Long-Term Validation of Aeolus Level-2B Winds in the Brazilian Amazon
Abstract
:1. Introduction
2. Dataset and Methods
2.1. Aeolus Data
- Mie-cloudy: Winds derived from the Mie channel, classified as cloudy, with non-zero particle backscatter.
- Mie-clear: Winds derived from the Mie channel, mistakenly classified as clear despite the presence of particulates.
- Rayleigh-cloudy: Winds derived from the Rayleigh channel, classified as cloudy.
- Rayleigh-clear: Winds derived from the Rayleigh channel, classified as clear, with predominantly molecular backscatter.
- 2B11 (from June 2019 to May 2021);
- 2B12 (from June 2021 to November 2021);
- 2B13 (from December 2021 to March 2022);
- 2B14 (from October 2018 to May 2019, and from April 2022 to August 2022);
- 2B15 (from September 2022 to March 2023).
2.2. Radiosonde Data
2.3. Comparison of Datasets
- Time: Aeolus and radiosonde wind measurements must have a maximum allowable temporal difference of 2 h;
- Location: must have a maximum allowable horizontal distance of 100 km;
- Height: must have a maximum allowable altitude difference of 300 m.
3. Results and Discussion
3.1. Overall Intercomparison
3.2. Cruzeiro do Sul
3.3. Porto Velho
3.4. Rio Branco
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, W.E.; Atlas, R.; Cardinali, C.; Clement, A.; Emmitt, G.D.; Gentry, B.M.; Hardesty, R.M.; Källén, E.; Kavaya, M.J.; Langland, R.; et al. Lidar-Measured Wind Profiles: The Missing Link in the Global Observing System. Bull. Am. Meteorol. Soc. 2014, 95, 543–564. [Google Scholar] [CrossRef]
- Stoffelen, A.; Marseille, G.J.; Bouttier, F.; Vasiljevic, D.; De Haan, S.; Cardinali, C. ADM-Aeolus Doppler wind lidar Observing System Simulation Experiment. Q. J. R. Meteorol. Soc. 2006, 132, 1927–1947. [Google Scholar] [CrossRef]
- Haan, S.d.; Stoffelen, A. Assimilation of High-Resolution Mode-S Wind and Temperature Observations in a Regional NWP Model for Nowcasting Applications. Weather Forecast. 2012, 27, 918–937. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Horányi, A.; Cardinali, C.; Rennie, M.; Isaksen, L. The assimilation of horizontal line-of-sight wind information into the ECMWF data assimilation and forecasting system. Part I: The assessment of wind impact. Q. J. R. Meteorol. Soc. 2015, 141, 1223–1232. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Battaglia, A.; Bradford, J.; Forsythe, M.; Joe, P.; Kollias, P.; Lean, K.; Lori, M.; Mahfouf, J.F.; Melo, S.; et al. WIVERN: A New Satellite Concept to Provide Global In-Cloud Winds, Precipitation, and Cloud Properties. Bull. Am. Meteorol. Soc. 2018, 99, 1669–1687. [Google Scholar] [CrossRef]
- WMO. Preliminary Statement of Guidance Regarding How Well Satellite Capabilities Meet WMO User Requirements in Several Application Areas; Technical Report WMO/TD-No.913; World Meteorological Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Weissmann, M.; Cardinali, C. Impact of airborne Doppler lidar observations on ECMWF forecasts. Q. J. R. Meteorol. Soc. 2007, 133, 107–116. [Google Scholar] [CrossRef]
- Reitebuch, O.; Lemmerz, C.; Nagel, E.; Paffrath, U.; Durand, Y.; Endemann, M.; Fabre, F.; Chaloupy, M. The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument. J. Atmos. Ocean. Technol. 2009, 26, 2501–2515. [Google Scholar] [CrossRef]
- Straume, A.G.; Rennie, M.; Isaksen, L.; Kloe, J.d.; Marseille, G.J.; Stoffelen, A.; Flament, T.; Stieglitz, H.; Dabas, A.; Huber, D.; et al. ESA’s Space-Based Doppler Wind Lidar Mission Aeolus—First Wind and Aerosol Product Assessment Results. EPJ Web Conf. 2020, 237, 01007. [Google Scholar] [CrossRef]
- Rennie, M.P.; Isaksen, L.; Weiler, F.; de Kloe, J.; Kanitz, T.; Reitebuch, O. The impact of Aeolus wind retrievals on ECMWF global weather forecasts. Q. J. R. Meteorol. Soc. 2021, 147, 3555–3586. [Google Scholar] [CrossRef]
- Garrett, K.; Liu, H.; Ide, K.; Hoffman, R.N.; Lukens, K.E. Optimization and impact assessment of Aeolus HLOS wind assimilation in NOAA’s global forecast system. Q. J. R. Meteorol. Soc. 2022, 148, 2703–2716. [Google Scholar] [CrossRef]
- Borne, M.; Knippertz, P.; Weissmann, M.; Martin, A.; Rennie, M.; Cress, A. Impact of Aeolus wind lidar observations on the representation of the West African monsoon circulation in the ECMWF and DWD forecasting systems. Q. J. R. Meteorol. Soc. 2023, 149, 933–958. [Google Scholar] [CrossRef]
- Witschas, B.; Lemmerz, C.; Geiß, A.; Lux, O.; Marksteiner, U.; Rahm, S.; Reitebuch, O.; Weiler, F. First validation of Aeolus wind observations by airborne Doppler wind lidar measurements. Atmos. Meas. Tech. 2020, 13, 2381–2396. [Google Scholar] [CrossRef]
- Lux, O.; Lemmerz, C.; Weiler, F.; Marksteiner, U.; Witschas, B.; Rahm, S.; Geiß, A.; Reitebuch, O. Intercomparison of wind observations from the European Space Agency’s Aeolus satellite mission and the ALADIN Airborne Demonstrator. Atmos. Meas. Tech. 2020, 13, 2075–2097. [Google Scholar] [CrossRef]
- Baars, H.; Herzog, A.; Heese, B.; Ohneiser, K.; Hanbuch, K.; Hofer, J.; Yin, Z.; Engelmann, R.; Wandinger, U. Validation of Aeolus wind products above the Atlantic Ocean. Atmos. Meas. Tech. 2020, 13, 6007–6024. [Google Scholar] [CrossRef]
- Martin, A.; Weissmann, M.; Reitebuch, O.; Rennie, M.; Geiß, A.; Cress, A. Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents. Atmos. Meas. Tech. 2021, 14, 2167–2183. [Google Scholar] [CrossRef]
- Belova, E.; Kirkwood, S.; Voelger, P.; Chatterjee, S.; Satheesan, K.; Hagelin, S.; Lindskog, M.; Körnich, H. Validation of Aeolus winds using ground-based radars in Antarctica and in northern Sweden. Atmos. Meas. Tech. 2021, 14, 5415–5428. [Google Scholar] [CrossRef]
- Iwai, H.; Aoki, M.; Oshiro, M.; Ishii, S. Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan. Atmos. Meas. Tech. 2021, 14, 7255–7275. [Google Scholar] [CrossRef]
- Wu, S.; Sun, K.; Dai, G.; Wang, X.; Liu, X.; Liu, B.; Song, X.; Reitebuch, O.; Li, R.; Yin, J.; et al. Inter-comparison of wind measurements in the atmospheric boundary layer and the lower troposphere with Aeolus and a ground-based coherent Doppler lidar network over China. Atmos. Meas. Tech. 2022, 15, 131–148. [Google Scholar] [CrossRef]
- Bley, S.; Rennie, M.; Žagar, N.; Pinol Sole, M.; Straume, A.G.; Antifaev, J.; Candido, S.; Carver, R.; Fehr, T.; von Bismarck, J.; et al. Validation of the Aeolus L2B Rayleigh winds and ECMWF short-range forecasts in the upper troposphere and lower stratosphere using Loon super pressure balloon observations. Q. J. R. Meteorol. Soc. 2022, 148, 3852–3868. [Google Scholar] [CrossRef]
- Chou, C.C.; Kushner, P.J.; Laroche, S.; Mariani, Z.; Rodriguez, P.; Melo, S.; Fletcher, C.G. Validation of the Aeolus Level-2B wind product over Northern Canada and the Arctic. Atmos. Meas. Tech. 2022, 15, 4443–4461. [Google Scholar] [CrossRef]
- Witschas, B.; Lemmerz, C.; Geiß, A.; Lux, O.; Marksteiner, U.; Rahm, S.; Reitebuch, O.; Schäfler, A.; Weiler, F. Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics. Atmos. Meas. Tech. 2022, 15, 7049–7070. [Google Scholar] [CrossRef]
- Abril-Gago, J.; Ortiz-Amezcua, P.; Bermejo-Pantaleón, D.; Andújar-Maqueda, J.; Bravo-Aranda, J.A.; Granados-Muñoz, M.J.; Navas-Guzmán, F.; Alados-Arboledas, L.; Foyo-Moreno, I.; Guerrero-Rascado, J.L. Validation activities of Aeolus wind products on the southeastern Iberian Peninsula. Atmos. Chem. Phys. 2023, 23, 8453–8471. [Google Scholar] [CrossRef]
- Baars, H.; Walchester, J.; Basharova, E.; Gebauer, H.; Radenz, M.; Bühl, J.; Barja, B.; Wandinger, U.; Seifert, P. Long-term validation of Aeolus L2B wind products at Punta Arenas, Chile, and Leipzig, Germany. Atmos. Meas. Tech. 2023, 16, 3809–3834. [Google Scholar] [CrossRef]
- Kirkwood, S.; Belova, E.; Voelger, P.; Chatterjee, S.; Satheesan, K. Extended validation of Aeolus winds with wind-profiling radars in Antarctica and Arctic Sweden. Atmos. Meas. Tech. 2023, 16, 4215–4227. [Google Scholar] [CrossRef]
- Ratynski, M.; Khaykin, S.; Hauchecorne, A.; Wing, R.; Cammas, J.P.; Hello, Y.; Keckhut, P. Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence. Atmos. Meas. Tech. 2023, 16, 997–1016. [Google Scholar] [CrossRef]
- Borne, M.; Knippertz, P.; Weissmann, M.; Witschas, B.; Flamant, C.; Rios-Berrios, R.; Veals, P. Validation of Aeolus L2B products over the tropical Atlantic using radiosondes. Atmos. Meas. Tech. 2024, 17, 561–581. [Google Scholar] [CrossRef]
- Yoshida, A.C.; da Silva Lopes, F.J.; Venturini, P.C.; Cacheffo, A.; Guerrero-Rascado, J.L.; Landulfo, E. Validation of Aeolus Wind Product at Cruzeiro do Sul-Brazil. In Proceedings of the Space-Based Lidar Remote Sensing Techniques and Emerging Technologies, Milos Island, Greece, 18–23 June 2023; Singh, U.N., Tzeremes, G., Refaat, T.F., Ribes Pleguezuelo, P., Eds.; Springer: Cham, Switzerland, 2024; pp. 319–328. [Google Scholar] [CrossRef]
- Santos, C.A.G.; dos Santos, D.C.; Neto, R.M.B.; de Oliveira, G.; dos Santos, C.A.C.; da Silva, R.M. Analyzing the impact of ocean-atmosphere teleconnections on rainfall variability in the Brazilian Legal Amazon via the Rainfall Anomaly Index (RAI). Atmos. Res. 2024, 307, 107483. [Google Scholar] [CrossRef]
- Witschas, B.; Lemmerz, C.; Lux, O.; Marksteiner, U.; Reitebuch, O.; Weiler, F.; Fabre, F.; Dabas, A.; Flament, T.; Huber, D.; et al. Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation. Atmos. Meas. Tech. 2022, 15, 1465–1489. [Google Scholar] [CrossRef]
- Flesia, C.; Korb, C.L. Theory of the double-edge molecular technique for Doppler lidar wind measurement. Appl. Opt. 1999, 38, 432–440. [Google Scholar] [CrossRef]
- McKay, J.A. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar. Appl. Opt. 2002, 41, 1760–1767. [Google Scholar] [CrossRef] [PubMed]
- Dirksen, R.J.; Sommer, M.; Immler, F.J.; Hurst, D.F.; Kivi, R.; Vömel, H. Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmos. Meas. Tech. 2014, 7, 4463–4490. [Google Scholar] [CrossRef]
- Velden, C.S.; Holmlund, K. Report from the working group on verification and quality indices (WG III). In Proceedings of the 4th International Winds Workshop, EUMETSAT, Saanenmöser, Switzerland, 20–23 October 1998. [Google Scholar]
Rayleigh-Clear | Mie-Cloudy | |||||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2022 | 2019 | 2020 | 2021 | 2022 | |
N | 2600 | 3058 | 2202 | 2046 | 1699 | 1862 | 1116 | 944 |
r | 0.75 | 0.71 | 0.70 | 0.76 | 0.83 | 0.85 | 0.88 | 0.90 |
bias (m/s) | 0.06 | 0.18 | −0.22 | −0.95 | −0.28 | −0.25 | −0.41 | −0.70 |
SD (m/s) | 6.23 | 7.41 | 8.29 | 7.02 | 3.91 | 4.38 | 4.27 | 3.48 |
Rayleigh-Clear | Mie-Cloudy | |||||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2022 | 2019 | 2020 | 2021 | 2022 | |
N | 302 | 202 | 725 | 1384 | 165 | 102 | 244 | 545 |
r | 0.75 | 0.75 | 0.67 | 0.76 | 0.82 | 0.72 | 0.77 | 0.90 |
bias (m/s) | −0.10 | 0.45 | −0.10 | −1.06 | 0.05 | 0.93 | −0.10 | −0.80 |
SD (m/s) | 6.28 | 6.60 | 8.47 | 7.01 | 3.21 | 4.23 | 4.38 | 3.37 |
Rayleigh-Clear | Mie-Cloudy | |||||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2022 | 2019 | 2020 | 2021 | 2022 | |
N | 1333 | 1432 | 984 | 659 | 959 | 956 | 587 | 398 |
r | 0.74 | 0.70 | 0.70 | 0.76 | 0.84 | 0.79 | 0.90 | 0.90 |
bias (m/s) | 0.28 | 0.12 | −0.23 | −0.74 | −0.20 | −0.35 | −0.30 | −0.57 |
SD (m/s) | 6.35 | 7.50 | 8.40 | 7.03 | 4.08 | 4.31 | 4.08 | 3.64 |
Rayleigh-Clear | Mie-Cloudy | |||||
---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |
N | 965 | 1424 | 493 | 575 | 804 | 285 |
r | 0.74 | 0.71 | 0.74 | 0.80 | 0.89 | 0.88 |
bias (m/s) | −0.19 | 0.20 | −0.36 | −0.50 | −0.29 | −0.90 |
SD (m/s) | 6.05 | 7.42 | 7.79 | 3.81 | 4.46 | 4.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, A.C.; Venturini, P.C.; Lopes, F.J.d.S.; Landulfo, E. Long-Term Validation of Aeolus Level-2B Winds in the Brazilian Amazon. Atmosphere 2024, 15, 1026. https://doi.org/10.3390/atmos15091026
Yoshida AC, Venturini PC, Lopes FJdS, Landulfo E. Long-Term Validation of Aeolus Level-2B Winds in the Brazilian Amazon. Atmosphere. 2024; 15(9):1026. https://doi.org/10.3390/atmos15091026
Chicago/Turabian StyleYoshida, Alexandre Calzavara, Patricia Cristina Venturini, Fábio Juliano da Silva Lopes, and Eduardo Landulfo. 2024. "Long-Term Validation of Aeolus Level-2B Winds in the Brazilian Amazon" Atmosphere 15, no. 9: 1026. https://doi.org/10.3390/atmos15091026
APA StyleYoshida, A. C., Venturini, P. C., Lopes, F. J. d. S., & Landulfo, E. (2024). Long-Term Validation of Aeolus Level-2B Winds in the Brazilian Amazon. Atmosphere, 15(9), 1026. https://doi.org/10.3390/atmos15091026