Multi-Year Continuous Observations of Ambient PM2.5 at Six Sites in Akure, Southwestern Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. PM2.5 Measurements
2.3. Backward Trajectory of Airmass and Fire Spot Data
3. Results and Discussion
3.1. Seasonal Variation in PM2.5 Concentration
3.2. Seasonal Variation in Air Mass Trajectory and Fire Spots
3.3. Site-To-Site and Diurnal Variations in PM2.5 Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Pai, S.J.; Carter, T.S.; Heald, C.L.; Kroll, J.H. Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-anthropogenic PM2.5. Environ. Sci. Technol. Lett. 2022, 9, 501–506. [Google Scholar] [CrossRef]
- McDuffie, E.E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’Rourke, P.; Hammer, M.S.; van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 2021, 12, 3594. [Google Scholar] [CrossRef]
- Southerland, V.A.; Brauer, M.; Mohegh, A.; Hammer, M.S.; van Donkelaar, A.; Martin, R.V.; Apte, J.S.; Anenberg, S.C. Global urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: Estimates from global datasets. Lancet Planet. Health 2022, 6, 139–146. [Google Scholar] [CrossRef]
- Fisher, S.; Bellinger, D.C.; Cropper, M.L.; Kumar, P.; Binagwaho, A.; Koudenoukpo, J.B.; Park, Y.; Taghian, G.; Landrigan, P.J. Air pollution and development in Africa: Impacts on health, the economy, and human capital. Lancet Planet. Health 2021, 5, 681–688. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators, Nigeria. 2024. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 8 May 2024).
- Orogade, S.A.; Kayode, O.O.; Philip, K.H.; Donatus, B.A.; Abubakar, U.I.; Charles, A.O. Source Apportionment of Fine and Coarse Particulate Matter in Industrial Areas of Kaduna, Northern Nigeria. Aerosol Air Qual. Res. 2016, 16, 1179–1190. [Google Scholar] [CrossRef]
- Etchie, T.O.; Etchie, A.T.; Adewuyi, G.O.; Pillarisetti, A.; Sivanesan, S.; Krishnamurthi, K.; Arora, N.K. The gains in life expectancy by ambient PM2.5 pollution reductions in localities in Nigeria. Environ. Pollut. 2018, 236, 146–157. [Google Scholar] [CrossRef]
- Simwela, A.; Xu, B.; Mekondjo, S.S.; Morie, S. Air Quality Concerns in Africa: A Literature Review. Int. J. Sci. Res. Publ. 2018, 8, 588–594. [Google Scholar] [CrossRef]
- Akinwumiju, A.S.; Ajisafe, T.; Adelodun, A.A. Airborne Particulate Matter Pollution in Akure Metro City, Southwestern Nigeria, West Africa: Attribution and Meteorological Influence. J. Geovis. Spat. Anal. 2021, 5, 1–17. [Google Scholar] [CrossRef]
- Kim, K.H.; Jahan, S.A.; Kabir, E. A review of diseases associated with household air pollution due to the use of biomass fuels. J. Hazard. Mater. 2011, 192, 425–431. [Google Scholar] [CrossRef]
- WHO. Air Quality, Energy and Health. 2023. Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/policy-progress/sustainable-development-goals-air-pollution (accessed on 20 October 2023).
- Martin, R.V.; Brauer, M.; van Donkelaar, A.; Shaddick, G.; Narain, U.; Dey, S. No one knows which city has the highest concentration of fine particulate matter. Atmos. Environ. 2019, 3, 100040. [Google Scholar] [CrossRef]
- Odu-Onikosi, A.; Herckes, P.; Fraser, M.; Hopke, P.; Ondov, J.; Solomon, P.A.; Popoola, O.; Hidy, G.M. Tropical Air Chemistry in Lagos, Nigeria. Atmosphere 2022, 13, 1059. [Google Scholar] [CrossRef]
- Abulude, F.O.; Fagbayide, S.D.; Akinnusotu, A.; Elisha, J.J.; Makinde, O.E. Particulate matter and source identification: A case study of Nigeria. Eng. Appl. Sci. Res. 2019, 46, 151–169. [Google Scholar] [CrossRef]
- Ezeh, G.C.; Abiye, O.E.; Obioh, I.B. Elemental analyses and source apportionment of PM2.5 and PM2.5–10 aerosols from Nigerian urban cities. Cogent Environ. Sci. 2017, 3, 1323376. [Google Scholar] [CrossRef]
- Abulude, F.O.; Abulude, I.A.; Ezeh, G.C.; Acha, S. Source Identification and Pollution Factors of Elements in PM2.5 Samples Obtained in Akure, Ondo State, Nigeria. Aerosol Sci. Eng. 2021, 5, 307–317. [Google Scholar] [CrossRef]
- Awokola, B.; Okello, G.; Johnson, O.; Dobson, R.; Ouédraogo, A.R.; Dibba, B.; Ngahane, M.; Ndukwu, C.; Agunwa, C.; Marangu, D.; et al. Longitudinal Ambient PM2.5 Measurement at Fifteen Locations in Eight Sub-Saharan African Countries Using Low-Cost Sensors. Atmosphere 2022, 13, 1593. [Google Scholar] [CrossRef]
- Ezeh, G.C.; Obioh, I.B.; Asubiojo, O.I.; Onwudiegwu, C.A.; Nuviadenu, C.K.; Ayinla, S.B. Airborne fine particulate matter (PM2.5) at industrial, high- and low-density residential sites in a Nigerian megacity. Toxicol. Environ. Chem. 2018, 100, 326–333. [Google Scholar] [CrossRef]
- Popoola, O.A.M.; Alani, R.; Assah, F.; Lawanson, T.; Tchouaffi, A.K.; Mapa-Tassou, C.; Blanche, N.; Odekunle, D.; Unuigboje, R.; Onifade, V.A.; et al. Assessment of the Temporal and Seasonal Variabilities in Air Pollution and Implications for Physical Activity in Lagos and Yaoundé. Atmosphere 2023, 14, 1693. [Google Scholar] [CrossRef]
- Owoade, O.K.; Abiodun, P.O.; Omokungbe, O.R.; Fawole, O.G.; Olise, F.S.; Popoola, O.O.M.; Jones, R.L.; Hopke, P.K. Spatial-temporal Variation and Local Source Identification of Air Pollutants in a Semi-urban Settlement in Nigeria Using Low-cost Sensors. Aerosol Air Qual. Res. 2021, 21, 200598. [Google Scholar] [CrossRef]
- Abulude, F.O.; Abulude, I.A. Monitoring Air Quality in Nigeria: The Case of Center for Atmospheric Research-National Space Research and Development Agency (CAR-NASRDA). Aerosol Sci. Eng. 2021, 5, 478–498. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects 2022. 2024. Available online: https://population.un.org/wpp/ (accessed on 8 May 2024).
- Aremu, O.; Bello, E.; Aganbi, B.; Aremu, P.; Machoko, J. Monitoring and Analysis of Urban Heat Island using Remote Sensing Data—A Case Study of Akure, Ondo State, Nigeria. Int. J. Environ. Sci. Nat. Resour. 2017, 4, 153–161. [Google Scholar] [CrossRef]
- Dimari, G.A.; Hati, S.S.; Waziri, M.; Maitera, O.N. Pollution Synergy from Particulate Matter Sources: The Harmattan Fugitive Dust and combustion Emission in Maiduguri Metropolis Nigeria. Eur. J. Sci. Res. 2008, 23, 465–471. [Google Scholar]
- World Bank Group. Climate Change Knowledge Portal for Development Practitioners and Policy Makers, Climate Change Knowledge Portal. 2024. Available online: https://climateknowledgeportal.worldbank.org/country/nigeria (accessed on 8 May 2024).
- Nakayama, T.; Matsumi, Y.; Kawahito, K.; Watabe, Y. Development and evaluation of a palm-sized optical PM2.5 sensor. Aerosol Sci. Technol. 2018, 52, 2–12. [Google Scholar] [CrossRef]
- Ly, B.T.; Matsumi, Y.; Vu, T.V.; Sekiguchi, K.; Nguyen, T.T.; Pham, C.T.; Nghiem, T.D.; Ngo, I.H.; Kurotsuchi, Y.; Nguyen, T.H.; et al. The effects of meteorological conditions and long-range transport on PM2.5 levels in Hanoi revealed from multi-site measurement using compact sensors and machine learning approach. J. Aerosol Sci. 2021, 152, 105716. [Google Scholar] [CrossRef]
- Singh, T.; Matsumi, Y.; Nakayama, T.; Hayashida, S.; Patra, P.K.; Yasutomi, N.; Kajino, M.; Yamaji, K.; Khatri, P.; Takigawa, M.; et al. Very high particulate pollution over northwest India captured by a high-density in situ sensor network. Sci. Rep. 2023, 13, 13201. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Owoade, O.K.; Fawole, O.G.; Olise, F.S.; Ogundele, L.T.; Olaniyi, H.B.; Almeida, M.S.; Ho, M.D.; Hopke, P.K. Characterization and source identification of airborne particulate loadings at receptor site-classes of Lagos Mega-City, Nigeria. J. Air Waste Manag. Assoc. 2013, 63, 1026–1035. [Google Scholar] [CrossRef]
- Lala, M.A.; Onwunzo, C.S.; Adesina, O.A.; Sonibare, J.A. Particulate matters pollution in selected areas of Nigeria: Spatial analysis and risk assessment. Case Stud. Chem. Environ. Eng. 2023, 7, 100288. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 26 April 2024).
- Sunnu, A.; Afeti, G.; Resch, F. A long-term experimental study of the Saharan dust presence in West Africa. Atmos. Res. 2008, 87, 13–26. [Google Scholar] [CrossRef]
- Jenkins, G.S.; Diokhane, A.M. WRF prediction of two winter season Saharan dust events using PM10 concentrations: Boundary versus initial conditions. Atmos. Environ. 2017, 167, 129–142. [Google Scholar] [CrossRef]
- Léon, J.F.; Akpo, A.B.; Bedou, M.; Djossou, J.; Bodjrenou, M.; Yoboué, V.; Liousse, C. PM2.5 surface concentrations in southern West African urban areas based on sun photometer and satellite observations. Atmos. Chem. Phys. 2021, 21, 1815–1834. [Google Scholar] [CrossRef]
- Wambebe, N.M.; Duan, X. Air Quality Levels and Health Risk Assessment of Particulate Matters in Abuja Municipal Area, Nigeria. Atmosphere 2020, 11, 817. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saetae, S.; Abulude, F.O.; Ndamitso, M.M.; Akinnusotu, A.; Oluwagbayide, S.D.; Matsumi, Y.; Kanegae, K.; Kawamoto, K.; Nakayama, T. Multi-Year Continuous Observations of Ambient PM2.5 at Six Sites in Akure, Southwestern Nigeria. Atmosphere 2024, 15, 867. https://doi.org/10.3390/atmos15070867
Saetae S, Abulude FO, Ndamitso MM, Akinnusotu A, Oluwagbayide SD, Matsumi Y, Kanegae K, Kawamoto K, Nakayama T. Multi-Year Continuous Observations of Ambient PM2.5 at Six Sites in Akure, Southwestern Nigeria. Atmosphere. 2024; 15(7):867. https://doi.org/10.3390/atmos15070867
Chicago/Turabian StyleSaetae, Sawanya, Francis Olawale Abulude, Mohammed Mohammed Ndamitso, Akinyinka Akinnusotu, Samuel Dare Oluwagbayide, Yutaka Matsumi, Kenta Kanegae, Kazuaki Kawamoto, and Tomoki Nakayama. 2024. "Multi-Year Continuous Observations of Ambient PM2.5 at Six Sites in Akure, Southwestern Nigeria" Atmosphere 15, no. 7: 867. https://doi.org/10.3390/atmos15070867
APA StyleSaetae, S., Abulude, F. O., Ndamitso, M. M., Akinnusotu, A., Oluwagbayide, S. D., Matsumi, Y., Kanegae, K., Kawamoto, K., & Nakayama, T. (2024). Multi-Year Continuous Observations of Ambient PM2.5 at Six Sites in Akure, Southwestern Nigeria. Atmosphere, 15(7), 867. https://doi.org/10.3390/atmos15070867