Evaluation of Seasonal Prediction of Extreme Wind Resource Potential over China Based on a Dynamic Prediction System SIDRI-ESS V1.0
Abstract
:1. Introduction
2. Data and Methods
2.1. Model and Hindcast Dataset
2.2. Observed Dataset
2.3. Definition of Extreme Wind Events
2.4. Skill Metrics
3. Results
3.1. Evaluation of Extreme Winds Threshold
3.2. Skill in Predicting Extreme Wind Counts on Seasonal Timescale
3.3. Impact of Ensemble Size
3.4. Possible Reasons for the Prediction Skill
4. Summary
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GWEC. Global Wind Report 2020; Global Wind Energy Council: Lisbon, Portugal, 2021. [Google Scholar]
- GWEC. Global Wind Report 2021; Global Wind Energy Council: Lisbon, Portugal, 2022. [Google Scholar]
- GWEC. Global Wind Report 2022; Global Wind Energy Council: Lisbon, Portugal, 2023. [Google Scholar]
- Wiatros-Motyka, M.; Fulghum, N.; Jones, D. Global Electricity Review 2024; Ember: Westlake Village, CA, USA, 2024. [Google Scholar]
- WWEA. WWEA Annual Report 2023; World Wind Energy Association: Bonn, Germany, 2024. [Google Scholar]
- Barthelmie, R.J.; Pryor, S.C. Potential contribution of wind energy to climate change mitigation. Nat. Clim. Change 2014, 4, 684–688. [Google Scholar] [CrossRef]
- He, G.; Lin, J.; Sifuentes, F.; Liu, X.; Abhyankar, N.; Phadke, A. Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system. Nat. Commun. 2020, 11, 2486. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Wang, Z.; Li, S.; Li, J.; He, G.; Li, Y.; Liu, Y.; Piao, S.; Gao, Z.; et al. Potential contributions of wind and solar power to China’s carbon neutrality. Resour. Conserv. Recycl. 2022, 180, 106155. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Tanaka, K.; Ciais, P.; Penuelas, J.; Balkanski, Y.; Sardans, J.; Hauglustaine, D.; Liu, W.; Xing, X.; et al. Accelerating the energy transition towards photovoltaic and wind in China. Nature 2023, 619, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Negrete-Pincetic, M.; Gui, W.; Kowli, A.; Pulgar-Painemal, H. Emerging issues due to the integration of wind power in competitive electricity markets. In Proceedings of the 2010 Power and Energy Conference At Illinois (PECI), Urbana-Champaign, IL, USA, 12–13 February 2010; pp. 45–50. [Google Scholar]
- Rao, V.; Bedford, A.; Mokhtar, M.; Howe, J.M. Power Profiling and Inherent Lag Prediction of a Wind Power Generating System for Its Integration to an Energy Storage System. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 133–138. [Google Scholar]
- Yang, Y.; Wu, K.; Long, H.; Gao, J.; Yan, X.; Kato, T.; Suzuoki, Y. Integrated electricity and heating demand-side management for wind power integration in China. Energy 2014, 78, 235–246. [Google Scholar] [CrossRef]
- Ren, G.; Liu, J.; Wan, J.; Guo, Y.; Yu, D. Overview of wind power intermittency: Impacts, measurements, and mitigation solutions. Appl. Energy 2017, 204, 47–65. [Google Scholar] [CrossRef]
- Troccoli, A.; Boulahya, M.S.; Dutton, J.A.; Furlow, J.; Gurney, R.J.; Harrison, M. Weather and Climate Risk Management in the Energy Sector. Bull. Am. Meteorol. Soc. 2010, 91, 785–788. [Google Scholar] [CrossRef]
- Troccoli, A.; Audinet, P.; Bonelli, P.; Boulahya, M.S.; Buontempo, C.; Coppin, P.; Dubus, L.; Dutton, J.A.; Ebinger, J.; Griggs, D.; et al. Promoting New Links Between Energy and Meteorology. Bull. Am. Meteorol. Soc. 2013, 94, ES36–ES40. [Google Scholar] [CrossRef]
- Vladislavleva, E.; Friedrich, T.; Neumann, F.; Wagner, M. Predicting the energy output of wind farms based on weather data: Important variables and their correlation. Renew. Energy 2013, 50, 236–243. [Google Scholar] [CrossRef]
- Clark, R.T.; Bett, P.E.; Thornton, H.E.; Scaife, A.A. Skilful seasonal predictions for the European energy industry. Environ. Res. Lett. 2017, 12, 024002. [Google Scholar] [CrossRef]
- Torralba, V.; Doblas-Reyes, F.J.; MacLeod, D.; Christel, I.; Davis, M. Seasonal Climate Prediction: A New Source of Information for the Management of Wind Energy Resources. J. Appl. Meteorol. Climatol. 2017, 56, 1231–1247. [Google Scholar] [CrossRef]
- Wohland, J.; Reyers, M.; Märker, C.; Witthaut, D. Natural wind variability triggered drop in German redispatch volume and costs from 2015 to 2016. PLoS ONE 2018, 13, e0190707. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, C.; Mason, S.; Walland, D. The Global Framework for Climate Services. Nat. Clim. Change 2012, 2, 831–832. [Google Scholar] [CrossRef]
- Orlov, A.; Sillmann, J.; Vigo, I. Better seasonal forecasts for the renewable energy industry. Nat. Energy 2020, 5, 108–110. [Google Scholar] [CrossRef]
- Bett, P.E.; Thornton, H.E.; Troccoli, A.; De Felice, M.; Suckling, E.; Dubus, L.; Saint-Drenan, Y.-M.; Brayshaw, D.J. A simplified seasonal forecasting strategy, applied to wind and solar power in Europe. Clim. Serv. 2022, 27, 100318. [Google Scholar] [CrossRef]
- Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balmaseda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G.; et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev. 2019, 12, 1087–1117. [Google Scholar] [CrossRef]
- MacLachlan, C.; Arribas, A.; Peterson, K.A.; Maidens, A.; Fereday, D.; Scaife, A.A.; Gordon, M.; Vellinga, M.; Williams, A.; Comer, R.E.; et al. Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc. 2015, 141, 1072–1084. [Google Scholar] [CrossRef]
- Williams, K.D.; Harris, C.M.; Bodas-Salcedo, A.; Camp, J.; Comer, R.E.; Copsey, D.; Fereday, D.; Graham, T.; Hill, R.; Hinton, T.; et al. The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev. 2015, 8, 1509–1524. [Google Scholar] [CrossRef]
- Williams, K.D.; Copsey, D.; Blockley, E.W.; Bodas-Salcedo, A.; Calvert, D.; Comer, R.; Davis, P.; Graham, T.; Hewitt, H.T.; Hill, R.; et al. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J. Adv. Model. Earth Syst. 2018, 10, 357–380. [Google Scholar] [CrossRef]
- Batté, L.; Ardilouze, C.; Déqué, M. Forecasting West African Heat Waves at Subseasonal and Seasonal Time Scales. Mon. Weather Rev. 2018, 146, 889–907. [Google Scholar] [CrossRef]
- Bett, P.E.; Thornton, H.E.; Lockwood, J.F.; Scaife, A.A.; Golding, N.; Hewitt, C.; Zhu, R.; Zhang, P.; Li, C. Skill and Reliability of Seasonal Forecasts for the Chinese Energy Sector. J. Appl. Meteorol. Climatol. 2017, 56, 3099–3114. [Google Scholar] [CrossRef]
- Bett, P.E.; Thornton, H.E.; Felice, M.D.; Suckling, E.B.; Dubus, L.; Troccoli, A.; Goodess, C. Assessment of Seasonal Forecasting Skill for Energy Variables. ECEM Deliverable D3.4.1; Met Office Technical Report; Met Office: Exeter, UK, 2018.
- Lockwood, J.F.; Thornton, H.E.; Dunstone, N.; Scaife, A.A.; Bett, P.E.; Li, C.; Ren, H.-L. Skilful seasonal prediction of winter wind speeds in China. Clim. Dyn. 2019, 53, 3937–3955. [Google Scholar] [CrossRef]
- Lockwood, J.F.; Stringer, N.; Hodge, K.R.; Bett, P.E.; Knight, J.; Smith, D.; Scaife, A.A.; Patterson, M.; Dunstone, N.; Thornton, H.E. Seasonal prediction of UK mean and extreme winds. Q. J. R. Meteorol. Soc. 2023, 149, 3477–3489. [Google Scholar] [CrossRef]
- Lee, D.Y.; Doblas-Reyes, F.J.; Torralba, V.; Gonzalez-Reviriego, N. Multi-model seasonal forecasts for the wind energy sector. Clim. Dyn. 2019, 53, 2715–2729. [Google Scholar] [CrossRef]
- Vallis, M.B.; Loredo-Souza, A.M.; Ferreira, V.; Nascimento, E.d.L. Classification and identification of synoptic and non-synoptic extreme wind events from surface observations in South America. J. Wind. Eng. Ind. Aerodyn. 2019, 193, 103963. [Google Scholar] [CrossRef]
- Outten, S.; Sobolowski, S. Extreme wind projections over Europe from the Euro-CORDEX regional climate models. Weather Clim. Extrem. 2021, 33, 100363. [Google Scholar] [CrossRef]
- Owen, L.E.; Catto, J.L.; Dunstone, N.J.; Stephenson, D.B. How well can a seasonal forecast system represent three hourly compound wind and precipitation extremes over Europe? Environ. Res. Lett. 2021, 16, 074019. [Google Scholar] [CrossRef]
- Jiang, Y.; Miao, Y.; Zhao, Y.; Liu, J.; Gao, Y. Extreme-wind events in China in the past 50 years and their impacts on sandstorm variations. Front. Earth Sci. 2023, 10, 1058275. [Google Scholar] [CrossRef]
- Corti, S.; Molteni, F.; Palmer, T.N. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 1999, 398, 799–802. [Google Scholar] [CrossRef]
- Brönnimann, S.; Martius, O.; Waldow, H.E.v.; Welker, C.; Luterbacher, J.; Compo, G.P.; Sardeshmukh, P.D.; Usbeck, T. Extreme winds at northern mid-latitudes since 1871. Meteorol. Z. 2012, 21, 13–27. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Bian, X.; Heilman, W.E. Climatology and trend of wind power resources in China and its surrounding regions: A revisit using Climate Forecast System Reanalysis data. Int. J. Climatol. 2016, 36, 2173–2188. [Google Scholar] [CrossRef]
- Kumar, A.; Hoerling, M.P. Prospects and Limitations of Seasonal Atmospheric GCM Predictions. Bull. Am. Meteorol. Soc. 1995, 76, 335–345. [Google Scholar] [CrossRef]
- Wang, B.; Fan, Z. Choice of South Asian Summer Monsoon Indices. Bull. Am. Meteorol. Soc. 1999, 80, 629–638. [Google Scholar] [CrossRef]
- Becker, E.J.; van den Dool, H.; Peña, M. Short-Term Climate Extremes: Prediction Skill and Predictability. J. Clim. 2013, 26, 512–531. [Google Scholar] [CrossRef]
- Doblas-Reyes, F.J.; García-Serrano, J.; Lienert, F.; Biescas, A.P.; Rodrigues, L.R.L. Seasonal climate predictability and forecasting: Status and prospects. WIREs Clim. Change 2013, 4, 245–268. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- de Brito Neto, F.A.; Mendes, D.; Spyrides, M.H.C. Analysis of extreme wind events in the Weddell Sea region (Antarctica) at Belgrano II Station. J. S. Am. Earth Sci. 2022, 116, 103804. [Google Scholar] [CrossRef]
- Messmer, M.; Simmonds, I. Global analysis of cyclone-induced compound precipitation and wind extreme events. Weather Clim. Extrem. 2021, 32, 100324. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Chen, C. Characteristics of concurrent precipitation and wind speed extremes in China. Weather Clim. Extrem. 2021, 32, 100322. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Y.; Zhao, Z.; Chang, R. The Impacts of Chinese Wind Farms on Climate. J. Geophys. Res. Atmos. 2018, 123, 5177–5187. [Google Scholar] [CrossRef]
- Sherman, P.; Chen, X.; McElroy, M.B. Wind-generated Electricity in China: Decreasing Potential, Inter-annual Variability and Association with Changing Climate. Sci. Rep. 2017, 7, 16294. [Google Scholar] [CrossRef]
- Hamilton, E.; Eade, R.; Graham, R.J.; Scaife, A.A.; Smith, D.M.; Maidens, A.; MacLachlan, C. Forecasting the number of extreme daily events on seasonal timescales. J. Geophys. Res. Atmos. 2012, 117, D03114. [Google Scholar] [CrossRef]
- Li, J.; Bao, Q.; Liu, Y.; Wu, G.; Wang, L.; He, B.; Wang, X.; Yang, J.; Wu, X.; Shen, Z. Dynamical Seasonal Prediction of Tropical Cyclone Activity Using the FGOALS-f2 Ensemble Prediction System. Weather Forecast 2021, 36, 1759–1778. [Google Scholar] [CrossRef]
- Brayshaw, D.J.; Troccoli, A.; Fordham, R.; Methven, J. The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: A case study over the UK. Renew. Energy 2011, 36, 2087–2096. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Hamlington, P.E.; Collins, S.G.; Alexander, S.R.; Kim, K.-Y. Effects of climate oscillations on wind resource variability in the United States. Geophys. Res. Lett. 2015, 42, 145–152. [Google Scholar] [CrossRef]
- Gentile, E.S.; Zhao, M.; Hodges, K. Poleward intensification of midlatitude extreme winds under warmer climate. Npj Clim. Atmos. Sci. 2023, 6, 219. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Chen, Q.; Feng, J.; Qi, J.; Yin, B. The multiscale variability of global extreme wind and wave events and their relationships with climate modes. Ocean Eng. 2024, 307, 118239. [Google Scholar] [CrossRef]
- Tong, X.; Li, J.; Zhang, F.; Li, W.; Pan, B.; Li, J.; Letu, H. The Deep-Learning-Based Fast Efficient Nighttime Retrieval of Thermodynamic Phase from Himawari-8 AHI Measurements. Geophys. Res. Lett. 2023, 50, e2022GL100901. [Google Scholar] [CrossRef]
- Tong, X.; Zhou, W.; Xia, J. Improving Boreal Summer Precipitation Predictions from the Global NMME through Res34-Unet. Geophys. Res. Lett. 2024, 51, e2023GL106391. [Google Scholar] [CrossRef]
Lead Time | 1-Month | 2-Month | 3-Month | 4-Month | 5-Month | 6-Month |
---|---|---|---|---|---|---|
Northeast China | 23 | 5 | 17 | 19 | 5 | 1 |
Central east China | 18 | 20 | 20 | 16 | 15 | 15 |
Southeast China | 24 | 23 | 15 | 22 | 20 | 9 |
Tibet Plateau | 21 | 17 | 11 | 11 | 8 | 13 |
Lead Time | 1-Month | 2-Month | 3-Month | 4-Month | 5-Month | 6-Month |
---|---|---|---|---|---|---|
Northeast China | 24 | 24 | 24 | 22 | 23 | 24 |
Central east China | 23 | 24 | 24 | 23 | 24 | 23 |
Southeast China | 24 | 23 | 24 | 22 | 24 | 24 |
Tibet Plateau | 23 | 22 | 22 | 22 | 21 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Li, J.; Zhou, W.; Lin, Z.; Zang, Y.; Li, S. Evaluation of Seasonal Prediction of Extreme Wind Resource Potential over China Based on a Dynamic Prediction System SIDRI-ESS V1.0. Atmosphere 2024, 15, 1024. https://doi.org/10.3390/atmos15091024
Yan Z, Li J, Zhou W, Lin Z, Zang Y, Li S. Evaluation of Seasonal Prediction of Extreme Wind Resource Potential over China Based on a Dynamic Prediction System SIDRI-ESS V1.0. Atmosphere. 2024; 15(9):1024. https://doi.org/10.3390/atmos15091024
Chicago/Turabian StyleYan, Zixiang, Jinxiao Li, Wen Zhou, Zouxing Lin, Yuxin Zang, and Siyuan Li. 2024. "Evaluation of Seasonal Prediction of Extreme Wind Resource Potential over China Based on a Dynamic Prediction System SIDRI-ESS V1.0" Atmosphere 15, no. 9: 1024. https://doi.org/10.3390/atmos15091024
APA StyleYan, Z., Li, J., Zhou, W., Lin, Z., Zang, Y., & Li, S. (2024). Evaluation of Seasonal Prediction of Extreme Wind Resource Potential over China Based on a Dynamic Prediction System SIDRI-ESS V1.0. Atmosphere, 15(9), 1024. https://doi.org/10.3390/atmos15091024