Distribution and Characteristics of Ammonia Concentration by Region in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Period
2.2. Measurement Methods
3. Results and Discussion
3.1. Spatial Variations in Ammonia
3.2. Temporal Variations in Ammonia
3.2.1. Seasonal Variations in Ammonia
3.2.2. Monthly Variations in Ammonia
3.2.3. Diurnal Variations in Ammonia
3.3. Contribution to Secondary Aerosol Formation of Ammonia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, H.T.; Kim, K.H.; Park, C. Long-term trend of NO2 in major urban areas of Korea and possible consequences for health. Atmos. Environ. 2015, 106, 347–357. [Google Scholar] [CrossRef]
- Kwak, H.Y.; Ko, J.; Lee, S.; Joh, C.H. Identifying the correlation between rainfall, traffic flow performance and air pollution concentration in Seoul using a path analysis. Transp. Res. Proc. 2017, 25, 3552–3563. [Google Scholar] [CrossRef]
- Song, I.H.; Park, J.S.; Park, S.M.; Kim, D.G.; Kim, Y.W.; Shin, H.J. Seasonal characteristics of PM1 in Seoul, Korea, measured using HR-ToF-Aerosol Mass Spectrometer in 2018. Atmos. Environ. 2021, 266, 118717. [Google Scholar] [CrossRef]
- Park, J.M.; Shin, H.J.; Jung, H.J.; Park, J.H.; Jung, D.H.; Jung, E.S.; Kang, S.Y.; An, C.J.; Sung, M.Y.; Nam, I.K.; et al. 2021 Air Quality Yearbook; National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2022; pp. 433–434. [Google Scholar]
- Zhang, Q.; Alfarra, M.R.; Worsnop, D.R.; Allan, J.D.; Coe, H.; Canagaratna, M.R.; Jimenez, J.L. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environ. Sci. Technol. 2005, 39, 4938–4952. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Ivey, C.; Hu, Y.; Holmes, H.A.; Strickland, M.J. Source apportionment of primary and secondary PM2.5: Associations with pediatric respiratory disease emergency department visits in the US State of Georgia. Environ. Int. 2019, 133, 105167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, N.; Tang, K.; Liao, H.; Shi, C.; Huang, C.; Wang, H.; Guo, S.; Hu, M.; Ge, X.; et al. Estimation of secondary PM2.5 in China and the United States using a multi-tracer approach. Atmos. Chem. Phys. 2022, 22, 5495–5514. [Google Scholar] [CrossRef]
- Timonen, H.; Aurela, M.; Carbone, S.; Saarnio, K.; Saarikoski, S.; Mäkelä, T.; Kulmala, M.; Kerminen, V.-M.; Worsnop, D.R.; Hillamo, R. High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS. Atmos. Meas. Tech. 2010, 3, 1063–1074. [Google Scholar] [CrossRef]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J. Air Waste Manag. Assoc. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- Singh, N.; Murari, V.; Kumar, M.; Barman, S.C.; Banerjee, T. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model. Environ. Pollut. 2017, 223, 121–136. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J.; Wang, S.; He, K.; Zheng, M. Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Sci. Total Environ. 2017, 586, 917–929. [Google Scholar] [CrossRef]
- Comprehensive Measures for Fine Particle Management; Office for Government Policy Coordination; Ministry of Economy and Finance; Ministry of Education; Ministry of Science and ICT; Ministry of Foreign Affairs; Ministry of Agriculture, Food and Rural Affairs; Ministry of Trade, Industry and Energy; Ministry of Health and Welfare; Ministry of Environment; Ministry of Land, Infrastructure and Transport: Sejong, Republic of Korea, 2017.
- Kleinstreuer, C.; Zhang, Z. Airflow and particle transport in the human respiratory system. Annu. Rev. Fluid Mech. 2010, 42, 301–334. [Google Scholar] [CrossRef]
- Perrone, M.G.; Gualtieri, M.; Ferrero, L.; Porto, C.L.; Udisti, R.; Bolzacchini, E.; Camatini, M. Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere 2010, 78, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Rattanavaraha, W.; Canagaratna, M.R.; Budisulistiorini, S.H.; Croteau, P.L.; Baumann, K.; Canonaco, F.; Prevot, A.S.H.; Edgerton, E.S.; Zhang, Z.F.; Jayne, J.T.; et al. Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014–2015 using the aerosol chemical speciation monitor (ACSM). Atmos. Environ. 2017, 167, 389–402. [Google Scholar] [CrossRef]
- Irwin, J.G.; Williams, M.L. Acid rain: Chemistry and Transport. Environ. Pollut. 1988, 50, 29–59. [Google Scholar] [CrossRef]
- Martin-Reviejo, M.; Wirtz, K. Is benzene a precursor for secondary organic aerosol? Environ. Sci. Technol. 2005, 39, 1045–1054. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Yin, S.; Huang, Z.; Zheng, J.; Huang, X.; Chen, D.; Tan, H. Characteristics of inorganic aerosol formation over ammonia-poor and ammonia-rich areas in the Pearl River Delta region, China. Atmos. Environ. 2018, 177, 120–131. [Google Scholar] [CrossRef]
- Peng, J.; Hu, M.; Shang, D.; Wu, Z.; Du, Z.; Tan, T.; Wang, Y.; Zhang, F.; Zhang, R. Explosive secondary aerosol formation during severe haze in the North China Plain. Environ. Sci. Technol. 2021, 55, 2189–2207. [Google Scholar] [CrossRef] [PubMed]
- Paulot, F.; Jacob, D.J.; Pinder, R.W.; Bash, J.O.; Travis, K.; Henze, D.K. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 2014, 119, 4343–4364. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.I.; Woo, J.H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef]
- Yang, W.; Ma, Q.; Liu, Y.; Ma, J.; Chu, B.; Wang, L.; He, H. Role of NH3 in the heterogeneous formation of secondary inorganic aerosols on mineral oxides. J. Phys. Chem. A 2018, 122, 6311–6320. [Google Scholar] [CrossRef] [PubMed]
- Osada, K.; Saito, S.; Tsurumaru, H.; Hoshi, J. Vehicular exhaust contributions to high NH3 and PM2.5 concentrations during winter in Tokyo, Japan. Atmos. Environ. 2019, 206, 218–224. [Google Scholar] [CrossRef]
- Galperin, M.V.; Sofiev, M.A. The long-range transport of ammonia and ammonium in the Northern Hemisphere. Atmos. Environ. 1998, 32, 373–380. [Google Scholar] [CrossRef]
- Aneja, V.P.; Roelle, P.A.; Murray, G.C.; Southerland, J.; Erisman, J.W.; Fowler, D.; Asman, W.A.H.; Patni, N. Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment. Atmos. Environ. 2001, 35, 1903–1911. [Google Scholar] [CrossRef]
- Park, R.J.; Jacob, D.J.; Field, B.D.; Yantosca, R.M.; Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Wagstrom, K.M.; Pandis, S.N. Source–receptor relationships for fine particulate matter concentrations in the Eastern United States. Atmos. Environ. 2011, 45, 347–356. [Google Scholar] [CrossRef]
- Warner, J.X.; Dickerson, R.P.; Wei, Z.; Strow, L.L.; Wang, Y.; Liang, Q. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 2017, 44, 2875–2884. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, L. Causes of large increases in atmospheric ammonia in the last decade across North America. ACS omega 2019, 4, 22133–22142. [Google Scholar] [CrossRef]
- Van Damme, M.; Clarisse, L.; Franco, B.; Sutton, M.A.; Erisman, J.W.; Kruit, R.W.; van Zanten, M.; Whitburn, S.; Lazaro, J.H.; Hurtmans, D.; et al. Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environ. Res. Lett. 2021, 16, 055017. [Google Scholar] [CrossRef]
- National Air Emission Inventory and Research Center (NAIR) of the Republic of Korea. Available online: http://air.go.kr (accessed on 6 July 2023).
- SilcoTek Corporation. Available online: https://www.silcotek.com (accessed on 17 August 2023).
- Von Bobrutzki, K.; Braban, C.F.; Famulari, D.; Jones, S.K.; Blackall, T.; Smith, T.E.L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; et al. Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmos. Meas. Tech. 2010, 3, 91–112. [Google Scholar] [CrossRef]
- Shin, H.J.; Park, S.M.; Song, I.H.; Hong, Y.D. Chemical characteristics of high PM episodes occurring in Spring 2014, Seoul, Korea. Adv. Meteorol. 2016, 11, 2424875. [Google Scholar] [CrossRef]
- Park, S.M.; Song, I.J.; Park, J.S.; Oh, J.; Moon, K.J.; Shin, H.J.; Ahn, J.Y.; Lee, M.D.; Kim, J.H.; Lee, G.W. Variation of PM2.5 Chemical Compositions and their Contributions to Light Extinction in Seoul. Aerosol Air Qual. Res. 2018, 18, 2220–2229. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Available online: http://data.kma.go.kr (accessed on 22 August 2023).
- Lee, H.D.; Yoo, J.W.; Kang, M.K.; Kang, J.S.; Jung, J.H.; Oh, K.J. Evaluation of concentrations and source contribution of PM10 and SO2 emitted from industrial complexes in Ulsan, Korea: Interfacing of the WRF–CALPUFF modeling tools. Atmos. Pollut. Res. 2014, 5, 664–676. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, Y.H.; An, H.C.; Sung, J.H.; Sim, C.S. Levels of blood lead and urinary cadmium in industrial complex residents in Ulsan. Ann. Occup. Environ. Med. 2017, 29, 1–8. [Google Scholar] [CrossRef]
- Phan, N.T.; Kim, K.H.; Shon, Z.H.; Jeon, E.C.; Jung, K.; Kim, N.J. Analysis of ammonia variation in the urban atmosphere. Atmos. Environ. 2013, 65, 177–185. [Google Scholar] [CrossRef]
- Pan, Y.; Tian, S.; Zhao, Y.; Zhang, L.; Zhu, X.; Gao, J.; Huang, W.; Zhou, Y.; Song, Y.; Zhang, O.; et al. Identifying Ammonia Hotspots in China Using a National Observation Network. Environ. Sci. Technol. 2018, 52, 3926–3934. [Google Scholar] [CrossRef]
- Wang, S.; Nan, J.; Shi, C.; Fu, Q.; Gao, S.; Wang, D.; Cui, H.; Saiz-Lopez, A.; Zhou, B. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci. Rep. 2015, 5, 15842. [Google Scholar] [CrossRef]
- Gong, L. Atmospheric Ammonia Measurements and Implications for Particulate Matter Formation in Urban and Suburban Areas of Texas; ProQuest Dissertations, Rice University: Houston, TX, USA, 2013; Available online: https://hdl.handle.net/1911/71957 (accessed on 5 August 2024).
- Pandolfi, M.; Amato, F.; Reche, C.; Alastuey, A.; Otjes, R.P.; Blom, M.J.; Querol, X. Summer ammonia measurements in a densely populated Mediterranean city. Atmos. Chem. Phys. 2012, 12, 7557–7575. [Google Scholar] [CrossRef]
- Zbieranowski, A.L.; Aherne, J. Ambient concentrations of atmospheric ammonia, nitrogen dioxide and nitric acid in an intensive agricultural region. Atmos. Environ. 2013, 70, 289–299. [Google Scholar] [CrossRef]
- Alfoldy, B.; Mahfouz, M.M.; Yigiterhan, O.; Safi, M.A.; Elnaiem, A.E.; Giamberini, S. BTEX, nitrogen oxides, ammonia and ozone concentrations at traffic influenced and background urban sites in an arid environment. Atmos. Pollut. Res. 2019, 10, 445–454. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, M.; Mandal, T.K. Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. Atmos. Res. 2019, 218, 34–49. [Google Scholar] [CrossRef]
- Meng, Z.; Xu, X.; Lin, W.; Ge, B.; Xie, Y.; Song, B.; Jia, S.; Zhang, R.; Peng, W.; Wang, Y.; et al. Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain. Atmos. Chem. Phys. 2018, 18, 167–184. [Google Scholar] [CrossRef]
- Wang, R.; Ye, X.; Liu, Y.; Li, H.; Yang, X.; Chen, J.; Gao, W.; Yin, Z. Characteristics of atmospheric ammonia and its relationship with vehicle emissions in a megacity in China. Atmos. Environ. 2018, 182, 97–104. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, E.; Bae, C.; Cho, J.H.; Kim, B.U.; Kim, S. Regional contributions to particulate matter concentration in the Seoul metropolitan area, South Korea: Seasonal variation and sensitivity to meteorology and emissions inventory. Atmos. Chem. Phys. 2017, 17, 10315–10332. [Google Scholar] [CrossRef]
- Shim, K.; Kim, M.H.; Lee, H.J.; Nishizawa, T.; Shimizu, A.; Kobayashi, H.; Kim, C.H.; Kim, S.W. Exacerbation of PM2.5 concentration due to unpredictable weak Asian dust storm: A case study of an extraordinarily long-lasting spring haze episode in Seoul, Korea. Atmos. Environ. 2022, 287, 119261. [Google Scholar] [CrossRef]
- Ernst, J.W.; Massey, H.F. The effects of several factors on volatilization of ammonia formed from urea in the soil. Soil Sci. Soc. Am. J. 1960, 24, 87–90. [Google Scholar] [CrossRef]
- Chang, Y.; Zou, Z.; Zhang, Y.; Deng, C.; Hu, J.; Shi, Z.; Dore, A.J.; Collett, J.L., Jr. Assessing Contributions of Agricultural and Nonagricultural Emissions to Atmospheric Ammonia in a Chinese Megacity. Environ. Sci. Technol. 2019, 53, 1822–1833. [Google Scholar] [CrossRef]
- Lee, M. An analysis on the concentration characteristics of PM2.5 in Seoul, Korea from 2005 to 2012. Asia Pac. J. Atmos. Sci. 2014, 50, 585–594. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.-A.; Astorga, C. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle. Atmos. Environ. 2014, 97, 43–53. [Google Scholar] [CrossRef]
- Livingston, C.; Rieger, P.; Winer, A. Ammonia emissions from a representative in-use fleet of light and medium-duty vehicles in the California South Coast Air Basin. Atmos. Environ. 2009, 43, 3326–3333. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Zou, Z.; Deng, C.; Huang, K.; Collett, J.L.; Lin, J.; Zhuang, G. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai. Atmos. Chem. Phys. 2016, 16, 3577–3594. [Google Scholar] [CrossRef]
- Bash, J.O.; Walker, J.T.; Katul, G.G.; Jones, M.R.; Nemitz, E.; Robarge, W.P. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field. Environ. Sci. Technol. 2010, 44, 1683–1689. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.A.; Murphy, J.G.; Markovic, M.Z.; VandenBoer, T.C.; Makar, P.A.; Brook, J.; Mihele, C. The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during BAQS-Met. Atmos. Chem. Phys. 2011, 11, 133–145. [Google Scholar] [CrossRef]
- Pinder, R.W.; Dennis, R.L.; Bhave, P.V. Observable lndicators of the sensitivity of PM2.5 nitrate to emission reductions—Part I: Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales. Atmos. Environ. 2008, 42, 1275–1286. [Google Scholar] [CrossRef]
- Qin, M.; Wang, X.; Hu, Y.; Huang, X.; He, L.; Zhong, L.; Song, Y.; Hu, M.; Zhang, Y. Formation of particulate sulfate and nitrate over the Pearl River Delta in the fall: Diagnostic analysis using the Community Multiscale Air Quality model. Atmos. Environ. 2015, 112, 81–89. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The impact of the “air pollution prevention and control action plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef]
- Griffith, S.M.; Huang, X.H.; Louie, P.K.; Yu, J.Z. Characterizing the thermodynamic and chemical composition factors controlling PM2.5 nitrate: Insights gained from two years of online measurements in Hong Kong. Atmos. Environ. 2015, 122, 864–875. [Google Scholar] [CrossRef]
- Huang, R.J.; Duan, J.; Li, Y.; Chen, Q.; Chen, Y.; Tang, M.; Yang, L.; Ni, H.; Lin, C.; Xu, W.; et al. Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Sci. Total Environ. 2020, 717, 137190. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Wang-Li, L. Responses of secondary inorganic PM2.5 to precursor gases in an ammonia abundant area in North Carolina. Aerosol. Air Qual. Res. 2019, 19, 1126–1138. [Google Scholar] [CrossRef]
- Huey, L.G.; Dunlea, E.J.; Lovejoy, E.R.; Hanson, D.R.; Norton, R.B.; Fehsenfeld, F.C.; Howard, C.J. Fast time response measurements of HNO3 in air with a chemical ionization mass spectrometer. J. Geophys. Res. Atmos. 1998, 103, 3355–3360. [Google Scholar] [CrossRef]
- Liakakou, E.; Fourtziou, L.; Paraskevopoulou, D.; Speyer, O.; Lianou, M.; Grivas, G.; Myriokefalitakis, S.; Mihalopoulos, N. High-Resolution Measurements of SO2, HNO3 and HCl at the Urban Environment of Athens, Greece: Levels, Variability and Gas to Particle Partitioning. Atmosphere 2022, 13, 218. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, K.; Park, T.; Kang, S.; Ban, J.; Song, J.; Park, I.; Lee, T. Development of Semi-continuous Monitoring Techniques for Atmospheric HNO3. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 16 December 2022. [Google Scholar]
- Hwang, J.; Kim, K.; Park, T.; Kang, S.; Ban, J.; Song, J.; Park, I.; Lee, T. Development of Semi-continuous Monitoring Techniques for Atmospheric HNO3. J. Korean Soc. Atmos. Environ. 2023, 39, 265–277. [Google Scholar] [CrossRef]
- Park, S.S.; Lee, M.H.; Lee, T.H.; Lee, J.Y.; Jung, C.H.; Yu, G.H.; Son, S.C.; Ju, S.R.; Park, T.U.; Sung, B.C.; et al. Investigation on the Formation Processes of Secondary Inorganic Species in Seoul and Gwangju1—Focusing on Sulfate, Nitrate, and Ammonium; National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2021. [Google Scholar]
- Lee, T.H.; Lee, M.H.; Park, S.S.; Lee, J.Y.; Jung, C.H.; Park, G.T.; Park, T.H.; Yu, G.H.; Kim, J.Y.; Kim, N.G.; et al. Investigation on the Formation Processes of Secondary Inorganic Species in Seoul and Gwangju2—Focusing on Sulfate, Nitrate, and Ammonium; National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2022. [Google Scholar]
- Picarro, USA. Available online: https://www.picarro.com (accessed on 17 August 2023).
Region | Type | Location |
---|---|---|
Seoul, Korea (SE) | Urban | 37°36′ N, 126°56′ E, 67 m a.s.l. |
Daejeon, Korea (DJ) | Urban | 36°19′ N, 127°24′ E, 88 m a.s.l. |
Gwangju, Korea (GJ) | Urban | 35°13′ N, 126°50′ E, 39 m a.s.l. |
Baengnyeong, Korea (BI) | Background | 37°57′ N, 124°37′ E, 153 m a.s.l. |
Jeju, Korea (JI) | Background | 33°20′ N, 126°23′ E, 560 m a.s.l. |
Ulsan, Korea (US) | Industrial | 35°34′ N, 129°19′ E, 142 m a.s.l. |
Region | NH3 Conc. (ppb) | |
---|---|---|
Average | Range | |
Entire | 6.8 ± 4.9 | 0.0~50.0 |
SE | 8.6 ± 3.5 | 1.1~32.3 |
DJ | 9.0 ± 3.9 | 0.8~28.6 |
GJ | 11.4 ± 6.5 | 0.4~41.6 |
BI | 2.6 ± 1.7 | 0.0~13.8 |
JI | 4.5 ± 2.6 | 0.5~50.0 |
US | 4.0 ± 1.6 | 0.6~13.3 |
Site | Type | Period | Average (ppb) | S.D. | Reference |
---|---|---|---|---|---|
Korea | All | ′20.1~12 | 6.8 | 4.9 | This study |
Seoul, Korea | Urban | ′20.1~12 | 8.6 | 3.5 | This study |
Daejeon, Korea | Urban | ′20.1~12 | 9.0 | 3.9 | This study |
Gwangju, Korea | Urban | ′20.1~12 | 11.4 | 6.5 | This study |
Baengnyeong, Korea | Background | ′20.1~12 | 2.6 | 1.7 | This study |
Jeju, Korea | Background | ′20.1~12 | 4.5 | 2.6 | This study |
Ulsan, Korea | Industrial | ′20.1~12 | 4.0 | 1.6 | This study |
Seoul, Korea | Urban | ′10.9~′11.8 | 10.9 | 4.3 | Phan et al. [40] |
Beijing, China | Urban | ′15.9~′16.8 | 18.1 | - | Pan et al. [41] |
Chengdu, China | Urban | ′15.9~′16.8 | 11.1 | - | Pan et al. [41] |
Guangzhou, China | Urban | ′15.9~′16.8 | 7.6 | - | Pan et al. [41] |
Shanghai, China | Urban | ′13.7~′14.9 | 6.2 | 4.6 | Wang et al. [42] |
Houston, USA | Urban | ′10.2.12~3.1 | 2.4 | 1.2 | Gong [43] |
Houston, USA | Urban | ′10.8.5~9.25 | 3.1 | 2.9 | Gong [43] |
Barcelona UB, Spain | Urban | ′11.5.6~9.7 | 2.9 | 1.3 | Pandolfi et al. [44] |
Barcelona CC, Spain | Urban | ′11.5.13~6.28 | 7.4 | 2.8 | Pandolfi et al. [44] |
Shanghai, China | Rural | ′13.7~12 ′14.3~6 | 12.4 | 9.1 | Wang et al. [42] |
Haibei, China | Rural | ′15.9~′16.8 | 4.7 | - | Pan et al. [41] |
Yongxing island, China | Rural | ′15.9~′16.8 | 3.6 | - | Pan et al. [41] |
Ontario, Canada | Rural | ′10.3.30~′11.3.29 | 4.7 | - | Zbieranowski and Aherne [45] |
Shanghai, China | Industrial | ′14.1~6 | 17.6 | 9 | Wang et al. [42] |
Industrial Zone, Qatar | Industrial | ′16.2.29~3.31 | 24.5 | - | Alfoldy et al. [46] |
Al Cornish, Qatar | Traffic | ′16.2.29~3.31 | 25.0 | - | Alfoldy et al. [46] |
Madinat Khalifa, Qatar | Traffic | ′16.2.29~3.31 | 17.9 | - | Alfoldy et al. [46] |
Delhi, India | Traffic | ′13.1~′15.12 | 19.6 | 3.5 | Sharma et al. [47] |
Fengqiu, China | Farmland | ′15.9~′16.8 | 22.1 | - | Pan et al. [41] |
Weinan, China | Farmland | ′15.9~′16.8 | 16.3 | - | Pan et al. [41] |
Shenyang, China | Farmland | ′15.9~′16.8 | 8.8 | - | Pan et al. [41] |
Lhasa | Farmland | ′15.9~′16.8 | 6.3 | Pan et al. [41] |
Site | Spring | Summer | Fall | Winter | ||||
---|---|---|---|---|---|---|---|---|
Average (ppb) | Range (ppb) | Average (ppb) | Range (ppb) | Average (ppb) | Range (ppb) | Average (ppb) | Range (ppb) | |
Total | 7.6 ± 5.0 | 0.6~37.5 | 7.5 ± 5.5 | 0.0~50.0 | 6.2 ± 4.5 | 0.0~40.7 | 6.1 ± 4.5 | 0.0~36.4 |
SE | 9.9 ± 3.3 | 1.9~32.3 | 8.8 ± 3.5 | 1.8~22.5 | 8.4 ± 3.6 | 3.2~26.8 | 7.3 ± 3.1 | 1.1~21.5 |
DJ | 8.9 ± 3.8 | 1.1~25.3 | 10.6 ± 4.1 | 1.2~28.6 | 8.3 ± 3.7 | 0.8~26.3 | 8.1 ± 3.6 | 1.3~25.2 |
GJ | 12.6 ± 6.4 | 1.3~37.5 | 12.5 ± 7.5 | 0.8~41.6 | 10.4 ± 5.7 | 1.8~40.7 | 10.3 ± 6.1 | 0.4~36.4 |
BI | 3.5 ± 1.5 | 0.7~8.4 | 2.6 ± 1.4 | 0.0~12.2 | 1.8 ± 1.4 | 0.0~6.8 | 2.3 ± 1.8 | 0.0~13.8 |
JI | 5.6 ± 2.1 | 2.2~16.2 | 5.7 ± 3.6 | 0.7~50.0 | 4.2 ± 1.5 | 0.8~18.4 | 2.7 ± 1.3 | 0.5~8.9 |
US | 4.1 ± 1.6 | 0.6~8.7 | 3.9 ± 1.8 | 0.8~11.7 | 4.1 ± 1.5 | 1.0~13.3 | 4.1 ± 1.6 | 0.7~8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, I.-H.; Kim, H.-W.; Park, J.-S.; Park, S.-M.; Lee, J.-Y.; Nam, E.-J.; Lim, Y.-J.; Park, J.-M.; Yoo, M.-S.; Cho, S.-Y.; et al. Distribution and Characteristics of Ammonia Concentration by Region in Korea. Atmosphere 2024, 15, 1120. https://doi.org/10.3390/atmos15091120
Song I-H, Kim H-W, Park J-S, Park S-M, Lee J-Y, Nam E-J, Lim Y-J, Park J-M, Yoo M-S, Cho S-Y, et al. Distribution and Characteristics of Ammonia Concentration by Region in Korea. Atmosphere. 2024; 15(9):1120. https://doi.org/10.3390/atmos15091120
Chicago/Turabian StyleSong, In-Ho, Hyun-Woong Kim, Jong-Sung Park, Seung-Myung Park, Jae-Yun Lee, Eun-Jung Nam, Yong-Jae Lim, Jung-Min Park, Myung-Soo Yoo, Seog-Yeon Cho, and et al. 2024. "Distribution and Characteristics of Ammonia Concentration by Region in Korea" Atmosphere 15, no. 9: 1120. https://doi.org/10.3390/atmos15091120
APA StyleSong, I. -H., Kim, H. -W., Park, J. -S., Park, S. -M., Lee, J. -Y., Nam, E. -J., Lim, Y. -J., Park, J. -M., Yoo, M. -S., Cho, S. -Y., & Shin, H. -J. (2024). Distribution and Characteristics of Ammonia Concentration by Region in Korea. Atmosphere, 15(9), 1120. https://doi.org/10.3390/atmos15091120