A Review of Options and Costs for Mitigating GHG Emissions from the U.S. Dairy Sector
Abstract
:1. Introduction
2. Direct and Indirect Emissions
2.1. Direct Sources: Enteric Fermentation and Manure Management
2.1.1. Methane Emissions from Enteric Fermentation
2.1.2. Methane and Nitrous Oxide Emissions from Manure Management
2.2. Indirect Sources: Feed Production; Processing, Packaging, and Distribution; Energy Consumption
2.2.1. Carbon Dioxide and Nitrous Oxide Emissions from Feed Production
2.2.2. Carbon Dioxide Emissions from Milk Assembly, Product Processing, Packaging, and Distribution
2.2.3. Carbon Dioxide Emissions from Energy Consumption
3. Mitigation Strategies
3.1. On the Farm
3.1.1. Cattle Management
3.1.2. Feeding and Inhibiter Management
3.1.3. Manure Management
3.1.4. Energy Management
3.2. In Processing Plants and Transport
4. Mitigation Costs
4.1. Cattle Management Costs
4.2. Feeding Management Costs
4.3. Manure Management Costs
4.4. Energy Costs
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinfeld, H.; Gerber, P.J.; Wassenaar, T.D.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; United Nations Food and Agriculture Organization: Rome, Italy, 2006; ISBN 978-92-5-105571-7. [Google Scholar]
- Food and Agricultural Organization of the United Nations and Global Dairy Platform. Climate Change and the Global Dairy Cattle Sector: The Role of the Dairy Sector in a Low-Carbon Future; FAO: Rome, Italy, 2019; ISBN 978-92-5-131232-2. [Google Scholar]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Nutter, D.W.; Kim, D.; Ulrich, R.; Thoma, G. Greenhouse gas emission analysis for USA fluid milk processing plants: Processing, packaging, and distribution. Int. Dairy J. 2013, 31, S57–S64. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef]
- Cheng, M.C.; McCarl, B.A.; Fei, C.J. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed]
- Gastelen, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef] [PubMed]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Melgar, A.; Wasson, D.; Arndt, C. Effective nutritional strategies to mitigate enteric methane in dairy cattle. J. Dairy Sci. 2022, 105, 8543–8557. [Google Scholar] [CrossRef] [PubMed]
- Wattiaux, M.A.; Abd El-Hack, M.E.; Letelier, P.; Jackson, R.D.; Larson, R.A. Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field. Appl. Anim. Sci. 2019, 35, 238–254. [Google Scholar] [CrossRef]
- Petersen, S.O. Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation. J. Dairy Sci. 2018, 101, 6642–6654. [Google Scholar] [CrossRef]
- Battini, F.; Agostini, A.; Boulamanti, A.K.; Giuntoli, J.; Amaducci, S. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ. 2014, 481, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Jayasundara, S.; Ranga Niroshan Appuhamy, J.A.D.; Kebreab, E.; Wagner-Riddle, C. Methane and nitrous oxide emissions from Canadian dairy farms and mitigation options: An updated review. Can. J. Anim. Sci. 2016, 96, 306–331. [Google Scholar] [CrossRef]
- Mohsenimanesh, A.; LeRiche, E.L.; Gordon, R.; Clarke, S.; MacDonald, R.D.; MacKinnon, I.; Van der Zaag, A.C. Dairy Farm Electricity Use, Conservation, and Renewable Production—A Global Perspective. Appl. Eng. Agric. 2021, 37, 977–990. [Google Scholar] [CrossRef]
- Shine, P.; Upton, J.; Sefeedpari, P.; Murphy, M.D. Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses. Energies 2020, 13, 1288. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C. Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2022; US Environmental Protection Agency: Washington, DC, USA, 2024.
- Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, P., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- O’Hara, J.K. State-level trends in the greenhouse gas emission intensity of US milk production. J. Dairy Sci. 2023, 106, 5474–5484. [Google Scholar] [CrossRef] [PubMed]
- Krausmann, F.; Erb, K.H.; Gingrich, S.; Lauk, C.; Haberl, H. Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecol. Econ. 2008, 65, 471–487. [Google Scholar] [CrossRef]
- Innovation Center for U.S. Dairy. U.S. Dairy’s Environmental Footprint a Summary of Findings, 2008–2012; Innovation Center for U.S.: Rosemont, IL, USA, 2012. [Google Scholar]
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal 2017, 11, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Enevoldsen, C.; Hindhede, J.; Kristensen, T. Dairy Herd Management Types Assessed from Indicators of Health, Reproduction, Replacement, and Milk Production. J. Dairy Sci. 1996, 79, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Bekara, M.A.; Bareille, N. Quantification by simulation of the effect of herd management practices and cow fertility on the reproductive and economic performance of Holstein dairy herds. J. Dairy Sci. 2019, 102, 9435–9457. [Google Scholar] [CrossRef] [PubMed]
- Place, N.T.; Heinrichs, A.J.; Erb, H.N. The Effects of Disease, Management, and Nutrition on Average Daily Gain of Dairy Heifers from Birth to Four Months. J. Dairy Sci. 1998, 81, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.M.; Robertson, L.M.; Eckelkamp, E.A. A 100-Year Review: Lactating dairy cattle housing management. J. Dairy Sci. 2017, 100, 10418–10431. [Google Scholar] [CrossRef] [PubMed]
- Halasa, T.; Huijps, K.; Østerås, O.; Hogeveen, H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007, 29, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, F.J.; O’Grady, L.; Rice, D.A.; Doherty, M.L. A herd health approach to dairy cow nutrition and production diseases of the transition cow. Anim. Reprod. Sci. 2006, 96, 331–353. [Google Scholar] [CrossRef] [PubMed]
- Grummer, R.R.; Badjeck, M.C.; Fricke, P.M.; Watters, R.D.; Silva-Del-Rio, N. Management of Dry and Transition Cows to Improve Energy Balance and Reproduction. J. Reprod. Dev. 2010, 56, S22–S28. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.R.; Bell, A.W.; Overton, T.R.; Loor, J.J.; Roche, J.R. Nutritional management of the transition cow in the 21st century—A paradigm shift in thinking. Anim. Prod. Sci. 2013, 53, 1000–1023. [Google Scholar] [CrossRef]
- Lassen, J.; Difford, G.F. Review: Genetic and genomic selection as a methane mitigation strategy in dairy cattle. Animal 2020, 14, s473–s483. [Google Scholar] [CrossRef] [PubMed]
- ICF International. Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States; Report to UDSA; ICF: Reston, VA, USA, 2013; p. 270. [Google Scholar]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Hodge, L.; Quille, P.; O’Connell, S. A Review of Potential Feed Additives Intended for Carbon Footprint Reduction through Methane Abatement in Dairy Cattle. Animals 2024, 14, 568. [Google Scholar] [CrossRef] [PubMed]
- Hales, K.E.; Parker, D.B.; Cole, N.A. Potential odorous volatile organic compound emissions from feces and urine from cattle fed corn-based diets with wet distillers grains and solubles. Atmos. Environ. 2012, 60, 292–297. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Wattiaux, M.A.; Broderick, G.A.; Arndt, C. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 2011, 94, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Opio, C.; Gerber, P.J.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef] [PubMed]
- Stefenoni, H.A.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J. Dairy Sci. 2021, 104, 4157–4173. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.O.; Sommer, S.G. Ammonia and nitrous oxide interactions: Roles of manure organic matter management. Anim. Feed Sci. Technol. 2011, 166–167, 503–513. [Google Scholar] [CrossRef]
- Holly, M.A.; Larson, R.A.; Powell, J.M.; Ruark, M.D.; Aguirre-Villegas, H. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agric. Ecosyst. Environ. 2017, 239, 410–419. [Google Scholar] [CrossRef]
- Sajeev, M.; Winiwarter, W.; Amon, B. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions. J. Environ. Qual. 2018, 47, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, C.; et al. Mitigation of Greenhouse Gas Emissions in Livestock Production—A Review of Technical Options for Non-CO2 Emissions; FAO: Rome, Italy, 2013; ISBN 978-92-5-107658-3. [Google Scholar]
- Sanford, S.; Go, A. Energy for Dairy Farms. In Regional Perspectives on Farm Energy; Ciolkosz, D., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 37–44. ISBN 978-3-030-90831-7. [Google Scholar]
- US Environmental Protection Agency. Technical Development Document for the Effluent Limitations Guidelines and Standards for the Oil and Gas Extraction Point Source Category [EPA Report]; US Environmental Protection Agency: Washington, DC, USA, 2016.
- Cantillon, M.; Hennessy, T.; Amon, B.; Dragoni, F.; O’Brien, D. Mitigation of gaseous emissions from dairy livestock: A farm-level method to examine the financial implications. J. Environ. Manag. 2024, 352, 119904. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Ott, T.; Tricarico, J.; Rotz, A.; Waghorn, G.; Adesogan, A.; Dijkstra, J.; Montes, F.; Oh, J.; Kebreab, E.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J. Anim. Sci. 2013, 91, 5095–5113. [Google Scholar] [CrossRef] [PubMed]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V. Bovine respiratory disease (BRD) cause-specific and overall mortality in preweaned calves on California dairies: The BRD 10K study. J. Dairy Sci. 2019, 102, 7320–7328. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, H.; Steeneveld, W.; Wolf, C.A. Production Diseases Reduce the Efficiency of Dairy Production: A Review of the Results, Methods, and Approaches Regarding the Economics of Mastitis. Annu. Rev. Resour. Econ. 2019, 11, 289–312. [Google Scholar] [CrossRef]
- Hogeveen, H.; Huijps, K.; Lam, T. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Huijps, K.; Hogeveen, H. Costs and efficacy of management measures to improve udder health on Dutch dairy farms. J. Dairy Sci. 2010, 93, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Holden, S.A.; Butler, S.T. Review: Applications and benefits of sexed semen in dairy and beef herds. Animal 2018, 12, s97–s103. [Google Scholar] [CrossRef] [PubMed]
- Seidel, G.E. Update on sexed semen technology in cattle. Animal 2014, 8, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Wolfová, M.; Wolf, J.; Kvapilík, J.; Kica, J. Selection for Profit in Cattle: II. Economic Weights for Dairy and Beef Sires in Crossbreeding Systems. J. Dairy Sci. 2007, 90, 2456–2467. [Google Scholar] [CrossRef] [PubMed]
- Pahmeyer, C.; Britz, W. Economic opportunities of using crossbreeding and sexing in Holstein dairy herds. J. Dairy Sci. 2020, 103, 8218–8230. [Google Scholar] [CrossRef] [PubMed]
- Bannink, A.; Smits, M.C.J.; Kebreab, E.; Mills, J.N.; Ellis, J.L.; Klop, A.; France, J.; Dijkstra, J. Simulating the effects of grassland management and grass ensiling on methane emission from lactating cows. J. Agric. Sc. 2010, 148, 55–72. [Google Scholar] [CrossRef]
- Warner, D.; Hatew, B.; Podesta, S.C.; Klop, G.; Gastelen, S.V.; Laar, H.V.; Dijkstra, J.; Bannink, A. Effects of nitrogen fertilisation rate and maturity of grass silage on methane emission by lactating dairy cows. Animal 2016, 10, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Van Middelaar, C.E.; Dijkstra, J.; Berentsen, P.B.M.; De Boer, I.J.M. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming. J. Dairy Sci. 2014, 97, 2427–2439. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Villegas, H.; Larson, R.A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J. Clean. Prod. 2017, 143, 169–179. [Google Scholar] [CrossRef]
- Faulhaber, C.R.; Raman, D.R.; Burns, R.T. An engineering-economic model for analyzing dairy plug-flow anaerobic digesters: Cost structures and policy implications. Trans. ASABE 2012, 55, 201–209. [Google Scholar] [CrossRef]
- US Environmental Protection Agency AgSTAR: Biogas Recovery in the Agriculture Sector. Available online: https://www.epa.gov/agstar (accessed on 29 November 2023).
- US Environmental Protection Agency. Market Opportunities for Biogas Recovery Systems at US Livestock Facilities; US Environmental Protection Agency: Washington, DC, USA, 2018.
- Cowley, C.; Brorsen, B.W. Anaerobic Digester Production and Cost Functions. Ecol. Econ. 2018, 152, 347–357. [Google Scholar] [CrossRef]
- US Environmental Protection Agency Anaerobic Digestion on Dairy Farms. Available online: https://www.epa.gov/system/files/documents/2021-09/anaerobic_digestion_on_dairy_farms.pdf (accessed on 13 May 2022).
- El Mashad, H.M.; Barzee, T.J.; Franco, R.B.; Zhang, R.; Kaffka, S.; Mitloehner, F. Anaerobic digestion and alternative manure management technologies for methane emissions mitigation on californian dairies. Atmosphere 2023, 14, 120. [Google Scholar] [CrossRef]
- Kok, R.; Annema, J.A.; van Wee, B. Cost-effectiveness of greenhouse gas mitigation in transport: A review of methodological approaches and their impact. Energy Policy 2011, 39, 7776–7793. [Google Scholar] [CrossRef]
- Nepomuceno de Oliveira, M.A.; Szklo, A.; Castelo Branco, D.A. Implementation of Maritime Transport Mitigation Measures according to their marginal abatement costs and their mitigation potentials. Energy Policy 2022, 160, 112699. [Google Scholar] [CrossRef]
- Upton, J.; Humphreys, J.; Groot Koerkamp, P.W.G.; French, P.; Dillon, P.; De Boer, I.J.M. Energy demand on dairy farms in Ireland. J. Dairy Sci. 2013, 96, 6489–6498. [Google Scholar] [CrossRef] [PubMed]
- Houston, C.; Gyamfi, S.; Whale, J. Evaluation of energy efficiency and renewable energy generation opportunities for small scale dairy farms: A case study in Prince Edward Island, Canada. Renew. Energy 2014, 67, 20–29. [Google Scholar] [CrossRef]
- Nacer, T.; Hamidat, A.; Nadjemi, O. A comprehensive method to assess the feasibility of renewable energy on Algerian dairy farms. J. Clean. Prod. 2016, 112, 3631–3642. [Google Scholar] [CrossRef]
- Kirilova, E.G.; Vaklieva-Bancheva, N.G. Environmentally friendly management of dairy supply chain for designing a green products’ portfolio. J. Clean. Prod. 2017, 167, 493–504. [Google Scholar] [CrossRef]
- Peterson, C.B.; Mitloehner, F.M. Sustainability of the Dairy Industry: Emissions and Mitigation Opportunities. Front. Anim. Sci. 2021, 2, 760310. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Report on the Social Cost of Greenhouse Gases; US Environmental Protection Agency: Washington, DC, USA, 2023.
Emission Source | GHG Emitted | Emission Amount and Contribution | |
---|---|---|---|
Direct | Enteric fermentation | CH4 | 49 Tg CO2 eq. in 2021, 54% of direct dairy-related emissions |
Manure management | CH4 and N2O | 41 Tg CO2 eq. in 2021, 46% of direct dairy-related emissions | |
Indirect | Feed production | CO2 and N2O | Further research is needed |
Product processing, packaging, and distribution | CO2 | ||
Energy consumption | CO2 |
Stages in the Dairy Supply Chain | Mitigation Strategies | |
---|---|---|
On the farm | Cattle management | Enhancing herd health from the newborn to the heifer, lactating, dry and transition period stages |
Improving fertility and reproduction | ||
Genetic selection for animals with fewer enteric emissions | ||
Feed and inhibitor management | Providing higher quality forage | |
Increasing dietary fat and protein content | ||
Decreasing the forage-to-concentrate ratio | ||
Administering inhibitors: 3-NOP, Asparagopsis etc. | ||
Manure management | Anaerobic digestion | |
Solid–liquid separation | ||
Shortening storage duration | ||
Balancing dietary proteins and feed supplements | ||
Utilizing manure as a fertilizer | ||
Energy management | Employing energy-conserving technologies | |
Integrating renewable energy generation | ||
In the processing plant | Altering packaging materials | |
Reducing energy usage | ||
In transport | Improving truck maintenance | |
Optimizing route design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Cheng, M.; McCarl, B.; Cessna, J. A Review of Options and Costs for Mitigating GHG Emissions from the U.S. Dairy Sector. Atmosphere 2024, 15, 926. https://doi.org/10.3390/atmos15080926
Lei Y, Cheng M, McCarl B, Cessna J. A Review of Options and Costs for Mitigating GHG Emissions from the U.S. Dairy Sector. Atmosphere. 2024; 15(8):926. https://doi.org/10.3390/atmos15080926
Chicago/Turabian StyleLei, Yuhong, Muxi Cheng, Bruce McCarl, and Jerry Cessna. 2024. "A Review of Options and Costs for Mitigating GHG Emissions from the U.S. Dairy Sector" Atmosphere 15, no. 8: 926. https://doi.org/10.3390/atmos15080926
APA StyleLei, Y., Cheng, M., McCarl, B., & Cessna, J. (2024). A Review of Options and Costs for Mitigating GHG Emissions from the U.S. Dairy Sector. Atmosphere, 15(8), 926. https://doi.org/10.3390/atmos15080926