Emission Rate Estimation of Industrial Air Pollutant Emissions Based on Mobile Observation
Abstract
:1. Introduction
2. Case Data and Methods
2.1. Mobile Observation Experiment
2.2. Process of Emission Rate Estimation
- (1)
- Collect source list and set reference emission rates.
- (2)
- Calculate matrix H.
- (3)
- Construct the candidate solution samples by using the random search algorithm.
- (4)
- Evaluate the solution samples, identify the better solution samples, and collect the results of source analysis.
2.2.1. Source List and Reference Emission Rate
2.2.2. Diffusion Simulation and Modeling of Meteorological Conditions for Matrix H
Fixed Meteorological Condition
Variable Meteorological Condition
2.2.3. Candidate Solution Evaluation
3. Results
3.1. Comparison of Simulation Schemes for Matrix H
3.2. Influence of Sample Size for Random Research on Inversion Accuracy
3.3. Differences in Evaluation Indexes for Candidate Solution
3.4. Final Results for the Two Cases
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adams, M.D.; Kanaroglou, P.S. Optimized monitor reduction for an industrial air pollution monitoring network. In Proceedings of the 13th International Conference on Environmental Science and Technology, Athens, Greece, 5–7 September 2013. [Google Scholar]
- Efthimiou, G.C.; Kovalets, I.V.; Venetsanos, A. An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment. Atmos. Environ. 2017, 170, 118–129. [Google Scholar] [CrossRef]
- Singh, K.S.; Kumar, P.; Turbelin, G. Uncertainty characterization in the retrieval of an atmospheric point release. Atmos. Environ. 2017, 152, 15234–15250. [Google Scholar] [CrossRef]
- Hong, Z.Y.; Li, M.Z.; Wang, H. Characteristics of atmospheric volatile organic compounds (VOCs) at a mountainous forest site and two urban sites in the southeast of China. Sci. Total Environ. 2019, 657, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Wu, P.-Y.; Chen, Y.-C. An integrated strategy by using long-term monitoring data to identify volatile organic compounds of high concern near petrochemical industrial parks. Sci. Total Environ. 2022, 821, 153345. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Liu, J. An inverse method to estimate the source term of atmospheric pollutant releases. Atmos. Environ. 2021, 260, 118554. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Q.; Huang, Z. Identifying key potential source areas for ambient methyl mercaptan pollution based on long-term environmental monitoring data in an industrial park. Atmosphere 2018, 9, 501. [Google Scholar] [CrossRef]
- Cheng, K.; Zhao, X.; Zhou, W. Source term estimation with deficient sensors: Traceability and an equivalent source approach. Process Saf. Environ. Prot. 2021, 152, 131–139. [Google Scholar] [CrossRef]
- Thomson, L.C.; Hirst, B.; Gibson, G. An improved algorithm for locating a gas source using inverse methods. Atmos. Environ. 2007, 41, 1128–1134. [Google Scholar] [CrossRef]
- Bieringer, P.E.; Rodriguez, L.M.; Vandenberghe, F. Automated source term and wind parameter estimation for atmospheric transport and dispersion applications. Atmos. Environ. 2015, 122, 206–219. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Y.; Yu, Q. Source area identification with observation from limited monitor sites for air pollution episodes in industrial parks. Atmos. Environ. 2015, 122, 1–9. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, Q.; Ma, W.; Chen, L. Surveillance efficiency evaluation of air quality monitoring networks for air pollution episodes in industrial parks: Pollution detection and source identification. Atmos. Environ. 2019, 215, 116874. [Google Scholar] [CrossRef]
- Xue, Y.; Cui, X.; Li, K. Statistical source analysis of recurring sulfur dioxide pollution events in a chemical industrial park. Atmos. Environ. 2023, 296, 119564. [Google Scholar] [CrossRef]
- Wang, C.; An, X.; Hou, Q. Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion. Geosci. Model Dev. 2021, 14, 337–350. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Henze, D.K. Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data. J. Geophys. Res. Atmos. 2013, 118, 6396–6413. [Google Scholar] [CrossRef]
- Wang, C.; An, X.; Zhai, S. Tracking sensitive source areas of different weather pollution types using GRAPESCUACE adjoint model. Atmos. Environ. 2018, 175, 154–166. [Google Scholar] [CrossRef]
- Lushi, E.; Stockie, M.J. An inverse Gaussian plume approach for estimating atmospheric pollutant emissions from multiple point sources. Atmos. Environ. 2009, 44, 1097–1107. [Google Scholar] [CrossRef]
- Gilbert, E.J.; Khajehnajafi, S. Estimation of Toxic Substance Release. U.S. Patent US6772071B2, 14 November 2002. [Google Scholar]
- Allen, C.T.; Young, G.S.; Haupt, S.E. Improving pollutant source characterization by better estimating wind direction with a genetic algorithm. Atmos. Environ. 2007, 41, 2283–2289. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Li, J. Locating unknown number of multi-point hazardous gas leaks using Principal Component Analysis and a Modified Genetic Algorithm. Atmos. Environ. 2020, 230, 117515. [Google Scholar] [CrossRef]
- Kia, S.; Nambiar, M.K.; Thé, J. Machine Learning to Predict Area Fugitive Emission Fluxes of GHGs from Open-Pit Mines. Atmosphere 2022, 13, 210. [Google Scholar] [CrossRef]
- Mao, S.; Hu, F.; Lang, J. Comparative Study of Impacts of Typical Bio-Inspired Optimization Algorithms on Source Inversion Performance. Front. Environ. Sci. 2022, 10, 894255. [Google Scholar] [CrossRef]
- Hosseini, B.; Stockie, J.M. Bayesian estimation of airborne fugitive emissions using a Gaussian plume model. Atmos. Environ. 2016, 141, 122–138. [Google Scholar] [CrossRef]
- Kopka, P.; Wawrzynczak, A.; Borysiewicz, M. Application of the Approximate Bayesian Computation methods in the stochastic estimation of atmospheric contamination parameters for mobile sources. Atmos. Environ. 2016, 145, 201–212. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Huang, L. Evaluation of Bayesian source estimation methods with Prairie Grass observations and Gaussian plume model: A comparison oflikelihood functions and distance measures. Atmos. Environ. 2017, 152, 519–530. [Google Scholar] [CrossRef]
- Qiu, S.; Chen, B.; Wang, R. Atmospheric dispersion prediction and source estimation of hazardous gas using artificial neural network, particle swarm optimization and expectation maximization. Atmos. Environ. 2018, 178, 158–163. [Google Scholar] [CrossRef]
- Septier, F.; Armand, P. A bayesian inference procedure based on inverse dispersion modelling for source term estimation in built-up environments. Atmos. Environ. 2020, 242, 117733. [Google Scholar] [CrossRef]
- Araki, S.; Iwahashi, K.; Shimadera, H.; Yamamoto, K.; Kondo, A. Optimization of air monitoring networks using chemical transport model and search algorithm. Atmos. Environ. 2015, 122, 22–30. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Wang, L. Identification Method of Source Term Parameters of Nuclear Explosion Based on GA and PSO for Lagrange-Gaussian Puff Model. Atmosphere 2023, 14, 877. [Google Scholar] [CrossRef]
- Kong, Y.; Guan, M.; Zheng, S. Locating Hazardous Chemical Leakage Source Based on Cooperative Moving and Fixing Sensors. Sensors 2019, 19, 1092. [Google Scholar] [CrossRef]
- Solis, F.J.; Wets RJ, B. Minimization by random search techniques. Math. Oper. Res. 1981, 6, 19–30. [Google Scholar] [CrossRef]
- Spall, J.C. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C.; 2003) [book review]. IEEE Trans. Neural Netw. 2007, 18, 964–965. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Dyer, M.E.; Frieze, A.M. Computing the Volume of Convex Bodies: A Case Where Randomness Provably Helps. Proc. Symp. Appl. Math. 1991, 44, 123–169. [Google Scholar]
- Vavasis, S.A. Complexity Issues in Global Optimization: A Survey. In Handbook of Global Optimization; Springer: New York, NY, USA, 1995; pp. 27–41. [Google Scholar]
- Zlochin, M.; Birattari, M.; Meuleau, N.; Dorigo, M. Model-Based Search for Combinatorial Optimization: A Critical Survey. Ann. Oper. Res. 2004, 131, 373–395. [Google Scholar] [CrossRef]
- Miller, D.J.; Actkinson, B.; Padilla, L. Characterizing Elevated Urban Air Pollutant Spatial Patterns with Mobile Monitoring in Houston, Texas. Environ. Sci. Technol. 2020, 54, 2133–2142. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Peters, J.; Verwaeren, J. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef]
- Järvi, L.; Kurppa, M.; Kuuluvainen, H. Determinants of spatial variability of air pollutant concentrations in a street canyon network measured using a mobile laboratory and a drone. Sci. Total Environ. 2023, 856, 158974. [Google Scholar] [CrossRef]
- Solomon, A.P.; Vallano, D.; Lunden, M. Mobile-platform measurement of air pollutant concentrations in California: Performance assessment, statistical methods for evaluating spatial variations, and spatial representativeness. Atmos. Meas. Tech. 2020, 13, 3277–3301. [Google Scholar] [CrossRef]
- Wallace, J.; Corr, D.; DeLuca, P. Mobile monitoring of air pollution in cities: The case of Hamilton, Ontario, Canada. J. Environ. Monit. 2009, 11, 998–1003. [Google Scholar] [CrossRef]
- Zwack, L.M.; Paciorek, C.J.; Spengler, J.D. Modeling spatial patterns of traffic-related air pollutants in complex urban terrain. Environ. Health. Persp. 2011, 119, 852–859. [Google Scholar] [CrossRef]
- Padilla, L.E.; Ma, G.Q.; Daniel, P. New methods to derive street-scale spatial patterns of air pollution from mobile monitoring. Atmos. Environ. 2021, 270, 118851. [Google Scholar] [CrossRef]
- Shairsingh, K.K.; Jeong, C.; Wang, M.J. Characterizing the spatial variability of local and background concentration signals for air pollution at the neighbourhood scale. Atmos. Environ. 2018, 183, 57–68. [Google Scholar] [CrossRef]
- Fan, G. Reverse Traceability of Pollutants in Industrial Parks Based on Mobile Monitoring. Master’s Thesis, Dalian University of Technology, Dalian, China, 2023. [Google Scholar]
- Wang, Z. Research on Air Pollution Traceability in Chemical Park Based on Mobile Monitoring System. Master’s Thesis, Zhejiang University, Hangzhou, China, 2023. [Google Scholar]
- Dongqin, Z.; Gang, H.; Jie, S. A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model. Energy 2024, 288, 129823. [Google Scholar]
- Statistics and Meteorology of Air Pollution Episodes over the South African Highveld Based on Satellite–Model Datasets. J. Appl. Meteorol. Climatol. 2017, 56, 1583–1594. [CrossRef]
- Jiang, W.-M.; Liu, H.-N.; Zhang, N. Air Pollution Meteorology; Nanjing University Press: Nanjing, China, 2021. [Google Scholar]
- Fernandes Rafael, S.; Lopes, D.; Coelho, S. The air pollution modelling system URBAIR: How to use a Gaussian model to accomplish high spatial and temporal resolutions. Air Qual. Atmos. Health 2021, 14, 1969–1988. [Google Scholar] [CrossRef]
- Biggart, M.; Stocker, J.; Doherty, R.M. Street-scale air quality modelling for Beijing during a winter 2016 measurement campaign. Atmos. Chem. Phys. 2020, 20, 2755–2780. [Google Scholar] [CrossRef]
- Siahpour, G.; Jozi, S.A.; Orak, N. Estimation of environmental pollutants using the AERMOD model in Shazand thermal power plant, Arak Iranl. Toxin Rev. 2022, 41, 1269–1279. [Google Scholar] [CrossRef]
- Rzeszutek, M. Parameterization and evaluation of the CALMET/CALPUFF model system in near-field and complex terrain—Terrain data, grid resolution and terrain adjustment method. Sci. Total Environ. 2019, 689, 31–46. [Google Scholar] [CrossRef]
- Jose, R.S.; Perez-Camanyo, J.L. HigT-resolution impacts of green areas on air quality in Madrid. Air Qual. Atmos. Health 2023, 16, 37–48. [Google Scholar] [CrossRef]
- Roscioli, R.J.; Yacovitch, I.T.; Floerchinger, C. Measurements of methane emissions from natural gas gathering facilities and processing plants: Measurement methods. Atmos. Meas. Tech. 2015, 8, 2017–2035. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, C. Source depletion analogy for reactive plume dispersion over schematic urban areas. Atmos. Environ. 2018, 190, 226–231. [Google Scholar] [CrossRef]
Source Number | Height (m) | Source Number | Height (m) |
---|---|---|---|
K-pt1 | 120 | K-pt15 | 24 |
K-pt2 | 50 | K-pt16 | 65 |
K-pt3 | 50 | K-pt17 | 65 |
K-pt4 | 50 | K-pt18 | 65 |
K-pt5 | 50 | K-pt19 | 50 |
K-pt6 | 50 | K-pt20 | 50 |
K-pt7 | 50 | K-pt21 | 80 |
K-pt8 | 50 | K-pt22 | 50 |
K-pt9 | 50 | K-pt23 | 68 |
K-pt10 | 50 | K-pt24 | 120 |
K-pt11 | 50 | K-pt25 | 120 |
K-pt12 | 50 | E-pt1 | 25 |
K-pt13 | 15 | E-pt2 | 25 |
K-pt14 | 15 | E-pt3 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Yu, Q.; Ma, W.; Zhang, Y. Emission Rate Estimation of Industrial Air Pollutant Emissions Based on Mobile Observation. Atmosphere 2024, 15, 969. https://doi.org/10.3390/atmos15080969
Cui X, Yu Q, Ma W, Zhang Y. Emission Rate Estimation of Industrial Air Pollutant Emissions Based on Mobile Observation. Atmosphere. 2024; 15(8):969. https://doi.org/10.3390/atmos15080969
Chicago/Turabian StyleCui, Xinlei, Qi Yu, Weichun Ma, and Yan Zhang. 2024. "Emission Rate Estimation of Industrial Air Pollutant Emissions Based on Mobile Observation" Atmosphere 15, no. 8: 969. https://doi.org/10.3390/atmos15080969
APA StyleCui, X., Yu, Q., Ma, W., & Zhang, Y. (2024). Emission Rate Estimation of Industrial Air Pollutant Emissions Based on Mobile Observation. Atmosphere, 15(8), 969. https://doi.org/10.3390/atmos15080969