Quantifying Future Annual Fluxes of Polychlorinated Dibenzo-P-Dioxin and Dibenzofuran Emissions from Sugarcane Burning in Indonesia via Grey Model
Abstract
:1. Introduction
2. Material and Methods
2.1. General Introduction of Indonesia
2.2. Emission Inventory
2.3. Emission Factors
2.4. Activity Data
2.5. Grey Model
3. Results and Discussion
3.1. Annual Emissions and Geographical Distribution
3.2. Uncertainty
3.3. Emission Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Directorate of Food Crops, Horticulture, and Estate Crops Statistics. Indonesia—Sugar Cane Production Quantity. Available online: https://knoema.com/atlas/Indonesia/topics/Agriculture/Crops-Production-Quantity-tonnes/Sugar-cane-production (accessed on 1 July 2024).
- Aquino, G.S.; Medina, C.C.; Cunha, A.C.B.; Kussaba, D.A.O.; Moreira, A. Vegetative Waste Management on Sugarcane Yield and Industrial Quality. Commun. Soil Sci. Plant Anal. 2019, 50, 132–140. [Google Scholar] [CrossRef]
- Souza, G.S.d.; Souza, Z.M.d.; Silva, R.B.d.; Barbosa, R.S.; Araújo, F.S. Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Rev. Bras. Ciência Solo 2014, 38, 135–146. [Google Scholar] [CrossRef]
- Riajaya, P.D.; Djumali, D.; Heliyanto, B. Yields of Promising Sugarcane Clones under Three Different Planting Arrangements. AGRIVITA J. Agric. Sci. 2022, 44, 119–129. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kohli, A.; Choudhury, S.R.; Dutta, S.K.; Pathak, S.K.; Sohane, R.K.; Sharma, R.P. Impact of Open Crop Residue Burning and Alternate Options for Mitigation: A Review. Curr. J. Appl. Sci. Technol. 2019, 37, 1–10. [Google Scholar] [CrossRef]
- Nowell, H.K.; Wirks, C.; Val Martin, M.; van Donkelaar, A.; Martin, R.V.; Uejio, C.K.; Holmes, C.D. Impacts of Sugarcane Fires on Air Quality and Public Health in South Florida. Environ. Health Perspect. 2022, 130, 087004. [Google Scholar] [CrossRef] [PubMed]
- Tavares, R.L.M.; Spokas, K.; Hall, K.; Colosky, E.; Souza, Z.M.D.; Scala, N.L. Sugarcane residue management impact soil greenhouse gas. Ciência Agrotecnologia 2018, 42, 195–203. [Google Scholar] [CrossRef]
- Shikwambana, L.; Ncipha, X.; Sangeetha, S.; Sivakumar, V.; Mhangara, P. Qualitative study on the observations of emissions, transport, and the influence of climatic factors from sugarcane burning: A south african perspective. Int. J. Environ. Res. Public Health 2021, 18, 7672. [Google Scholar] [CrossRef]
- Gullett, B.K.; Touati, A.; Huwe, J.; Hakk, H. PCDD and PCDF emissions from simulated sugarcane field burning. Environ. Sci. Technol. 2006, 40, 6228–6234. [Google Scholar] [CrossRef]
- Meyer, C.; Beer, T.; Müller, J.; Gillett, R.; Weeks, I.; Powell, J.; Tolhurst, K.; McCaw, L.; Cook, G.; Marney; et al. Dioxin Emissions from Bushfires in Australia; National Dioxins Program Technical Report No. 1; Australian Government: Canberra, Australia, 2004.
- Zain, S.M.S.M.; Latif, M.T.; Baharudin, N.H.; Anual, Z.F.; Hanif, N.M.; Khan, M.F. Atmospheric pcdds/pcdfs levels and occurrences in southeast asia: A review. Sci. Total Environ. 2021, 783, 146929. [Google Scholar] [CrossRef]
- Oanh, N.T.K.; Permadi, D.A.; Hopke, P.K.; Smith, K.R.; Dong, N.P.; Dang, A.N. Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmos. Environ. 2018, 187, 163–173. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Update to an Inventory of Sources and Environmental Releases of Dioxin-Like Compounds in the United States for the Years 1987, 1995, and 2000 (2013, External Review Draft); U.S. Environmental Protection Agency: Washington, DC, USA, 2013.
- Dwyer, H.; Themelis, N.J. Inventory of U.S. 2012 dioxin emissions to atmosphere. Waste Manag. 2015, 46, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Relvas, H.; Lopes, M.; Coutinho, M. Portuguese inventory of dioxins and furans atmospheric emissions. Chemosphere 2015, 93, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Gong, W.; Yu, G.; Fiedler, H. Preliminary release inventories of unintentionally generated dl-PCB and HCB from sources in China: Base year 2015. Chemosphere 2019, 219, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Buekens, A.; Li, X. Dioxins from Biomass Combustion: An Overview. Waste Biomass Valorization 2017, 8, 1–20. [Google Scholar] [CrossRef]
- Sornpoon, W.; Bonnet, S.; Kasemsap, P.; Prasertsak, P.; Garivait, S. Estimation of emissions from sugarcane field burning in thailand using bottom-up country-specific activity data. Atmosphere 2014, 5, 669–685. [Google Scholar] [CrossRef]
- Pan, S.Y.; Liou, Y.T.; Chang, M.B.; Chou, C.C.K.; Ngo, T.H.; Chi, K.H. Characteristics of PCDD/Fs in PM2.5 from emission stacks and the nearby ambient air in Taiwan. Sci. Rep. 2021, 11, 8093. [Google Scholar] [CrossRef]
- Marinković, N.; Pašalić, D.; Ferenčak, G.; Gršković, B.; Rukavina, A. Dioxins and Human Toxicity. Arch. Ind. Hyg. Toxicol. 2010, 61, 445–453. [Google Scholar] [CrossRef]
- Du, C.; Kulay, L.; Cavalett, O.; Dias, L.; Freire, F. Life cycle assessment addressing health effects of particulate matter of mechanical versus manual sugarcane harvesting in brazil. Int. J. Life Cycle Assess. 2017, 23, 787–799. [Google Scholar] [CrossRef]
- Xie, Q. Gray Prediction. In Application of Gray System Theory in Fishery Science; Springer: Singapore, 2023; pp. 115–163. [Google Scholar]
- Hsin, Y.-C.; Chen, Y.-L. Linear Properties and Applications of Grey Prediction Models. J. Grey Syst. 2016, 28, 53–65. [Google Scholar]
- Li, X.; Zhang, H. Improved GM(1,1) Model Based on Simpson Formula and Its Applications. J. Grey Syst. 2018, 31, 33–46. [Google Scholar]
- Zhao, Y.; Li, H. Research on Data Analysis Method Based on Multiple Linear Regression Model and Grey Model. In Proceedings of the 10th International Conference on Information Systems and Computing Technology (ISCTech), Guilin, China, 28–30 December 2022; pp. 324–327. [Google Scholar]
- Ming-Quan, L. Research on the Application of Grey Modeling Theory in the Prediction of Future Epidemic Trend of Infectious Diseases. Eur. J. Prev. Med. 2023, 11, 11–15. [Google Scholar] [CrossRef]
- Hamzaçebi, Ç.; Karakurt, İ. Forecasting the energy-related co2emissions of turkey using a grey prediction model. Energy Sources Part A Recovery Util. Environ. Eff. 2015, 37, 1023–1031. [Google Scholar] [CrossRef]
- Dai, S.; Niu, D.; Han, Y. Forecasting of energy-related CO2 emissions in china based on gm(1,1) and least squares support vector machine optimized by modified shuffled frog leaping algorithm for sustainability. Sustainability 2018, 10, 958. [Google Scholar] [CrossRef]
- Zhu, P.; Xie, W.; Shi, Y.; Pang, M.; Shi, Y. Forecasting CO2 Emissions Using A Novel Conformable Fractional Order Discrete Grey Model. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Chang, C.J.; Li, G.; Zhang, S.Q.; Yu, K.P. Employing a fuzzy-based grey modeling procedure to forecast china’s sulfur dioxide emissions. Int. J. Environ. Res. Public Health 2019, 16, 2504. [Google Scholar] [CrossRef] [PubMed]
- Black, R.R.; Meyer, C.P.; Touati, A.; Gullett, B.K.; Fiedler, H.; Mueller, J.F. Emissions of PCDD and PCDF from combustion of forest fuels and sugarcane: A comparison between field measurements and simulations in a laboratory burn facility. Chemosphere 2011, 83, 1331–1338. [Google Scholar] [CrossRef]
- UNEP. UNEP: Toolkit for Identification and Quantification of Releases of Dioxins, Furans and Other Unintentional POPs under Article 5 of the Stockholm Convention; UNEP: Nairobi, Kenya, 2012. [Google Scholar]
- Directorate of Food Crops, Horticulture, and Estate Crops Statistics. Indonesian Sugar Cane Statistics 2016; Badan Pusat Statistik Indonesia: Jakarta, Indonesia, 2016.
- MoA. Tree Crop Estate Statistics of Indonesia 2018–2020; Secretariate of Directorate General of Estates: Jakarta, Indonesia, 2019.
- Directorate of Food Crops, Horticulture, and Estate Crops Statistics. Indonesian Sugar Cane Statistics 2017; Badan Pusat Statistik Indonesia: Jakarta, Indonesia, 2017.
- Directorate of Food Crops, Horticulture, and Estate Crops Statistics. Indonesian Sugar Cane Statistics 2021; Badan Pusat Statistik Indonesia: Jakarta, Indonesia, 2021.
- Sulaiman, A.A.; Sulaeman, Y.; Mustikasari, N.; Nursyamsi, D.; Syakir, A.M. Increasing sugar production in indonesia through land suitability analysis and sugar mill restructuring. Land 2019, 8, 61. [Google Scholar] [CrossRef]
- Milojković, J.; Litovski, V. ANN versus Grey theory based forecasting methods implemented on short time series. In Proceedings of the 10th Symposium on Neural Network Applications in Electrical Engineering, Belgrade, Serbia, 23–25 September 2010; pp. 117–122. [Google Scholar]
- Tan, X.; Xu, J.; Li, F.; Wu, M.; Chen, D.; Liang, Y. A new gm (1,1) model suitable for short-term prediction of satellite clock bias. IET Radar Sonar Navig. 2022, 16, 2040–2052. [Google Scholar] [CrossRef]
- Spaunhorst, D.J.; Orgeron, A.J.; White, P.M. Burning postharvest sugarcane residue for control of surface-deposited divine nightshade (Solanum nigrescens) and itchgrass (Rottboellia cochinchinensis) seed. Weed Technol. 2019, 33, 693–700. [Google Scholar] [CrossRef]
- Song, S.; Chen, K.; Huang, T.; Ma, J.; Wang, J.; Mao, X.; Gao, H.; Zhao, Y.; Zhou, Z. New emission inventory reveals termination of global dioxin declining trend. J. Hazard. Mater. 2023, 443, 130357. [Google Scholar] [CrossRef]
- Sugandi, W.K.; Suastawa, I.N.; Wiyono, J. The Sugar Cane Plantation Of Land Condition After Harvesting And Mechanics And Physical Characteristics. J. Agric. Eng. 2018, 3, 133–140. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop Residue Burning in India: Policy Challenges and Potential Solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef] [PubMed]
- Haider, M.Z. Benefit of rice residue burning in the field. Int. J. Agric. Environ. Biotechnol. 2013, 6, 145–155. [Google Scholar]
- Yu, K.-B.; Lee, B.-T.; Han, K.-M.; Kim, H.-S.; Yim, H.-M.; Song, M.-K.; Bae, M.-S. Estimation of Fuel Loadings of Domestic Agricultural Crop Residues to Determine the Air Pollutants Emissions. J. Korean Soc. Atmos. Environ. 2022, 38, 451–469. [Google Scholar] [CrossRef]
- Wenting, L.; Xuedong, G.; Hao, L. Air Quality Prediction Model Based on Grey Interval. In Proceedings of the 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hangzhou, China, 4–6 May 2022; pp. 553–558. [Google Scholar]
- Lao, T.; Chen, X.; Zhu, J. The Optimized Multivariate Grey Prediction Model Based on Dynamic Background Value and Its Application. Complexity 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. A Semi Parametric Autoregression Model for Predicting Air Quality. In Proceedings of the 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 16–18 December 2022. [Google Scholar]
- Xiaoyue, Z.; Yaoguo, D.; Song, D. Forecasting air quality in China using novel self-adaptive seasonal grey forecasting models. Grey Syst. Theory Appl. 2021, 11, 596–618. [Google Scholar] [CrossRef]
- Matthias, V.; Arndt, J.; Aulinger, A.; Bieser, J.; Quante, M. Modelling the Temporal and Spatial Allocation of Emission Data; Springer: Cham, Switzerland, 2018; pp. 193–198. [Google Scholar]
- Plejdrup, M.S.; Nielsen, O.K.; Bruun, H.G. Influence of improved methodology and increased spatial resolution on gridded emissions. Int. J. Environ. Impacts 2019, 2, 161–173. [Google Scholar] [CrossRef]
- Rangel, M.G.L.; Henríquez, J.R.; Costa, J.A.; de Lira Junior, J.C. An assessment of dispersing pollutants from the pre-harvest burning of sugarcane in rural areas in the northeast of Brazil. Atmos. Environ. 2018, 178, 265–281. [Google Scholar] [CrossRef]
- Adegboye, O. Field Burning Fallout: Quantifying PM2.5 Emissions from Sugarcane Fires. Environ. Health Perspect. 2022, 130, 084003. [Google Scholar] [CrossRef]
- Mugica-Alvarez, V.; Santiago-de la Rosa, N.; Figueroa-Lara, J.; Flores-Rodríguez, J.; Torres-Rodríguez, M.; Magaña-Reyes, M. Emissions of PAHs derived from sugarcane burning and processing in Chiapas and Morelos México. Sci. Total Environ. 2015, 527, 474–482. [Google Scholar] [CrossRef]
Country | Exp Approach | Mean EF µg TEQ/(t Fuel) | Range | Stdv | Ref. |
---|---|---|---|---|---|
UNEP | Field | 4 | - | - | [32] |
Queensland, Australia | Field | 0.95 | 0.52–1.4 | - | [9] |
Queensland, Australia | Lab burn tunnel | 4.4 | 1.6–9.6 | 3.7 | [10] |
Hawaii, USA | Burn facility | 126 | 98–148 | - | |
Florida, USA | Burn facility | 6.9 | 4–9.8 | - | |
Florida, USA | Burn facility | 2.3 | 1.6–4.4 | - | [9] |
Florida, USA | Burn facility | 0.34 | - | - | |
Florida, USA | Field | 1.39 | 0.85–2.3 | 0.57 | [9,10] |
Florida, USA | Field | 1.9 | 0.96–2.8 | - | [9] |
North Sumatra | South Sumatra | Lampung | West Java | Central Java | D.I Yogyakarta | East Java | West Nusa Tenggara | East Nusa Tenggara | South Sulawesi | Gorontalo | |
---|---|---|---|---|---|---|---|---|---|---|---|
N (years) | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 2 | 7 | 7 |
mean | 232 | 301 | 428 | 301 | 331 | 247 | 435 | 242 | 187 | 287 | 414 |
stDev | 41 | 39 | 24 | 26 | 25 | 70 | 18 | 107 | 153 | 80 | 85 |
min | 178 | 255 | 387 | 245 | 290 | 120 | 407 | 50 | 78 | 149 | 237 |
25% | 202 | 266.5 | 418 | 302.5 | 319.5 | 225.5 | 425 | 210 | 132 | 262 | 405 |
50% | 225 | 301 | 431 | 305 | 341 | 239 | 439 | 276.5 | 186 | 289 | 441 |
75% | 261 | 333 | 438 | 316 | 349 | 294 | 448 | 315 | 240 | 325 | 460 |
max | 293 | 351 | 464 | 322 | 353 | 334 | 455 | 333 | 294 | 400 | 487 |
Year | UNEP | USA | Australia |
---|---|---|---|
(4 µg TEQ/t Material Burned) | (1.39 µg TEQ/t Fuel) | (0.95 µg TEQ/t Fuel) | |
2016 | 5311 | 1883 | 1644 |
2017 | 4836 | 1095 | 749 |
2018 | 5010 | 1057 | 723 |
2019 | 4955 | 1686 | 1152 |
2020 | 5018 | 1108 | 757 |
2021 | 4998 | 1229 | 840 |
2022 | 4838 | 1119 | 765 |
2023 | 2024 | 2025 | 2026 | 2027 | 2028 | |
---|---|---|---|---|---|---|
North Sumatra | 260 | 271 | 282 | 293 | 305 | 317 |
South Sumatra | 242 | 232 | 222 | 213 | 204 | 195 |
Lampung | 413 | 411 | 409 | 407 | 405 | 402 |
West Java | 306 | 308 | 310 | 312 | 314 | 316 |
Central Java | 351 | 356 | 362 | 367 | 372 | 378 |
D.I. Yogyakarta | 270 | 279 | 288 | 298 | 307 | 318 |
East Java | 416 | 412 | 408 | 405 | 401 | 397 |
West Nusa Tenggara | 296 | 311 | 327 | 344 | 362 | 381 |
East Nusa Tenggara | 180 | 178 | 176 | 174 | 172 | 170 |
South Sulawesi | 216 | 201 | 187 | 173 | 161 | 150 |
Gorontalo | 505 | 534 | 564 | 595 | 629 | 664 |
MAPE (%) | MAE | |
---|---|---|
North Sumatra | 36 | 95 |
South Sumatra | 9 | 27 |
Lampung | 6 | 26 |
West Java | 18 | 58 |
Central Java | 3 | 12 |
D.I. Yogyakarta | 78 | 177 |
East Java | 1.4 | 6 |
West Nusa Tenggara | 42 | 140 |
East Nusa Tenggara | 100 | 186 |
South Sulawesi | 83 | 143 |
Gorontalo | 29 | 129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siami, L.; Wang, Y.-C.; Wang, L.-C. Quantifying Future Annual Fluxes of Polychlorinated Dibenzo-P-Dioxin and Dibenzofuran Emissions from Sugarcane Burning in Indonesia via Grey Model. Atmosphere 2024, 15, 1078. https://doi.org/10.3390/atmos15091078
Siami L, Wang Y-C, Wang L-C. Quantifying Future Annual Fluxes of Polychlorinated Dibenzo-P-Dioxin and Dibenzofuran Emissions from Sugarcane Burning in Indonesia via Grey Model. Atmosphere. 2024; 15(9):1078. https://doi.org/10.3390/atmos15091078
Chicago/Turabian StyleSiami, Lailatus, Yu-Chun Wang, and Lin-Chi Wang. 2024. "Quantifying Future Annual Fluxes of Polychlorinated Dibenzo-P-Dioxin and Dibenzofuran Emissions from Sugarcane Burning in Indonesia via Grey Model" Atmosphere 15, no. 9: 1078. https://doi.org/10.3390/atmos15091078
APA StyleSiami, L., Wang, Y. -C., & Wang, L. -C. (2024). Quantifying Future Annual Fluxes of Polychlorinated Dibenzo-P-Dioxin and Dibenzofuran Emissions from Sugarcane Burning in Indonesia via Grey Model. Atmosphere, 15(9), 1078. https://doi.org/10.3390/atmos15091078