Greenhouse Gas Fluxes from Cranberry and Highbush Blueberry Plantations on Former Peat Extraction Fields Compared to Active Peat Extraction Fields and Pristine Peatlands in Latvia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. GHG Flux Measurements and Calculations
2.3. Measurements of Environmental Parameters
2.4. Estimation of Carbon Input with Plant Litter
2.5. Estimation of Annual Greenhouse Gas Fluxes
2.6. Statistical Analysis
3. Results
3.1. Soil and Groundwater Physico-Chemical Variables
3.2. Environmental Variables (Temperature and Groundwater Level)
3.3. Variation in Greenhouse Gas Fluxes and Its Affecting Factors
3.4. Annual Greenhouse Gas Fluxes
4. Discussion
4.1. CO2 Fluxes
4.2. CH4 Fluxes
4.3. N2O Fluxes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Müller, J.; Joos, F. Global peatland area and carbon dynamics from the Last Glacial Maximum to the present—A process-based model investigation. Biogeosciences 2020, 17, 5285–5308. [Google Scholar] [CrossRef]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 2018, 160, 134–140. [Google Scholar] [CrossRef]
- Strack, M.; Davidson, S.J.; Hirano, T.; Dunn, C. The potential of peatlands as nature-based climate solutions. Curr. Clim. Change Rep. 2022, 8, 71–82. [Google Scholar] [CrossRef]
- Courouble, M.; Davidson, N.; Dinesen, L.; Fennessy, S.; Galewski, T.; Guelmami, A.; Kumar, R.; McInnes, R.; Perennou, C.; Rebelo, L.-M.; et al. Convention on Wetlands. Global Wetland Outlook: Special Edition 2021; Secretariat of the Convention on Wetlands: Gland, Switzerland, 2021. [Google Scholar]
- Davies, M.; Gardner, T.; Gearey, B.; de Haas, T.; Schepers, M.; Stratigos, M.J. Between reclamation and restoration: The archaeology, historical ecology and future development of drained wetland landscapes. J. Wetl. Archaeol. 2022, 22, 1–6. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement. In Proceedings of the 21st Conference of the Parties, United Nations, Paris, France, 30 November–11 December 2015. [Google Scholar]
- FAO. Peatlands and Climate Planning—Part 1: Peatlands and Climate Commitments. Available online: https://openknowledge.fao.org/handle/20.500.14283/cc2895en (accessed on 15 August 2024).
- Ghezelayagh, P.; Oleszczuk, R.; Stachowicz, M.; Eini, M.R.; Kamocki, A.; Banaszuk, P.; Grygoruk, M. Developing a remote-sensing-based indicator for peat soil vertical displacement. A case study in the Biebrza Valley, Poland. Ecol. Indic. 2024, 166, 112305. [Google Scholar] [CrossRef]
- Orru, M. Re-vegetation processes in cutaway peat production fields in Estonia in relation to peat quality and water regime. Environ. Monit. Assess 2016, 188, 655. [Google Scholar] [CrossRef]
- Karofeld, E.; Jarašius, L.; Priede, A.; Sendžikaitė, J. On the after-use and restoration of abandoned extracted peatlands in the Baltic countries. Restor. Ecol. 2017, 25, 293–300. [Google Scholar] [CrossRef]
- Freeman, B.W.J.; Evans, C.D.; Musarika, S.; Morrison, R.; Newman, T.R.; Page, S.E.; Wiggs, G.F.S.; Bell, N.G.A.; Styles, D.; Wen, Y.; et al. Responsible agriculture must adapt to the wetland character of mid-latitude peatlands. Glob. Change Biol. 2022, 28, 3795–3811. [Google Scholar] [CrossRef]
- Mander, Ü.; Espenberg, M.; Melling, L.; Kull, A. Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon. Biogeochemistry 2024, 167, 523–543. [Google Scholar] [CrossRef]
- Abolins, M.; Sausserde, R.; Liepniece, M.; Sterne, D. Cranberry and blueberry production in Latvia. Latv. J. Agron. 2009, 12, 7–13. [Google Scholar]
- Abolina, L.; Osvalde, A.; Karlsons, A. Habitat characteristics and mineral nutrition status of Rubus chamaemorus L. in Latvia. Plants 2023, 12, 528. [Google Scholar] [CrossRef]
- Bardule, A.; Jurmalis, E.; Libiete, Z.; Paulina, I.; Donis, J.; Treimane, A. Use of retail market data to assess prices and flows of non-wood forest products in Latvia. Silva Fennica 2020, 54, 10341. [Google Scholar] [CrossRef]
- Osvalde, A.; Karlsons, A.; Cekstere, G. Diagnostics of nutrient status of soil for highbush blueberries in Latvia, 2014-2018. IV Balk. Symp. Fruit Grow. 2020, 1289, 295–301. [Google Scholar] [CrossRef]
- Vahejoe, K.; Albert, T.; Noormets, M.; Karp, K.; Paal, T.; Starast, M.; Värnik, R. Berry cultivation in cutover peat lands in Estonia: Agricultural and economical aspects. Balt. For. 2010, 16, 264–272. [Google Scholar]
- Osvalde, A.; Pormale, J.; Karlsons, A.; Cekstere, G. Differences in agrochemical characteristics of highbush blueberry peat and mineral soils in Latvia, 2011–2014. In Proceedings of the 15th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 18–24 June 2015. [Google Scholar]
- Lazdiņš, A.; Lupiķis, A. LIFE REstore project contribution to the greenhouse gas emission accounts in Latvia. In Sustainable and Responsible after-Use of Peat Extraction Areas; Priede, A., Gancone, A., Eds.; Baltijas Krasti: Riga, Latvia, 2019; pp. 21–54. [Google Scholar]
- Osvalde, A. Amerikas Lielogu Dzērveņu un Krūmmelleņu Minerālās Barošanās Apstākļi Latvijā 2007–2009. g. ELFLA Projekts “Ilgtspējīgas Augļkopības Attīstība, Izmantojot vidi un Ūdeņus Saudzējošas, kā arī Lauku Ainavu Saglabājošas Integrētās Audzēšanas Tehnoloģijas Klimata Pārmaiņu Mazināšanai un Bioloģiskās Daudzveidības Nodrošināšanai’’ Nr. 080410/c-32; Latvijas Valsts Augļkopības Institūts: Dobeles novads, Latvija, 2011. [Google Scholar]
- The Rural Support Service of Latvia. Available online: https://www.lad.gov.lv/lv/platibu-maksajumu-statistika (accessed on 15 August 2024).
- Hatano, R. Impacts of changes in peat soils due to agricultural activities on greenhouse gases (especially N2O) emissions and their mitigations. Pedosphere 2023, in press. [Google Scholar] [CrossRef]
- Epron, D. Separating autotrophic and heterotrophic components of soil respiration: Lessons learned from trenching and related root-exclusion experiments. In Soil Carbon Flux Measurements: An Integrated Methodology; Kutsch, W.L., Bahn, M., Heinemeyer, A., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 157–168. [Google Scholar]
- Wohlfahrt, G.; Anderson-Dunn, M.; Bahn, M.; Balzarolo, M.; Berninger, F.; Campbell, C.; Carrara, A.; Cescatti, A.; Christensen, T.; Dore, S.; et al. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems 2008, 11, 1338–1351. [Google Scholar] [CrossRef]
- Lévesque, V.; Rochette, P.; Hogue, R.; Jeanne, T.; Ziadi, N.; Chantigny, M.H.; Dorais, M.; Antoun, H. Greenhouse gas emissions and soil bacterial community as affected by biochar amendments after periodic mineral fertilizer applications. Biol. Fertil. Soils 2020, 56, 907–925. [Google Scholar] [CrossRef]
- Bārdule, A.; Butlers, A.; Spalva, G.; Ivanovs, J.; Meļņiks, R.N.; Līcīte, I.; Lazdiņš, A. The surface-to-atmosphere GHG fluxes in rewetted and permanently flooded former peat extraction areas compared to pristine peatland in hemiboreal Latvia. Water 2023, 15, 1954. [Google Scholar] [CrossRef]
- LEGMC. Klimata Portals. Available online: https://klimats.meteo.lv/operativais_klimats/laikapstaklu_apskati/arhivs/2016/gads/ (accessed on 15 August 2024).
- Hutchinson, G.L.; Livingston, G.P. Use of chamber systems to measure trace gas fluxes. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change; Harper, L.A., Mosier, A.R., Duxbury, J.M., Rolston, D.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1993; pp. 63–78. [Google Scholar]
- Loftfield, N.; Flessa, H.; Augustin, J.; Beese, F.O. Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide, and nitrous oxide. J. Environ. Qual. 1997, 26, 560–564. [Google Scholar] [CrossRef]
- Rankin, T.; Roulet, N.; Moore, T. Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog. Biogeosciences 2022, 19, 3285–3303. [Google Scholar] [CrossRef]
- Cools, N.; De Vos, B. Part X: Sampling and analysis of soil. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE ICP Forests Programme Co-ordinating Centre, Ed.; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2010. [Google Scholar]
- Inisheva, L.I.; Golovatskaya, E.A. Elements of carbon balance in oligotrophic bogs. Russ. J. Ecol. 2002, 33, 242–248. [Google Scholar] [CrossRef]
- Moore, T.R.; Bubier, J.L.; Frolking, S.E.; Lafleur, P.M.; Roulet, N.T. Plant biomass and production and CO2 exchange in an ombrotrophic bog. J. Ecol. 2002, 90, 25–36. [Google Scholar] [CrossRef]
- Malmer, N.; Wallen, B. Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: Internal processes and environmental changes. Holocene 2004, 14, 111–117. [Google Scholar] [CrossRef]
- Malmer, N.; Svensson, G.; Wallen, B. Carbon and mass balance in a south Swedish ombrotrophic bog: Processes and variation during recent centuries. Mires Peat 2011, 8, 1–16. [Google Scholar]
- Lazdiņš, A. Above and Below Ground Biomass in Three Producing Cranberry Plantations in Latvia. Available online: https://zenodo.org/records/13321481 (accessed on 15 August 2024).
- Palosuo, T.; Heikkinen, J.; Regina, K. Method for estimating soil carbon stock changes in Finnish mineral cropland and grassland soils. Carbon Manag. 2015, 6, 207–220. [Google Scholar] [CrossRef]
- Cassell, A. Using R for Statistics: A Beginner’s Manual. In Resident’s Handbook of Medical Quality and Safety; Atanelov, L., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 361–387. [Google Scholar]
- R Core Team. The R Project for Statistical Computing. Available online: https://www.R-project.org (accessed on 14 January 2024).
- Minasny, B.; McBratney, A.B.; Bellon-Maurel, V.; Roger, J.M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167, 118–124. [Google Scholar] [CrossRef]
- IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; IPCC: Geneva, Switzerland, 2014; Available online: https://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html (accessed on 14 August 2024).
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Brust, G.E. Chapter 9—Management strategies for organic vegetable fertility. In Safety and Practice for Organic Food; Biswas, D., Micallef, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 193–212. [Google Scholar]
- Springob, G.; Kirchmann, H. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils. Soil Biol. Biochem. 2003, 35, 629–632. [Google Scholar] [CrossRef]
- Hugelius, G.; Loisel, J.; Chadburn, S.; Jackson, R.B.; Jones, M.; MacDonald, G.; Marushchak, M.; Olefeldt, D.; Packalen, M.; Siewert, M.B.; et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. USA 2020, 117, 20438–20446. [Google Scholar] [CrossRef]
- Clark, L.; Strachan, I.; Strack, M.; Roulet, N.; Knorr, K.-H.; Teickner, H. Duration of extraction determines CO2 and CH4 emissions from an actively extracted peatland in eastern Quebec, Canada. Biogeosciences 2023, 20, 737–751. [Google Scholar] [CrossRef]
- Hogg, E.H.; Lieffers, V.J.; Wein, R.W. Potential carbon losses from peat profiles: Effects of temperature, drought cycles, and fire. Ecol. Appl. Publ. Ecol. Soc. Am. 1992, 2, 298–306. [Google Scholar] [CrossRef]
- Oestmann, J.; Dettmann, U.; Düvel, D.; Tiemeyer, B. Experimental warming increased greenhouse gas emissions of a near-natural peatland and Sphagnum farming sites. Plant Soil 2022, 480, 85–104. [Google Scholar] [CrossRef]
- Wilson, S. Grasses and grassland ecology. Ann. Bot. 2009, 104, ix. [Google Scholar] [CrossRef]
- Huang, Y.; Ciais, P.; Luo, Y.; Zhu, D.; Wang, Y.; Qiu, C.; Goll, D.S.; Guenet, B.; Makowski, D.; De Graaf, I.; et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Change 2021, 11, 618–622. [Google Scholar] [CrossRef]
- Waddington, J.; Day, S. Methane emissions from a peatland following restoration. J. Geophys. Res. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Leroy, F.; Gogo, S.; Guimbaud, C.; Bernard-Jannin, L.; Yin, X.; Belot, G.; Shuguang, W.; Laggoun-Défarge, F. CO2 and CH4 budgets and global warming potential modifications in Sphagnum-dominated peat mesocosms invaded by Molinia caerulea. Biogeosci. Discuss. 2019, 16, 4085–4095. [Google Scholar] [CrossRef]
- Rigney, C.; Wilson, D.; Renou-Wilson, F.; Müller, C.; Moser, G.; Byrne, K.A. Greenhouse gas emissions from two rewetted peatlands previously managed for forestry. Mires Peat 2018, 21, 1–23. [Google Scholar]
- Henneberg, A.; Elsgaard, L.; Sorrell, B.; Brix, H.; Petersen, S. Does Juncus effusus enhance methane emissions from grazed pastures on peat? Biogeosci. Discuss. 2015, 12, 8467–8495. [Google Scholar] [CrossRef]
- Yao, Z.; Pelster, D.E.; Liu, C.; Zheng, X.; Butterbach-Bahl, K. Soil N intensity as a measure to estimate annual N2O and NO fluxes from natural and managed ecosystems. Curr. Opin. Environ. Sustain. 2020, 47, 1–6. [Google Scholar] [CrossRef]
- Davidson, E.A.; Keller, M.; Erickson, H.E.; Verchot, L.V.; Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience 2000, 50, 667–680. [Google Scholar] [CrossRef]
- Thomson, A.J.; Giannopoulos, G.; Pretty, J.; Baggs, E.M.; Richardson, D.J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1157–1168. [Google Scholar] [CrossRef]
- Wang, J.; Yan, X. Denitrification in upland of China: Magnitude and influencing factors. J. Geophys. Res. Biogeosci. 2016, 121, 3060–3071. [Google Scholar] [CrossRef]
- Chataut, G.; Bhatta, B.; Joshi, D.; Subedi, K.; Kafle, K. Greenhouse gases emission from agricultural soil: A review. J. Agric. Food Res. 2023, 11, 100533. [Google Scholar] [CrossRef]
- Zebarth, B.J.; Rochette, P.; Burton, D.L. N2O emissions from spring barley production as influenced by fertilizer nitrogen rate. Can. J. Soil Sci. 2008, 88, 197–205. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cycles 2002, 16, 6-1–6-13. [Google Scholar] [CrossRef]
- Yao, Z.; Yan, G.; Ma, L.; Wang, Y.; Zhang, H.; Zheng, X.; Wang, R.; Liu, C.; Wang, Y.; Zhu, B.; et al. Soil C/N ratio is the dominant control of annual N2O fluxes from organic soils of natural and semi-natural ecosystems. Agric. For. Meteorol. 2022, 327, 109198. [Google Scholar] [CrossRef]
- Klemedtsson, L.; Arnold, K.; Weslien, P.; Gundersen, P. Soil CN ratio as scalar parameter to predict nitrous oxide emissions. Glob. Change Biol. 2005, 11, 1142–1147. [Google Scholar] [CrossRef]
Type of Land Use and Vegetation | Study Sites | Soil Layer, cm | Mean Soil Bulk Density, Mean Value ± S.E. (Range), kg m−3 |
---|---|---|---|
Cranberry plantations on former peat extraction fields | Kalna_12 (Kalna mire), Naud_12 (Naudaskalna mire), Usuri_12 (Ušuru mire), Lauga_12 (Laugas mire), Brigi_13 (Briģu mire) | 0–10 | 166.6 ± 24.2 (110.8–321.3) |
10–20 | 113.0 ± 24.6 (74.1–333.5) | ||
20–30 | 122.1 ± 23.6 (80.6–333.1) | ||
30–40 | 117.1 ± 24.8 (72.2–339.2) | ||
40–50 | 106.0 ± 19.1 (76.5–276.6) | ||
Highbush blueberry plantations on former peat extraction fields | Kaigu_11 (Kaigu mire), Kalna_11 (Kalna mire), Naud_11 (Naudaskalna mire) | 0–10 | 152.6 ± 15.0 (107.3–226.3) |
10–20 | 120.9 ± 18.5 (46.3–205.8) | ||
20–30 | 106.4 ± 18.8 (20.4–178.7) | ||
30–40 | 111.7± 69.3 (70.3–196.6) | ||
40–50 | 109.9 ± 13.2 (71.4–170.0) | ||
Active peat extraction fields | Kaigu_1 (Kaigu mire), Usuri_1 (Ušuru mire), Lamb_1 (Lambārte mire), Cena_1 (Cena mire), Silg_1 (Silgulda mire) | 0–10 | 123.9 ± 12.5 (73.6–183.9) |
10–20 | 106.3 ± 4.6 (87.2–136.1) | ||
20–30 | 100.3 ± 5.2 (73.9–128.9) | ||
30–40 | 94.2 ± 6.8 (71.8–134.0) | ||
40–50 | 105.2 ± 8.6 (67.5–163.8) | ||
Pristine raised bog | Lauga_9 (Laugas mire), Kem_9 (Lielais Ķemeru mire), Liels_9 (Lielsalas mire) | 0–10 | 150.9 ± 11.6 (134.9–173.5) |
10–20 | 128.9 ± 1.3 (126.3–130.4) | ||
20–30 | 97.5 ± 1.2 (95.7–99.9) | ||
30–40 | 101.1 ± 21.0 (79.7–143.1) | ||
40–50 | 75.3 ± 11.2 (56.6–95.2) |
Type of Land Use and Vegetation | Soil Layer, cm | Corg., Mean ± S.E. (Range), g kg−¹ | Ntot., Mean ± S.E. (Range), g kg−¹ | P, Mean ± S.E. (Range), g kg−¹ | K, Mean ± S.E. (Range), g kg−¹ | pH CaCl2, Mean ± S.E. (Range) |
---|---|---|---|---|---|---|
Cranberry plantations on former peat extraction fields | 0–10 | 512.2 ± 23.22 a,A (304.3–577.0) | 10.3 ± 0.97 a,A (5.3–17.5) | 0.25 ± 0.02 a,A (0.16–0.35) | 0.46 ± 0.05 a,A (0.26–0.84) | 3.1 ± 0.22 a,A (2.4–4.4) |
10–20 | 547.6 ± 6.97 a,AB (514.5–590.2) | 8.9 ± 0.88 a,A (5.65–15.43) | 0.17 ± 0.02 b,A (0.09–0.30) | 0.82 ± 0.50 a,A (0.12–6.31) | 3.0 ± 0.20 a,A (2.5–4.3) | |
20–30 | 561.6 ± 14.8 a,A (529.1–711.1) | 9.6 ± 0.97 a,A (4.7–15.9) | 0.19 ± 0.03 ab,A (0.08–0.47) | 0.35 ± 0.04 a,A (0.12–0.54) | 3.0 ± 0.21 a,A (2.5–4.4) | |
30–40 | 548.6 ± 6.62 a,A (509.2–577.7) | 8.0 ± 0.67 a,A (5.1–11.9 | 0.13 ± 0.01 b,A (0.09–0.19) | 0.32 ± 0.05 a,A (0.14–0.79) | 3.1 ± 0.23 a,A (2.5–4.7) | |
40–50 | 546.2 ± 6.07 a,AB (511.3–583.5) | 8.7 ± 0.76 a,A (5.7–15.2) | 0.15 ± 0.01 b,AB (0.09–0.21) | 0.32 ± 0.04 a,A (0.14–0.72) | 3.2 ± 0.26 a,A (2.5–5.1) | |
50–100 | 554.2 ± 5.98 a,A (524.1–592.5) | 10.1 ± 1.17 a,A (6.6–20.9) | 0.19 ± 0.02 ab,A (0.10–0.35) | 0.33 ± 0.08 a,A (0.13–1.03) | 3.1 ± 0.30 a,A (2.0–4.8) | |
Highbush blueberry plantations on former peat extraction fields | 0–10 | 543.2 ± 8.83 a,A (510.8–588.2) | 11.3 ± 1.24 a,AB (7.3–18.9) | 0.28 ± 0.08 a,A (0.09–0.82) | 0.82 ± 0.30 a,A (7.3–18.9) | 3.1 ± 0.22 a,A (2.6–4.2) |
10–20 | 554.6 ± 12.79 a,AB (510.3–616.2) | 10.1 ± 0.83 a,A (7.0–13.3) | 0.26 ± 0.09 a,A (0.09–0.93) | 0.41 ± 0.12 ab,A (0.14–1.04) | 3.1 ± 0.23 a,A (2.5–4.1) | |
20–30 | 549.3 ± 11.85 a,AB (514.9–630.6) | 9.3 ± 0.94 a,A (6.0–14.1) | 0.34 ± 0.12 a,A (0.04–0.89) | 0.41 ± 0.10 ab,AB (0.13–1.08) | 3.2 ± 0.25 a,A (2.5–4.3) | |
30–40 | 557.3± 15.79 a,AB (510.5–652.4) | 9.2± 0.97 a,A (6.6–15.4) | 0.14± 0.04 a,A (0.02–0.34) | 0.21± 0.03 b,A (0.07–0.34) | 3.3± 0.28 a,A (2.6–4.4) | |
40–50 | 555.8 ± 11.56 a,AB (514.5–616.6) | 10.4 ± 1.62 a,A (5.5–20.0) | 0.09 ± 0.01 a,A (0.03–0.17) | 0.19 ± 0.03 b,AB (0.06–0.29) | 3.3 ± 0.28 a,A (2.6–4.5) | |
50–100 | 552.9 ± 8.61 a,A (526.1–601.5) | 12.0 ± 1.52 a,A (6.9–19.9) | 0.18 ± 0.08 a,A (0.01–0.79) | 0.32 ± 0.09 ab,A (0.09–0.94) | 3.4 ± 0.25 a,A (2.7–4.5) | |
Active peat extraction fields | 0–10 | 546.2 ± 3.87 a,A (529.9–561.3) | 10.5 ± 1.35 a,AB (6.4–20.3) | 0.21 ± 0.05 a,A (0.03–0.53) | 0.28 ± 0.08 ab,A (0.07–0.65) | 2.9 ± 0.11 a,A (2.6–3.5) |
10–20 | 546.8 ± 2.59 a,A (538.1–559.6) | 7.5 ± 0.71 a,A (5.4–11.1) | 0.28 ± 0.08 a,A (0.12–0.84) | 0.28 ± 0.06 a,A (0.09–0.59) | 3.0 ± 0.15 a,A (2.6–3.8) | |
20–30 | 556.7 ± 4.23 ab,A (537.3–575.2) | 9.4 ± 1.39 a,A (5.3–16.0) | 0.25 ± 0.09 a,A (0.10–0.95) | 0.16 ± 0.04 ab,B (0.06–0.42) | 3.1 ± 0.19 a,A (2.7–4.0) | |
30–40 | 563.0 ± 6.28 ab,A (532.8–590.0) | 9.1 ± 1.37 a,A (4.8–17.6) | 0.12 ± 0.01 a,A (0.08–0.17) | 0.08 ± 0.02 b,B (0.02–0.15) | 3.2 ± 0.22 a,A (2.7–4.1) | |
40–50 | 571.2 ± 9.85 ab,A (523.1–609.1) | 11.6 ± 2.44 a,A (4.4–25.6) | 0.14 ± 0.01 a,AB (40.11–0.24) | 0.37 ± 0.26 ab,B (0.03–2.43) | 3.3 ± 0.23 a,A (2.7–4.3) | |
50–100 | 598.6 ± 10.15 b,B (550.2–644.0) | 11.9 ± 1.22 a,A (7.6–18.2) | 0.15 ± 0.02 a,A (0.03–0.21) | 0.20 ± 0.09 ab,A (0.01–0.90) | 3.6 ± 0.29 a,A (2.8–4.8) | |
Pristine raised bog | 0–10 | 517.7 ± 11.33 a,A (479.3–575.6) | 15.0 ± 1.24 a,B (9.7–21.3) | 0.32 ± 0.04 a,A (0.12–0.45) | 0.52 ± 0.11 ab,A (0.06–1.20) | 2.8 ± 0.04 a,A (2.6–2.9) |
10–20 | 513.9 ± 8.51 a,B (475.6–549.6) | 10.9 ± 5.5 a,A (5.1–23.6) | 0.23 ± 0.09 a,A (0.08–0.32) | 0.36 ± 0.12 a,A (0.22–0.56) | 2.8 ± 0.04 a,A (2.7–3.0) | |
20–30 | 525.8 ± 4.64 a,B (507.8–550.6) | 12.8 ± 1.21 a,A (8.3–20.0) | 0.22 ± 0.03 a,A (0.07–0.30) | 0.52 ± 0.19 ab,AB (0.12–1.51) | 2.8 ± 0.05 a,A (2.6–3.1) | |
30–40 | 523.0 ± 6.00 a,B (500.1–555.9) | 10.5 ± 1.38 a,A (6.7–19.2) | 0.16 ± 0.04 a,A (0.06–0.35) | 0.32 ± 0.16 ab,AB (0.17–0.26) | 2.8 ± 0.05 a,A (2.6–3.2) | |
40–50 | 514.0 ± 8.37 a,B (481.5–547.9) | 11.7 ± 1.95 a,A (6.1–21.1) | 0.17 ± 0.02 a,B (0.12–0.26) | 0.14 ± 0.03 b,B (0.05–0.32) | 2.8 ± 0.05 a,A (2.7–3.1) | |
50–100 | 548.2 ± 12.27 a,A (511.1–601.5) | 10.5 ± 1.01 a,A (7.1–14.9) | 0.14 ± 0.01 a,A (0.10–0.19) | 0.15 ± 0.03 ab,A (0.08–0.36) | 3.0 ± 0.08 a,A (2.8–3.5) | |
95% confidence interval (CI), all types of land use and vegetation pooled | 0–10 | 490.0–562.5 | 7.47–15.48 | 0.20–0.34 | 0.15–0.88 | 2.60–3.15 |
10–20 | 512.1–565.6 | 6.02–12.08 | 0.16–0.31 | 0.24–0.43 | 2.52–3.23 | |
20–30 | 523.4–565.4 | 6.83–13.07 | 0.15–0.35 | 0.11–0.59 | 2.49–3.36 | |
30–40 | 517.9–574.8 | 6.74–11.21 | 0.11–0.16 | 0.05–0.40 | 2.45–3.50 | |
40–50 | 507.2–584.5 | 7.50–13.20 | 0.08–0.19 | 0.05–0.31 | 2.52–3.53 | |
50–100 | 528.5–601.5 | 7.83–13.47 | 0.13–0.20 | 0.11–0.34 | 2.35–3.90 |
Type of Land Use and Vegetation | Temperature | Groundwater Level *, Mean Value ± S.E. (Range), cm | |
---|---|---|---|
Measurement Point | Mean Value ± S.E. (Range), °C | ||
Highbush blueberry plantations on former peat extraction fields | Air | 11.3 ± 0.57 (−6.8–31.8) | 45.3 ± 1.99 (0.0–160.0) |
Soil, 5 cm | 9.0 ± 0.44 (−1.9–23.4) | ||
Soil, 10 cm | 8.3 ± 0.39 (−1.5–20.9) | ||
Soil, 15 cm | 7.6 ± 0.33 (−0.3–19.3) | ||
Soil, 30 cm | 7.7 ± 0.32 (−0.1–19.5) | ||
Cranberry plantations on former peat extraction fields | Air | 13.0 ± 0.59 (−9.4–32.8) | 41.6 ± 1.27 (−12.0–118.5) |
Soil, 5 cm | 10.8 ± 0.46 (−4.0–27.0) | ||
Soil, 10 cm | 9.5 ± 0.40 (−4.4–24.2) | ||
Soil, 15 cm | 8.5 ± 0.34 (−0.6–21.3) | ||
Soil, 30 cm | 8.6 ± 0.33 (−0.5–21.3) | ||
Active peat extraction fields | Air | 11.9 ± 0.59 (−6.6–33.0) | 52.3 ± 1.98 (−0.5–150.0) |
Soil, 5 cm | 9.5 ± 0.46 (−2.7–25.9) | ||
Soil, 10 cm | 8.3 ± 0.42 (−4.0–22.0) | ||
Soil, 15 cm | 7.6 ± 0.36 (−1.2–18.9) | ||
Soil, 30 cm | 7.6 ± 0.35 (−1.0–18.7) | ||
Pristine raised bog | Air | 9.4 ± 0.49 (−10.1–26.7) | 7.0 ± 0.56 (−23.0–35.0) |
Soil, 5 cm | 7.9 ± 0.42 (−1.5–24.4) | ||
Soil, 10 cm | 7.4 ± 0.38 (−1.0–20.7) | ||
Soil, 15 cm | 7.2 ± 0.34 (−0.5–19.0) | ||
Soil, 30 cm | 7.3 ± 0.33 (−0.3–19.1) |
Variable | Air Temp., °C | Soil Temp., 5 cm, °C | Soil Temp., 10 cm, °C | Soil Temp., 15 cm, °C | Soil Temp., 30 cm, °C | Soil Moisture, m3 m−3 | Ground- Water Level, cm | Water Temp., °C | Water pH | Water ORP, mV | Water Cond., µS cm−1 | Water ODO, mg L−1 | CO2–C, mg m−2 h−1 | CH4–C, mg m−2 h−1 | N2O–N, mg m−2 h−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Air temp., °C | 1.00 | ||||||||||||||
Soil temp., 5 cm, °C | 0.95 | 1.00 | |||||||||||||
Soil temp., 10 cm, °C | 0.93 | 0.98 | 1.00 | ||||||||||||
Soil temp., 15 cm, °C | 0.86 | 0.94 | 0.96 | 1.00 | |||||||||||
Soil temp., 30 cm, °C | 0.86 | 0.93 | 0.96 | 1.00 | 1.00 | ||||||||||
Soil moisture, m3 m−3 | 0.10 | 0.17 | 0.19 | 0.22 | 0.21 | 1.00 | |||||||||
Groundwater level, cm | −0.13 | −0.14 | −0.14 | −0.15 | −0.15 | −0.02 | 1.00 | ||||||||
Water temp., °C | 0.71 | 0.80 | 0.83 | 0.90 | 0.90 | 0.51 | −0.12 | 1.00 | |||||||
Water pH | 0.11 | 0.13 | 0.15 | 0.16 | 0.16 | −0.39 | −0.08 | 0.37 | 1.00 | ||||||
Water ORP, mV | −0.20 | −0.19 | −0.18 | −0.16 | −0.16 | 0.38 | 0.09 | −0.06 | −0.45 | 1.00 | |||||
Water cond., µS cm−1 | 0.19 | 0.21 | 0.21 | 0.23 | 0.24 | −0.12 | −0.11 | 0.26 | −0.03 | −0.06 | 1.00 | ||||
Water ODO, mg L−1 | −0.25 | −0.24 | −0.24 | −0.22 | −0.23 | −0.11 | 0.00 | −0.25 | 0.01 | 0.38 | −0.20 | 1.00 | |||
CO2–C, mg m−2 h−1 | 0.76 | 0.79 | 0.79 | 0.80 | 0.80 | 0.15 | −0.13 | 0.73 | 0.15 | −0.12 | 0.23 | −0.24 | 1.00 | ||
CH4-C, mg m−2 h−1 | 0.01 | 0.03 | 0.03 | 0.06 | 0.06 | 0.54 | −0.11 | 0.08 | −0.29 | 0.28 | −0.13 | −0.10 | 0.12 | 1.00 | |
N2O-N, mg m−2 h−1 | 0.03 | 0.02 | 0.01 | 0.02 | 0.03 | −0.17 | −0.03 | 0.04 | 0.16 | −0.09 | 0.13 | 0.04 | 0.12 | −0.12 | 1.00 |
Annual GHG Fluxes | Unit | Studied Type of Land Use and Vegetation | |||
---|---|---|---|---|---|
Active Peat Extraction Fields | Pristine Raised Bog | Highbush Blueberry Plantations on Former Peat Extraction Fields | Cranberry Plantations on Former Peat Extraction Fields | ||
Estimated annual soil heterotrophic respiration (Rhet) | t CO2–C ha−1 y−1 | 1.56 ± 0.19 | 1.36 ± 0.19 | 2.23 ± 0.46 | 2.14 ± 0.18 |
Annual carbon input with plant litter | t C ha−1 y−1 | - | 1.43 ± 0.65 | 1.63 ± 1.12 | 1.82 ± 0.21 |
Annual net CO2 fluxes | t CO2–C ha−1 y−1 | 1.56 ± 0.19 | −0.07 ± 0.68 | 0.60 ± 1.21 | 0.32 ± 0.28 |
IPCC (2014) default CO2 emission factor [41] | t CO2–C ha−1 y−1 | 2.8 (95% CI 1.1…4.2) | Rewetted organic soils, poor: −0.23 (95% CI −0.64…0.18) | Cropland: 7.9 (95% CI 6.5…9.4) | |
Estimated annual CH4 fluxes | kg CH4–C ha−1 y−1 | 10.6 ± 6.0 | 128.0 ± 27.5 | 21.0 ± 18.3 | 6.65 ± 1.77 |
IPCC (2014) default CH4 emission factor [41] | kg CH4–C ha−1 y−1 | 4.6 (95% CI 1.2…8.3) | Rewetted organic soils, poor: 92 (95% CI 3…445) | Cropland: 0 (95% CI −2.1…2.1) | |
Estimated annual N2O fluxes | kg N2O–N ha−1 y−1 | 0.28 ± 0.18 | 0.33 ± 0.30 | 0.65 ± 0.33 | 0.18 ± 0.15 |
IPCC (2014) default N2O emission factor [41] | kg N2O–N ha−1 y−1 | 0.3 (95% CI −0.03…0.64) | Rewetted organic soils: negligible | Cropland: 13 (95% CI 8.2…18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bārdule, A.; Meļņiks, R.N.; Zvaigzne, Z.A.; Purviņa, D.; Skranda, I.; Prysiazhniuk, O.; Maliarenko, O.; Lazdiņš, A. Greenhouse Gas Fluxes from Cranberry and Highbush Blueberry Plantations on Former Peat Extraction Fields Compared to Active Peat Extraction Fields and Pristine Peatlands in Latvia. Atmosphere 2024, 15, 1102. https://doi.org/10.3390/atmos15091102
Bārdule A, Meļņiks RN, Zvaigzne ZA, Purviņa D, Skranda I, Prysiazhniuk O, Maliarenko O, Lazdiņš A. Greenhouse Gas Fluxes from Cranberry and Highbush Blueberry Plantations on Former Peat Extraction Fields Compared to Active Peat Extraction Fields and Pristine Peatlands in Latvia. Atmosphere. 2024; 15(9):1102. https://doi.org/10.3390/atmos15091102
Chicago/Turabian StyleBārdule, Arta, Raitis Normunds Meļņiks, Zaiga Anna Zvaigzne, Dana Purviņa, Ilona Skranda, Oleg Prysiazhniuk, Oksana Maliarenko, and Andis Lazdiņš. 2024. "Greenhouse Gas Fluxes from Cranberry and Highbush Blueberry Plantations on Former Peat Extraction Fields Compared to Active Peat Extraction Fields and Pristine Peatlands in Latvia" Atmosphere 15, no. 9: 1102. https://doi.org/10.3390/atmos15091102