Quille-Mamani, J.A.; Huayna, G.; Pino-Vargas, E.; Chucuya-Mamani, S.; Vera-Barrios, B.; Ramos-Fernandez, L.; Espinoza-Molina, J.; Cabrera-Olivera, F. Spatio-Temporal Evolution of Olive Tree Water Status Using Land Surface Temperature and Vegetation Indices Derived from Landsat 5 and 8 Satellite Imagery in Southern Peru. Agriculture 2024, 14, 662. [Google Scholar] [CrossRef]
- Searcy, J.K.; Hardison, C.H. Double-Mass Curves; United States Department of the Interior: Washington, DC, USA, 1960. [Google Scholar]
- Urrutia-Mosquera, J. Metodología Para La Imputación de Datos Faltantes En Metereología. Lex Sci. 2010, 3, 44–49. [Google Scholar]
- Kocsis, T.; Kovács-Székely, I.; Anda, A. Homogeneity Tests and Non-Parametric Analyses of Tendencies in Precipitation Time Series in Keszthely, Western Hungary. Theor. Appl. Climatol. 2020, 139, 849–859. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Xiong, J.; Shen, G.; Yong, Z.; Sun, H.; He, W.; Luo, S.; Cui, X. Investigating the Impact of the Spatiotemporal Bias Correction of Precipitation in CMIP6 Climate Models on Drought Assessments. Remote Sens. 2022, 14, 6172. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Lei, X.; Xu, C.; Liu, F.; Song, L.; Cao, L.; Suo, N. Evaluation of CMIP6 Models and Multi-Model Ensemble for Extreme Precipitation over Arid Central Asia. Remote Sens. 2023, 15, 2376. [Google Scholar] [CrossRef]
- Pramudya, Y.; Onishi, T. Assessment of the Standardized Precipitation Index (SPI) in Tegal City, Central Java, Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 129, p. 012019. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Vasilakou, C.G.; Kalogeropoulos, K.; Stathopoulos, N.; Alexandris, S.G.; Zervas, E.; Oikonomou, P.D.; Karavitis, C.A. Drought Assessment Using the Standardized Precipitation Index (SPI) in GIS Environment in Greece. In Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 619–633. [Google Scholar] [CrossRef]
- Fassouli, V.P.; Karavitis, C.A.; Tsesmelis, D.E.; Alexandris, S.G. Factual Drought Index (FDI): A Composite Index Based on Precipitation and Evapotranspiration. Hydrol. Sci. J. 2021, 66, 1638–1652. [Google Scholar] [CrossRef]
- Wagesho, N.; Claire, M. Analysis of Rainfall Intensity-Duration-Frequency Relationship for Rwanda. J. Water Resour. Prot. 2016, 08, 706–723. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Alexandris, S.; Tsesmelis, D.E.; Athanasopoulos, G. Application of the Standardized Precipitation Index (SPI) in Greece. Water 2011, 3, 787–805. [Google Scholar] [CrossRef]
- Endara, S.; Acuña, J.; Vega, F.; Febre, C.; Correa, K.; Ávalos, G. Caracterización Espacio Temporal de La Sequía En Los Departamentos Altoandinos Del Perú (1981–2018); Senamhi: Lima, Perú, 2019. [Google Scholar]
- Thom, H.C. A Note on the Gamma Distribution. Mon. Weather Rev. 1958, 86, 117–122. [Google Scholar] [CrossRef]
- Şenaut, Z. Applied Drought Modeling, Prediction, and Mitigation; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780128021767. [Google Scholar]
- National Drought Mitigation Center. SPI Generator [Software]; University of Nebraska–Lincoln: Lincoln, NE, USA, 2018. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Belle, J.A.; Orimoloye, Y.M.; Olusola, A.O.; Ololade, O.O. Drought: A Common Environmental Disaster. Atmosphere 2022, 13, 111. [Google Scholar] [CrossRef]
- Mupepi, O.; Matsa, M.M. A Combination of Vegetation Condition Index, Standardized Precipitation Index and Human Observation in Monitoring Spatio-Temporal Dynamics of Drought. A Case of Zvishavane District in Zimbabwe. Environ. Dev. 2023, 45, 100802. [Google Scholar] [CrossRef]
- Liang, L.; Qiu, S.; Yan, J.; Shi, Y.; Geng, D. VCI-Based Analysis on Spatiotemporal Variations of Spring Drought in China. Int. J. Environ. Res. Public Health 2021, 18, 7967. [Google Scholar] [CrossRef]
- Vincent, L.A.; Mekis, E. Discontinuities Due to Joining Precipitation Station Observations in Canada. J. Appl. Meteorol. Clim. 2009, 48, 156–166. [Google Scholar] [CrossRef]
- Rascón, J.; Gosgot Angeles, W.; Quiñones Huatangari, L.; Oliva, M.; Barrena Gurbillón, M.Á. Dry and Wet Events in Andean Populations of Northern Peru: A Case Study of Chachapoyas, Peru. Front Environ. Sci. 2021, 9, 614438. [Google Scholar] [CrossRef]
- Akter, M.L.; Rahman, M.N.; Azim, S.A.; Rony, M.R.H.; Sohel, M.D.S.; Abdo, H.G. Estimation of Drought Trends and Comparison between SPI and SPEI with Prediction Using Machine Learning Models in Rangpur, Bangladesh. Geol. Ecol. Landsc. 2023, 1–15. [Google Scholar] [CrossRef]
- Meseguer-Ruiz, O.; Serrano-Notivoli, R.; Aránguiz-Acuña, A.; Fuentealba, M.; Nuñez-Hidalgo, I.; Sarricolea, P.; Garreaud, R. Comparing SPI and SPEI to Detect Different Precipitation and Temperature Regimes in Chile throughout the Last Four Decades. Atmos. Res. 2024, 297, 107085. [Google Scholar] [CrossRef]
- Andujar, E.; Krakauer, N.Y.; Yi, C.; Kogan, F. Ecosystem Drought Response Timescales from Thermal Emission versus Shortwave Remote Sensing. Adv. Meteorol. 2017, 2017, 8434020. [Google Scholar] [CrossRef]
- Patel, R.; Patel, A. Evaluating the Impact of Climate Change on Drought Risk in Semi-Arid Region Using GIS Technique. Results Eng. 2024, 21, 101957. [Google Scholar] [CrossRef]
- Hamarash, H.; Hamad, R.; Rasul, A. Meteorological Drought in Semi-Arid Regions: A Case Study of Iran. J. Arid Land 2022, 14, 1212–1233. [Google Scholar] [CrossRef]
- Lan, X.; Liu, Z.; Ge, Y.; Yan, Y.; She, Z.; Cheng, L.; Chen, X. Semi-Arid Rather than Arid Regions of China Deserve the Priority in Drought Mitigation Efforts. J. Hydrol. 2024, 641, 131791. [Google Scholar] [CrossRef]
- Li, J.; Miao, C.; Wei, W.; Zhang, G.; Hua, L.; Chen, Y.; Wang, X. Evaluation of CMIP6 Global Climate Models for Simulating Land Surface Energy and Water Fluxes During 1979–2014. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002515. [Google Scholar] [CrossRef]
- Zhai, J.; Mondal, S.K.; Fischer, T.; Wang, Y.; Su, B.; Huang, J.; Tao, H.; Wang, G.; Ullah, W.; Uddin, M.J. Future Drought Characteristics through a Multi-Model Ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Franco León, P.; Sulca Quispe, L. Evaluación Socio-Ambiental Del Bofedal Huaytire de La Provincia de Candarave-Tacna. Cienc. Desarro. 2019, 12, 93–98. [Google Scholar] [CrossRef]
Product | Abbreviation | Version | Source | Resolution | Frequency | Period |
---|---|---|---|---|---|---|
Rain for Peru and Ecuador [24] | RAIN4PE | v.1.0 | International Climate Initiative (IKI) | 0.1° × 0.1° | Daily | 1981–2015 |
Peruvian Interpolated Data of SENAMHI’s Climatological and Hydrological Observations [25] | PISCO | v.2.1 | SENAMHI | 0.1° × 0.1° | Daily | 1981–2016 |
Weather Station Name | Province | Geographic Coordinates (Degrees) | Altitude (m.a.s.l.) | Variable | |
---|---|---|---|---|---|
Longitude | Latitude | ||||
Aricota | Candarave | −70.2354 | −17.3256 | 2850 | Rainfall and temperature |
Cairani | Candarave | −70.3667 | −17.2833 | 3443 | Rainfall and temperature |
Candarave | Candarave | −70.2673 | −17.2906 | 3415 | Rainfall and temperature |
Carumas | Mariscal Nieto | −70.6944 | −16.8131 | 2976 | Rainfall |
Titijones | Mariscal Nieto | −70.5260 | −16.6179 | 4609 | Rainfall |
Vilacota | Tarata | −70.0503 | −17.1169 | 4438 | Rainfall |
Virtual Weather Station Name | Climate | Geographic Coordinates (Degrees) | Altitude (m.a.s.l.) | |
---|---|---|---|---|
Longitude | Latitude | |||
Titijones | Semi-frigid | −70.5260 | −16.6179 | 4609 |
VWS Titijones 1 | Semi-frigid | −70.321 | −16.825 | 4646 |
VWS Titijones 2 | Semi-frigid | −70.320 | −16.971 | 4667 |
VWS Titijones 3 | Semi-frigid | −70.215 | −16.982 | 4594 |
Vilacota | Frigid | −70.0503 | −17.1169 | 4438 |
VWS Vilacota 1 | Frigid | −70.116 | −17.104 | 4556 |
VWS Vilacota 2 | Frigid | −70.412 | −16.875 | 4558 |
Cairani | Semi-arid | −70.3667 | −17.2833 | 3443 |
VWS Cairani 1 | Semi-arid | −70.485 | −17.243 | 3486 |
No. | Model | Member |
---|---|---|
1 | CanESM5 | r1i1p1f1 |
2 | IPSL–CM6A–LR | r1i1p1f1 |
3 | UKESM1–0–LL | r1i1p1f1 |
4 | CNRM–CM6–1 | r1i1p1f1 |
5 | CNRM–ESM2–1 | r1i1p1f1 |
6 | MIROC6 | r1i1p1f1 |
7 | GFDL–ESM4 | r1i1p1f1 |
8 | MRI–ESM2–0 | r1i1p1f1 |
9 | MPI–ESM1–2–HR | r1i1p1f1 |
10 | EC–Earth3 | r1i1p1f1 |
Data | Year | Product Identifier | Sensing Time (hh:mm:ss) | Cloud Cover % | Patch/Row |
---|---|---|---|---|---|
Landsat 5 | 1990 | LANDSAT/LT05/C02/T1_L2/LT05_002072_19900222 | 14:12:54 | 4 | 02/72 |
LANDSAT/LT05/C02/T1_L2/LT05_002072_19900513 | 14:01:54 | 2 | |||
LANDSAT/LT05/C02/T1_L2/LT05_002072_19900614 | 14:01:47 | 0 | |||
Landsat 5 | 1992 | LANDSAT/LT05/C02/T1_L2/LT05_002072_19920127 | 14:05:58 | 0 | 02/72 |
LANDSAT/LT05/C02/T1_L2/LT05_002072_19920502 | 14:05:27 | 0 | |||
LANDSAT/LT05/C02/T1_L2/LT05_002072_19920705 | 14:04:46 | 1 | |||
LANDSAT/LT05/C02/T1_L2/LT05_002072_19920907 | 14:03:51 | 1 | |||
Landsat 5 | 1996 | LANDSAT/LT05/C02/T1_L2/LT05_002072_19960513 | 13:52:38 | 0 | 02/72 |
LANDSAT/LT05/C02/T1_L2/LT05_002072_19960801 | 13:56:57 | 1 | |||
LANDSAT/LT05/C02/T1_L2/LT05_002072_19961004 | 14:00:24 | 9 | |||
LANDSAT/LT05/C02/T1_L2/LT05_002072_19961121 | 14:02:43 | 0 | |||
Landsat 5 | 1998 | LANDSAT/LT05/C02/T1_L2/LT05_002072_19980519 | 14:19:08 | 0 | 02/72 |
Landsat 5 | 2010 | LANDSAT/LT05/C02/T1_L2/LT05_002072_20101112 | 14:31:25 | 3.2 | 02/72 |
LANDSAT/LT05/C02/T1_L2/LT05_002072_20101214 | 14:31:29 | 3 | |||
Landsat 5 | 2011 | LANDSAT/LT05/C02/T1_L2/LT05_002072_20110726 | 14:30:40 | 9 | 02/72 |
LANDSAT/LT05/C02/T1_L2/LT05_002072_20111115 | 14:29:05 | 7 | |||
Landsat 8 | 2015 | LANDSAT/LC08/C02/T1_L2/LC08_002072_20150502 | 14:40:50 | 5.17 | 02/72 |
LANDSAT/LC08/C02/T1_L2/LC08_002072_20151126 | 14:41:48 | 10.51 | |||
Landsat 8 | 2016 | LANDSAT/LC08/C02/T1_L2/LC08_002072_20160504 | 14:41:15 | 6.51 | 02/72 |
LANDSAT/LC08/C02/T1_L2/LC08_002072_20160723 | 14:41:38 | 0.4 | |||
LANDSAT/LC08/C02/T1_L2/LC08_002072_20161128 | 14:41:58 | 4.97 | |||
Landsat 8 | 2020 | LANDSAT/LC08/C02/T1_L2/LC08_002072_20201123 | 14:41:58 | 3.51 | 02/72 |
Landsat 8 | 2021 | LANDSAT/LC08/C02/T1_L2/LC08_002072_20210502 | 14:41:10 | 0.11 | 02/72 |
LANDSAT/LC08/C02/T1_L2/LC08_002072_20210721 | 14:41:36 | 0.14 | |||
LANDSAT/LC08/C02/T1_L2/LC08_002072_20210822 | 14:41:49 | 1.47 | |||
LANDSAT/LC08/C02/T1_L2/LC08_002072_20211110 | 14:42:01 | 3.08 | |||
Landsat 8 | 2022 | LANDSAT/LC08/C02/T1_L2/LC08_002072_20220606 | 14:41:43 | 2.76 | 02/72 |
LANDSAT/LC08/C02/T1_L2/LC08_002072_20220825 | 14:42:11 | 0.54 |
SPI Value | Classification |
---|---|
−2.0 and less | Extreme drought |
−1.5 to −1.99 | Severe drought |
−1.0 to −1.49 | Moderate drought |
−0.99 to 0.99 | Normal conditions |
SPEI Value | Classification |
---|---|
−2.0 and less | Extreme drought |
−1.5 to −1.99 | Severe drought |
−1.0 to −1.49 | Moderate drought |
−0.99 to 0.99 | Normal conditions |
VCI Ranges (%) | Classification |
---|---|
0 < VCI < 20 | Extremely dry |
20 ≤ VCI < 40 | Dry |
40 ≤ VCI < 60 | Normal condition |
60 ≤ VCI < 80 | Good condition |
VCI ≥ 80 | Optimal condition |
Test 1 | Results | Aricota | Cairani | Carumas | Titijones | Vilacota |
---|---|---|---|---|---|---|
Standard Normal Homogeneity Test (SNHT) | Test statistic | 3.1772 | 4.8296 | 5.7184 | 12.237 | 5.5791 |
p-value | 0.6028 | 0.2958 | 0.1927 | 0.00385 | 0.2069 | |
Result | Homogeneous | Homogeneous | Homogeneous | Not homogeneous | Homogeneous | |
Probable change point | – | – | – | 1996 | – | |
Buishand Range Test | Test statistic | 1.1614 | 0.90446 | 1.1952 | 1.8814 | 1.287 |
p-value | 0.3363 | 0.744 | 0.3007 | 0.00165 | 0.2026 | |
Result | Homogeneous | Homogeneous | Homogeneous | Not homogeneous | Homogeneous | |
Probable change point | – | – | – | 1996 | – | |
Pettitt’s test for single change-point detection | Test statistic | 98 | 80 | 144 | 216 | 102 |
p-value | 0.5414 | 0.8373 | 0.1191 | 0.003501 | 0.4856 | |
Result | Homogeneous | Homogeneous | Homogeneous | Not homogeneous | Homogeneous | |
Probable change point | – | – | – | 1996 | – | |
Mann–Kendall trend test | Test statistic | 0.34083 | −0.45445 | 0.73847 | −0.6248 2 | 1.7042 |
p-value | 0.7332 | 0.6495 | 0.4602 | 0.5321 | 0.08835 | |
Result | No trends | No trends | No trends | No trends | No trends |
Index | Weather Station | Start Date | End Date | Duration (Months) | Maximum Intensity | Severity |
---|---|---|---|---|---|---|
SPI-3 | Aricota | January 1983 | June 1983 | 6 | −2.97 | −11.57 |
January 1992 | June 1992 | 6 | −2.98 | −12.21 | ||
Cairani | February 1983 | May 1983 | 4 | −2.22 | −6.90 | |
February 1992 | May 1992 | 4 | −3.04 | −9.00 | ||
SPEI-3 | Aricota | December 1982 | January 1984 | 14 | −2.18 | −21.12 |
February 2010 | November 2010 | 10 | −2.13 | −16.08 | ||
July 2011 | November 2011 | 5 | −2.32 | −9.78 | ||
July 2012 | November 2012 | 5 | −2.16 | −−7.20 | ||
Cairani | June 1995 | December 1996 | 19 | −2.15 | −21.79 | |
December 1997 | January 1999 | 14 | −3.09 | −19.29 | ||
July 2012 | November 2012 | 5 | −2.67 | −10.85 |
Index | Weather Station | Start Date | End Date | Duration (Months) | Maximum Intensity | Severity |
---|---|---|---|---|---|---|
SPI-6 | Aricota | February 1983 | August 1983 | 7 | −3.02 | −16.72 |
January 1992 | November 1992 | 11 | −3.14 | −23.23 | ||
January 2010 | August 2010 | 8 | −2.08 | −10.42 | ||
Cairani | March 1983 | December 1983 | 9 | −2.29 | −11.42 | |
January 1992 | November 1992 | 11 | −3.14 | −21.82 | ||
SPEI-6 | Aricota | December 1982 | January 1984 | 14 | −2.15 | −24.30 |
January 2010 | January 2011 | 13 | −2.06 | −18.51 | ||
August 2011 | December 2011 | 5 | −2.06 | −8.16 | ||
Cairani | September 1995 | December 1996 | 16 | −2.19 | −20.48 | |
March 1998 | January 1999 | 11 | −2.37 | −16.70 | ||
October 2012 | November 2012 | 2 | −2.20 | −4.13 |
Index | Weather Station | Start Date | End Date | Duration (Months) | Maximum Intensity | Severity |
---|---|---|---|---|---|---|
SPI-3 | Aricota | May 2074 | June 2074 | 2 | −2.56 | −3.68 |
January 2081 | June 2081 | 6 | −3.55 | −14.41 | ||
February 2088 | June 2088 | 5 | −3.79 | −10.5 | ||
January 2089 | March 2089 | 3 | −2.68 | −5.73 | ||
January 2099 | April 2099 | 4 | −2.69 | −8.21 | ||
Cairani | May 2074 | June 2074 | 2 | −2.57 | −4.38 | |
January 2081 | June 2081 | 6 | −3.68 | −14.27 | ||
February 2088 | June 2088 | 5 | −3.75 | −10.37 | ||
January 2089 | April 2089 | 4 | −2.68 | −5.84 | ||
January 2099 | April 2099 | 4 | −2.63 | −7.9 | ||
SPEI-3 | Aricota | December 2073 | April 2076 | 29 | −2.03 | −25.10 |
April 2080 | December 2081 | 21 | −2.38 | −29.17 | ||
June 2087 | December 2090 | 43 | −2.49 | −60.70 | ||
June 2095 | December 2100 | 67 | −2.25 | −107.87 | ||
Cairani | February 2074 | February 2076 | 25 | −2.23 | −19.94 | |
March 2080 | December 2081 | 21 | −2.53 | −32.33 | ||
June 2087 | March 2090 | 34 | −2.63 | −52.84 | ||
June 2098 | December 2100 | 31 | −2.32 | −47.76 |
Index | Weather Station | Start Date | End Date | Duration (Months) | Maximum Intensity | Severity |
---|---|---|---|---|---|---|
SPI-6 | Aricota | October 2024 | November 2024 | 2 | −2.38 | −4.07 |
November 2035 | June 2036 | 8 | −2.27 | −4.92 | ||
November 2062 | November 2062 | 1 | −2.11 | −2.11 | ||
August 2067 | October 2067 | 3 | −2.12 | −4.55 | ||
August 2074 | August 2074 | 1 | −2.15 | −2.15 | ||
January 2081 | August 2081 | 8 | −3.52 | −22.73 | ||
February 2088 | August 2088 | 7 | −3.73 | −17.4 | ||
January 2089 | July 2089 | 7 | −2.71 | −9.91 | ||
September 2096 | August 2097 | 12 | −2.63 | −15.83 | ||
January 2099 | July 2099 | 7 | −2.65 | −14.56 | ||
Cairani | November 2035 | June 2036 | 8 | −2.27 | −4.39 | |
December 2050 | December 2050 | 1 | −2.06 | −2.06 | ||
November 2051 | December 2051 | 2 | −2.12 | −2.7 | ||
August 2067 | October 2067 | 3 | −2.1 | −4.32 | ||
August 2074 | August 2074 | 1 | −2.14 | −2.14 | ||
January 2081 | September 2081 | 9 | −3.65 | −23.03 | ||
February 2088 | July 2089 | 18 | −3.77 | −30.7 | ||
September 2096 | August 2097 | 12 | −2.27 | −13.84 | ||
January 2099 | July 2099 | 7 | −2.63 | −13.96 | ||
SPEI-6 | Aricota | April 2080 | February 2082 | 23 | −2.19 | −30.62 |
August 2087 | December 2100 | 161 | −2.24 | −234.84 | ||
Cairani | February 2074 | April 2076 | 27 | −2.02 | −22.74 | |
July 2080 | December 2081 | 18 | −2.41 | −30.73 | ||
August 2087 | December 2090 | 41 | −2.50 | −62.56 | ||
August 2098 | December 2100 | 29 | −2.12 | −46.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Baltuano, A.; Huarahuara-Toma, R.; Silva-Borda, A.; Chucuya, S.; Franco-León, P.; Huayna, G.; Ramos-Fernández, L.; Pino-Vargas, E. Assessment of Observed and Projected Extreme Droughts in Perú—Case Study: Candarave, Tacna. Atmosphere 2025, 16, 18. https://doi.org/10.3390/atmos16010018
Cruz-Baltuano A, Huarahuara-Toma R, Silva-Borda A, Chucuya S, Franco-León P, Huayna G, Ramos-Fernández L, Pino-Vargas E. Assessment of Observed and Projected Extreme Droughts in Perú—Case Study: Candarave, Tacna. Atmosphere. 2025; 16(1):18. https://doi.org/10.3390/atmos16010018
Chicago/Turabian StyleCruz-Baltuano, Ana, Raúl Huarahuara-Toma, Arlette Silva-Borda, Samuel Chucuya, Pablo Franco-León, Germán Huayna, Lía Ramos-Fernández, and Edwin Pino-Vargas. 2025. "Assessment of Observed and Projected Extreme Droughts in Perú—Case Study: Candarave, Tacna" Atmosphere 16, no. 1: 18. https://doi.org/10.3390/atmos16010018
APA StyleCruz-Baltuano, A., Huarahuara-Toma, R., Silva-Borda, A., Chucuya, S., Franco-León, P., Huayna, G., Ramos-Fernández, L., & Pino-Vargas, E. (2025). Assessment of Observed and Projected Extreme Droughts in Perú—Case Study: Candarave, Tacna. Atmosphere, 16(1), 18. https://doi.org/10.3390/atmos16010018