Evaluation of the Urban Canopy Scheme TERRA-URB in the ICON Model at Hectometric Scale over the Naples Metropolitan Area
Abstract
:1. Introduction
2. ICON Model
- Turbulent diffusion: TURBDIFF [23] is the Turbulence closure for subgrid scale processes, based on a second-order statistical moment, which is the main contributor to diurnal variations within the Atmospheric Boundary Layer like daytime heating and mixing, nocturnal cooling. TURBDIFF is related to TURBTRAN [24], the formulation of turbulent Surface-to-Atmosphere Transfer, which integrates the vertical flux gradient between the top of the roughness layer and the lowest atmospheric boundary layer above. This turbulence scheme is the standard one of ICON and describes separated turbulence interacting with non-turbulent circulations, which allows for a consistent application of turbulence closure assumptions, even though other subgrid scale processes may be dominant within the grid cell.
- Radiation: optical properties parameterizations for each atmospheric component and the surface with a radiation solver based on ecRad scheme [25], which evaluates radiation traveling through optical medium;
- Cloud Microphysics: describes the formation, growth, and sedimentation of water particles. The single moment scheme is implemented, presented in Lin et al. [26] and Rutlege et al. [27], which predicts the specific mass content of cloud water, rain water, cloud ice, and snow with an additional graupel category;
- Non-orographic gravity wave drag: the scheme is based on Orr et al. [30], for the simulation of waves generated by convection, fronts, jet-stream, turbulence;
- Subgrid scale orographic drag: the scheme is based on Lott and Miller [31] and simulates governing flow pattern around sufficiently high subgrid orography, with low-level flow blocking;
- Cloud cover: the diagnostic Kohler scheme [32] takes into account the subgrid variability of water and the associated distribution in water vapor, cloud liquid water, and cloud. This cloud information is then passed to the radiation, where additional assumptions are made on the vertical overlap of clouds ice.
The Bulk Urban Canopy Scheme: TERRA-URB
3. The Test Case Considered
4. Data for Model Evaluation
- Temperature at 2 m (T2m): 57 of 82 stations passed; final miss data: 1.3%
- Relative Humidity at 2 m (Rh2m): 25 of 49 stations passed; final miss data: 2.9%
- Wind speed at 10 m (WS10m): 36 of 48 stations passed; final miss data: 7.3%
- Wind direction at 10 m (WD10m): 33 of 48 stations passed; final miss data: 5.2%
5. Validation Results
5.1. Score Metrics
5.2. General Evaluation against Ground Stations
5.3. Urban Scheme Effects
6. Urban Heat Island
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Ruane, A.C. IPCC, 2023: Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2024; pp. 1–34. [Google Scholar] [CrossRef]
- Pal, S.; Sharma, P. A review of machine learning applications in land surface modeling. Earth 2021, 2, 174–190. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Blackett, M.; Best, M.J.; Baik, J.J.; Belcher, S.E.; Beringer, J.; Bohnenstengel, S.I.; Calmet, I.; Chen, F.; Coutts, A.; et al. Initial results from Phase 2 of the international urban energy balance model comparison. Int. J. Climatol. 2011, 31, 244–272. [Google Scholar] [CrossRef]
- Garbero, V.; Milelli, M.; Bucchignani, E.; Mercogliano, P.; Varentsov, M.; Rozinkina, I.; Rivin, G.; Blinov, D.; Wouters, H.; Schulz, J.P.; et al. Evaluating the urban canopy scheme TERRA_URB in the COSMO model for selected European cities. Atmosphere 2021, 12, 237. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London: Deduced from Meteorological Observations Made in The Metropolis and at Various Places Around It; Harvey and Darton, J. and A. Arch, Longman, Hatchard, S. Highley and R. Hunter: London, UK, 1833; Volume 3. [Google Scholar]
- Chandler, T. Surface breeze effects of Leicester’s heat island. East Midl. Geogr. 1961, 15, 32–38. [Google Scholar]
- Oke, T. Towards a more rational understanding of the urban heat island. McGill Climatol. Bull. 1969, 3, 1–21. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Campanale, A.; Adinolfi, M.; Raffa, M.; Schulz, J.P.; Mercogliano, P. Investigating Urban Heat Island Dynamics Over Rome and Milan Through the Urban Parameterization Terra_Urb Implemented in the Icon Atmospheric Model. 2024. Available online: https://doi.org/10.2139/ssrn.4756850 (accessed on 11 September 2024).
- Trusilova, K.; Früh, B.; Brienen, S.; Walter, A.; Masson, V.; Pigeon, G.; Becker, P. Implementation of an Urban Parameterization Scheme into the Regional Climate Model COSMO-CLM. J. Appl. Meteorol. Climatol. 2013, 52, 2296–2311. [Google Scholar] [CrossRef]
- Demuzere, M.; Harshan, S.; Järvi, L.; Roth, M.; Grimmond, C.S.B.; Masson, V.; Oleson, K.; Velasco, E.; Wouters, H. Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. Q. J. R. Meteorol. Soc. 2017, 143, 1581–1596. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Wouters, H.; Demuzere, M.; Blahak, U.; Fortuniak, K.; Maiheu, B.; Camps, J.; Tielemans, D.; van Lipzig, N.P.M. The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer. Geosci. Model Dev. 2016, 9, 3027–3054. [Google Scholar] [CrossRef]
- Bucchignani, E.; Mercogliano, P.; Garbero, V.; Milelli, M.; Varentsov, M.; Rozinkina, I.; Rivin, G.; Blinov, D.; Kirsanov, A.; Wouters, H.; et al. Analysis and Evaluation of TERRA_URB Scheme: PT AEVUS Final Report; COSMO Technical Report 40; Deutscher Wetterdienst: Offenbach, Germany, 2019. [Google Scholar] [CrossRef]
- Schulz, J.P.; Mercogliano, P.; Adinolfi, M.; Apreda, C.; Bassani, F.; Bucchignani, E.; Campanale, A.; Cinquegrana, D.; Dumitrache, R.; Fedele, G.; et al. A new urban parameterisation for the ICON atmospheric model. In Proceedings of the EMS Annual Meeting 2022, Bonn, Germany, 4–9 September 2022. Number 501 in EMS2022. [Google Scholar] [CrossRef]
- Goger, B.; Dipankar, A. The impact of mesh size, turbulence parameterization, and land-surface-exchange scheme on simulations of the mountain boundary layer in the hectometric range. Q. J. R. Meteorol. Soc. 2024, 150, 3853–3873. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Lezhenin, A.A.; Gradov, V.S.; Zaiko, P.O.; Khitrykau, M.A.; Kirichenko, K.E.; Driga, M.B.; Kiselev, A.V.; Russkikh, I.V.; et al. Simulating Atmospheric Characteristics and Daytime Astronomical Seeing Using Weather Research and Forecasting Model. Appl. Sci. 2023, 13, 6354. [Google Scholar] [CrossRef]
- Otero-Casal, C.; Patlakas, P.; Prósper, M.A.; Galanis, G.; Miguez-Macho, G. Development of a High-Resolution Wind Forecast System Based on the WRF Model and a Hybrid Kalman-Bayesian Filter. Energies 2019, 12, 3050. [Google Scholar] [CrossRef]
- Briegel, F.; Wehrle, J.; Schindler, D.; Christen, A. High-resolution multi-scaling of outdoor human thermal comfort and its intra-urban variability based on machine learning. Geosci. Model Dev. 2024, 17, 1667–1688. [Google Scholar] [CrossRef]
- Zängl, G.; Reinert, D.; Rípodas, P.; Baldauf, M. The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q. J. R. Meteorol. Soc. 2015, 141, 563–579. [Google Scholar] [CrossRef]
- Schulz, J.P.; Vogel, G.; Becker, C.; Kothe, S.; Rummel, U.; Ahrens, B. Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations at grass land and bare soil. Meteorol. Z. 2016, 25, 607–620. [Google Scholar] [CrossRef]
- Hortal, M. The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2002, 128, 1671–1687. [Google Scholar]
- Raschendorfer, M. The new turbulence parameterization of LM. COSMO Newsl. 2001, 1, 89–97. [Google Scholar]
- Mironov, D.; Raschendorfer, M. Evaluation of Empirical Parameters of the New LM Surface-Layer Parameterization Scheme: Results from Numerical Experiments Including the Soil Moisture Analysis; DWD: Offenbach am Main, Germany, 2001. [Google Scholar]
- Hogan, R.J.; Bozzo, A. A flexible and efficient radiation scheme for the ECMWF model. J. Adv. Model. Earth Syst. 2018, 10, 1990–2008. [Google Scholar] [CrossRef]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Rutledge, S.A.; Hobbs, P.V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci. 1984, 41, 2949–2972. [Google Scholar] [CrossRef]
- Bechtold, P.; Köhler, M.; Jung, T.; Doblas-Reyes, F.; Leutbecher, M.; Rodwell, M.J.; Vitart, F.; Balsamo, G. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2008, 134, 1337–1351. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather. Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Orr, A.; Bechtold, P.; Scinocca, J.; Ern, M.; Janiskova, M. Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Clim. 2010, 23, 5905–5926. [Google Scholar] [CrossRef]
- Lott, F.; Miller, M.J. A new subgrid-scale orographic drag parametrization: Its formulation and testing. Q. J. R. Meteorol. Soc. 1997, 123, 101–127. [Google Scholar]
- Reinert, D.; Rieger, D.; Prill, F. (Eds.) Working with the ICON Model. Deutscher Wetterdienst Business Area “Research and Development”. 2024. Available online: https://doi.org/10.5676/DWD_pub/nwv/icon_tutorial2024 (accessed on 2 July 2024).
- Team, U.; Bontemps, S.; Defourny, P.; Van Bogaert, E.; Team, E.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009 Products Description and Validation Report; UCLouvain & ESA Team: Brussels, Belgium, 2011. [Google Scholar]
- Flanner, M.G. Integrating anthropogenic heat flux with global climate models. Geophys. Res. Lett. 2009, 36, L02801. [Google Scholar] [CrossRef]
- Wouters, H.; Varentsov, M.; Blahak, U.; Schulz, J.P.; Schättler, U.; Bucchignani, E.; Demuzere, M. User Guide for TERRA_URB v2.2: The Urban-Canopy Land-Surface Scheme of the COSMO Model; Deutscher Wetterdienst: Offenbach, Germany, 2017. [Google Scholar] [CrossRef]
- Kanda, M.; Kawai, T.; Kanega, M.; Moriwaki, R.; Narita, K.; Hagishima, A. A simple energy balance model for regular building arrays. Bound.-Layer Meteorol. 2005, 116, 423–443. [Google Scholar] [CrossRef]
- Fortuniak, K.; Offerle, B.; Grimmond, C. Application of a slab surface energy balance model to determine surface parameters for urban areas. Lund Electron. Rep. Phys. Geogr. 2005, 5, 90–91. [Google Scholar]
- Bottazzi, M.; Scipione, G.; Marras, G.F.; Trotta, G.; D’Antonio, M.; Chiavarini, B.; Caroli, C.; Montanari, M.; Bassini, S.; Gascón, E.; et al. The Italian open data meteorological portal: MISTRAL. Meteorol. Appl. 2021, 28, e2004. [Google Scholar] [CrossRef]
- Schulz, J.P.; Vogel, G. Improving the Processes in the Land Surface Scheme TERRA: Bare Soil Evaporation and Skin Temperature. Atmosphere 2020, 11, 513. [Google Scholar] [CrossRef]
- Abbassi, Y.; Ahmadikia, H.; Baniasadi, E. Impact of wind speed on urban heat and pollution islands. Urban Clim. 2022, 44, 101200. [Google Scholar] [CrossRef]
- Droste, A.M.; Steeneveld, G.J.; Holtslag, A.A.M. Introducing the urban wind island effect. Environ. Res. Lett. 2018, 13, 094007. [Google Scholar] [CrossRef]
- Gaffin, S.; Rosenzweig, C.; Khanbilvardi, R.; Parshall, L.; Mahani, S.; Glickman, H.; Goldberg, R.; Blake, R.; Slosberg, R.; Hillel, D. Variations in New York city’s urban heat island strength over time and space. Theor. Appl. Climatol. 2008, 94, 1–11. [Google Scholar] [CrossRef]
- Santamouris, M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 2015, 512-513, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Milelli, M.; Bassani, F.; Garbero, V.; Poggi, D.; von Hardenberg, J.; Ridolfi, L. Characterization of the Urban Heat and Dry Island effects in the Turin metropolitan area. Urban Clim. 2023, 47, 101397. [Google Scholar] [CrossRef]
- Zängl, G. Adaptive tuning of uncertain parameters in a numerical weather prediction model based upon data assimilation. Q. J. R. Meteorol. Soc. 2023, 149, 2861–2880. [Google Scholar] [CrossRef]
- Cinquegrana, D.; Zollo, A.L.; Montesarchio, M.; Bucchignani, E. A Metamodel-Based Optimization of Physical Parameters of High Resolution NWP ICON-LAM over Southern Italy. Atmosphere 2023, 14, 788. [Google Scholar] [CrossRef]
- Lauwaet, D.; Berckmans, J.; Hooyberghs, H.; Wouters, H.; Driesen, G.; Lefebre, F.; De Ridder, K. High resolution modelling of the urban heat island of 100 European cities. Urban Clim. 2024, 54, 101850. [Google Scholar] [CrossRef]
Stations | ICON | Dz [m] | ||||||
---|---|---|---|---|---|---|---|---|
Name | lat | lon | z [m] | lat | lon | z [m] | fr_paved | Obs–Icon |
cmp080 (Napoli Vomero) | 40.84 | 14.23 | 215.00 | 40.84 | 14.23 | 117.3 | 1.00 | 97.74 |
San Marco Evangelista METEO | 41.02 | 14.34 | 27.00 | 41.02 | 14.33 | 21.6 | 1.00 | 5.40 |
Grazzanise | 41.09 | 14.11 | 13.00 | 40.94 | 14.02 | 10.4 | 0.25 | 2.64 |
Santa Maria a Vico | 41.03 | 14.49 | 99.00 | 41.03 | 14.48 | 92.41 | 0.00 | 6.59 |
cmp015 (Pignataro Maggiore) | 41.18 | 14.16 | 69.00 | 41.18 | 14.17 | 63.3 | 0.00 | 5.70 |
Pontelatone | 41.20 | 14.24 | 190.00 | 41.20 | 14.24 | 166.1 | 0.00 | 23.94 |
RUN | STD_RATIO | Correlation () | BIAS |
---|---|---|---|
TUT | 1.35 | 0.90 | 0.28 |
TUF | 0.81 | 0.86 | −0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinquegrana, D.; Montesarchio, M.; Zollo, A.L.; Bucchignani, E. Evaluation of the Urban Canopy Scheme TERRA-URB in the ICON Model at Hectometric Scale over the Naples Metropolitan Area. Atmosphere 2024, 15, 1119. https://doi.org/10.3390/atmos15091119
Cinquegrana D, Montesarchio M, Zollo AL, Bucchignani E. Evaluation of the Urban Canopy Scheme TERRA-URB in the ICON Model at Hectometric Scale over the Naples Metropolitan Area. Atmosphere. 2024; 15(9):1119. https://doi.org/10.3390/atmos15091119
Chicago/Turabian StyleCinquegrana, Davide, Myriam Montesarchio, Alessandra Lucia Zollo, and Edoardo Bucchignani. 2024. "Evaluation of the Urban Canopy Scheme TERRA-URB in the ICON Model at Hectometric Scale over the Naples Metropolitan Area" Atmosphere 15, no. 9: 1119. https://doi.org/10.3390/atmos15091119
APA StyleCinquegrana, D., Montesarchio, M., Zollo, A. L., & Bucchignani, E. (2024). Evaluation of the Urban Canopy Scheme TERRA-URB in the ICON Model at Hectometric Scale over the Naples Metropolitan Area. Atmosphere, 15(9), 1119. https://doi.org/10.3390/atmos15091119