Emissions of Oxygenated Volatile Organic Compounds and Their Roles in Ozone Formation in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Developments of OVOC Source Profiles
2.1.1. Sampling and Analysis
2.1.2. Selection of OVOC Species
2.2. VOC Emission Inventory
2.3. OVOC Emission Inventory
2.4. Calculation of Ozone Formation Potential (OFP)
2.5. The Spatio-Temporal Distribution
2.6. Quantification of Uncertainty
3. Results and Discussion
3.1. Characteristics of Total VOC Emissions in Beijing
3.2. Composition of OVOC Emissions in Beijing
3.3. Impact of OVOC Emissions on O3 in Beijing
3.4. Temporal Distribution Characteristics of OVOC Emissions in Beijing
3.5. Spatial Distribution Characteristics of OVOC Emissions in Beijing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Su, J.; Cui, T.; Li, X.; Dong, X.; Sun, F.; Yang, Y.; Tong, D.; Zheng, Y.; Li, Y.; et al. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013–2017: A model-based decomposition analysis. Atmos. Chem. Phys. 2019, 19, 6125–6146. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, S.; Jiang, J.; Zhou, W.; Xu, Q.; Li, X.; Liu, B.; Zhang, D.; Zheng, M. Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China. Sci. Total Environ. 2018, 626, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, S.; Jiang, J.; Bhattarai, N.; Li, X.; Chang, X.; Qiu, X.; Zheng, M.; Hua, Y.; Hao, J. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China. Sci. Total Environ. 2019, 689, 1293–1303. [Google Scholar] [CrossRef]
- Yan, X.; Shi, A.; Cao, J.; Li, T.; Sun, X.; Zhang, R.; Qiu, X.; Li, Y.; Liang, M.; Lv, M.; et al. The Occurrence of Heavy Air Pollution during the COVID-19 Outbreak in Beijing, China: Roles of Emission Reduction, Meteorological Conditions, and Regional Transport. Sustainability 2021, 13, 12312. [Google Scholar] [CrossRef]
- Beijing Municipal Bureau of Ecology and Environment (BMBEE). 2022 Annual Report on the Ecological and Environmental Status of Beijing; BMBEE: Beijing, China, 2023. [Google Scholar]
- Zapletal, M.; Juran, S.; Krpes, V.; Michna, K.; Cudlin, P.; Edwards, M. Effect of ozone flux on selected structural and antioxidant characteristics of a mountain norway spruce forest. Balt. For. 2018, 24, 261–267. [Google Scholar]
- Juráň, S.; Grace, J.; Urban, O. Temporal Changes in Ozone Concentrations and Their Impact on Vegetation. Atmosphere 2021, 12, 82. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, M.; Zhang, J.; Liu, Y.; Chen, H.; Cai, Z.; Konopka, P. Long-term variations in ozone levels in the troposphere and lower stratosphere over Beijing: Observations and model simulations. Atmos. Chem. Phys. 2020, 20, 13343–13354. [Google Scholar] [CrossRef]
- Zhang, M.; Shao, M.; Chen, P.L.; Gu, C.; Wang, Q.G. Characteristics of VOCs emissions in the Yangtze River Delta region and their potential impacts on atmospheric O3 and SOA. China Environ. Sci. 2023, 43, 2694–2702. (In Chinese) [Google Scholar]
- Huang, X.F.; Zhang, B.; Xia, S.Y.; Han, Y.; Wang, C.; Yu, G.H.; Feng, N. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China. Environ. Pollut. 2020, 261, 114152. [Google Scholar] [CrossRef]
- Xue, L.; Gu, R.; Wang, T.; Wang, X.; Saunders, S.; Blake, D.; Louie, P.K.K.; Luk, C.W.Y.; Simpson, I.; Xu, Z.; et al. Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: Analysis of a severe photochemical smog episode. Atmos. Chem. Phys. 2016, 16, 9891–9903. [Google Scholar] [CrossRef]
- Farrah, S.R.; Goyal, S.M.; Gerba, C.P.; Wallis, C.; Melnick, J.L. Concentration of poliovirus from tap water onto membrane filters with aluminum chloride at ambient pH levels. Appl. Environ. Microbiol. 1978, 35, 624–626. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, L.; Liu, X.; Zhang, Y.; Li, C.; Zhang, Y.; Zhang, C.; Qu, Y.; An, J.; Ma, D.; et al. Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing, China. Atmos. Pollut. Res. 2021, 12, 33–46. [Google Scholar] [CrossRef]
- Millet, D.B.; Baasandorj, M.; Farmer, D.K.; Thornton, J.A.; Baumann, K.; Brophy, P.; Chaliyakunnel, S.; de Gouw, J.A.; Graus, M.; Hu, L.; et al. A large and ubiquitous source of atmospheric formic acid. Atmos. Chem. Phys. 2015, 15, 6283–6304. [Google Scholar] [CrossRef]
- Zeng, C.L.; Shao, X.; Liu, R.Y.; Yao, Y.J.; Li, Y.S.; Hou, M.; Liu, Y.; Fan, L.Y.; Ye, D.Q. Coating-derived VOCs Emission Characteristics and Environmental Impacts from the Furniture Industry in Guangdong Province. Huan Jing Ke Xue 2021, 42, 4641–4649. [Google Scholar] [CrossRef]
- Lun, X.; Lin, Y.; Chai, F.; Fan, C.; Li, H.; Liu, J. Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia. J. Environ. Sci. 2020, 95, 266–277. [Google Scholar] [CrossRef]
- Mozaffar, A.; Zhang, Y.-L.; Lin, Y.-C.; Xie, F.; Fan, M.-Y.; Cao, F. Measurement report: High contributions of halocarbon and aromatic compounds to atmospheric volatile organic compounds in an industrial area. Atmos. Chem. Phys. 2021, 21, 18087–18099. [Google Scholar] [CrossRef]
- Na, K.; Kim, Y.P.; Moon, K.-C.; Moon, I.; Fung, K. Concentrations of volatile organic compounds in an industrial area of Korea. Atmos. Environ. 2001, 35, 2747–2756. [Google Scholar] [CrossRef]
- Shi, J.; Deng, H.; Bai, Z.; Kong, S.; Wang, X.; Hao, J.; Han, X.; Ning, P. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China. Sci. Total Environ. 2015, 515, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yu, Y.; Mo, Z.; Zhang, Z.; Wang, X.; Yin, S.; Peng, K.; Yang, Y.; Feng, X.; Cai, H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci. Total Environ. 2013, 456, 127–136. [Google Scholar] [CrossRef]
- Song, X.; Yuan, B.; Wang, S.H.; He, X.J.; Li, X.B.; Peng, Y.W.; Chen, Y.B.; Qi, J.P.; Cai, J.H.; Huang, S.; et al. Compositional Characteristics of Volatile Organic Compounds in Typical Industrial Areas of the Pearl River Delta: Importance of Oxygenated Volatile Organic Compounds. Huan Jing Ke Xue 2023, 44, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- HJ/T 397-2007; Technical Specifications for Emission Monitoring of Stationary Source. MEEPRC (Ministry of Ecology and Environmental of the People’s Republic of China): Beijing, China, 2008. (In Chinese)
- HJ 734-2014; Stationary Source Emission-Determination of Volatile Organic Compounds-Sorbent Adsorption and Thermal Desorption Gas Chromatography Mass Spectrometry Method. MEEPRC (Ministry of Ecology and Environmental of the People’s Republic of China): Beijing, China, 2014. (In Chinese)
- Wang, H.; Hao, R.; Fang, L.; Nie, L.; Zhang, Z.; Hao, Z. Study on emissions of volatile organic compounds from a typical coking chemical plant in China. Sci. Total Environ. 2021, 752, 141927. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, T.; Nie, L.; Fang, L.; Zhang, Z.; Hao, Z. Volatile organic compounds in the vehicle repairing industry of China: Emission, management, purification, and policy. Environ. Sci. 2021, 42, 5574–5584. [Google Scholar]
- MEE. Technical Guidelines for Developing Volatile Organic Compound Emission Inventories in China. Source: Ministry of Ecology and Environment of the People’s Republic of China. 2014. Available online: http://www.mee.gov.cn/gkml/hbb/bgg/201408/W020140828351293705457.pdf (accessed on 15 January 2024).
- CARB (California Air Resources Board). Tables of Maximum Incremental Reactivity (MIR) Values; CARB: Sacramento, CA, USA, 2010. [Google Scholar]
- Carter, W.P. Reactivity Estimates for Selected Consumer Product Compounds; Final Report to the California Air Resources Board Contract: 06-408; CARB: Sacramento, CA, USA, 2008. [Google Scholar]
- Streets, D.G.; Zhang, Q.; Wang, L.; He, K.; Hao, J.; Wu, Y.; Tang, Y.; Carmichael, G.R. Revisiting China’s CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations. J. Geophys. Res. Atmos. 2006, 111, D14306. [Google Scholar] [CrossRef]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–5153. [Google Scholar] [CrossRef]
- MEICModel—Tracking Athropogenic Emissions in China. Available online: http://meicmodel.org.cn (accessed on 5 July 2024).
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Wang, M.; Shao, M.; Chen, W.; Yuan, B.; Lu, S.; Zhang, Q.; Zeng, L.; Wang, Q. A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China. Atmos. Chem. Phys. 2014, 14, 5871–5891. [Google Scholar] [CrossRef]
Classification | Detail Information |
---|---|
Point sources | 1519 industrial units, 993 waste disposal locations, 2 airports, 1010 gasoline stations, 10,764 boilers, and 19 power plants |
Line sources | Highways, major rural roads, all streets and roads of the urban area, and the railway |
Area sources | Municipalities of urban areas, other built-up areas, forests, agricultural land; population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Qiu, X.; Yao, Z.; Liu, J.; Wang, L. Emissions of Oxygenated Volatile Organic Compounds and Their Roles in Ozone Formation in Beijing. Atmosphere 2024, 15, 970. https://doi.org/10.3390/atmos15080970
Yan X, Qiu X, Yao Z, Liu J, Wang L. Emissions of Oxygenated Volatile Organic Compounds and Their Roles in Ozone Formation in Beijing. Atmosphere. 2024; 15(8):970. https://doi.org/10.3390/atmos15080970
Chicago/Turabian StyleYan, Xiao, Xionghui Qiu, Zhen Yao, Jiye Liu, and Lin Wang. 2024. "Emissions of Oxygenated Volatile Organic Compounds and Their Roles in Ozone Formation in Beijing" Atmosphere 15, no. 8: 970. https://doi.org/10.3390/atmos15080970
APA StyleYan, X., Qiu, X., Yao, Z., Liu, J., & Wang, L. (2024). Emissions of Oxygenated Volatile Organic Compounds and Their Roles in Ozone Formation in Beijing. Atmosphere, 15(8), 970. https://doi.org/10.3390/atmos15080970