Southerly Surge Impact on Rainfall Patterns in Southern Indonesia during Winter Monsoon and Madden–Julian Oscillation (MJO)
Abstract
:1. Introduction
2. Data and Method
2.1. Data Used in This Study
2.2. Southerly Surge Identification
2.3. Extreme Rainfall, Integrated Water Vapor Transport and Convective Instability
3. Result and Discussion
3.1. Climatology of SS and Large-Scale Atmospheric Conditions
3.1.1. Climatology of the Rainfall and SS
3.1.2. Large-Scale, MJO and Monsoon Conditions Associated with SS
3.2. Rainfall Response to Southerly Surges
3.2.1. Rainfall Patterns during MJO Condition
3.2.2. Extreme Rainfall Response
3.2.3. Cross-Section Analysis for Rainfall Diurnal Variations
3.3. Atmospheric Processes of SSs Governing Rainfall Systems
3.3.1. Integrated Water Vapor Transport (IVT)
3.3.2. Convective Instability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamanaka, M.D. Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies. Atmos. Res. 2016, 178, 231–259. [Google Scholar] [CrossRef]
- Chang, C.P.; Harr, P.A.; McBride, J.; Hsu, H.H. Maritime Continent monsoon: Annual cycle and boreal winter variability. In East Asian Monsoon; World Scientific: Singapore, 2004; pp. 107–150. [Google Scholar] [CrossRef]
- Aldrian, E.; Susanto, R.D. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol. 2003, 23, 1435–1452. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Wang, B.; Yang, J. A Multi time Scale Australian Monsoon Index. Int. J. Climatol. 2009, 30, 1114–1120. [Google Scholar] [CrossRef]
- Chen, T.C.; Yen, M.C.; Huang, W.R.; Gallus, W.A., Jr. An East Asian cold surge: Case study. Mon. Weather Rev. 2002, 130, 2271–2290. [Google Scholar] [CrossRef]
- Davidson, N.E.; McBride, J.L.; McAvaney, B.J. The onset of the Australian monsoon during winter MONEX: Synoptic aspects. Mon. Weather Rev. 1983, 111, 496–516. [Google Scholar] [CrossRef]
- Fukutomi, Y.; Yasunari, T. Southerly Surges on Submonthly Time Scales over the Eastern Indian Ocean during the Southern Hemisphere Winter. Mon. Weather Rev. 2005, 133, 1637–1654. [Google Scholar] [CrossRef]
- McBride, J.L. The Australian summer monsoon. In Monsoon Meteorology; Chang, C.-P., Krishnamurti, T.N., Eds.; Oxford University Press: Oxford, UK, 1987; pp. 203–231. [Google Scholar]
- Suppiah, R.; Wu, X. Surges, cross-equatorial flows and their links with the Australian Summer Monsoon Circulation and Rainfall. Aust. Meteorol. Mag. 1998, 47, 2. [Google Scholar]
- Amelia, Y. Study of Variations in January Rainfall Patterns in the Asian Monsoon Region of Australia and Their Relation to the Southerly Surge Phenomenon. Bachelor’s Thesis, Bandung Institute of Technology, Bandung, Indonesia, 2010. [Google Scholar]
- Hermawanto, A. Study of the Break Period During the Winter Asian Monsoon in Indonesia. Master’s Thesis, Bandung Institute of Technology, Bandung, Indonesia, 2011. [Google Scholar]
- Taryono. Study of Cold Surge and Southerly Surge Activities During the Winter Asian Monsoon in the Java Region. Ph.D. Thesis, Bandung Institute of Technology, Bandung, Indonesia, 2012. [Google Scholar]
- Muhammad, F.R.; Lubis, S.W.; Setiawan, S. Impacts of the Madden–Julian oscillation on precipitation extremes in Indonesia. Int. J. Climatol. 2021, 41, 1970–1984. [Google Scholar] [CrossRef]
- Ren, H.-L.; Ren, P. Impact of Madden-Julian Oscillation upon winter extreme rainfall in Southern China: Observations and predictability in CFSv2. Atmosphere 2017, 8, 192. [Google Scholar] [CrossRef]
- Seto, T.H.; Yamamoto, M.K.; Hashiguchi, H.; Fukao, S. Convective activities associated with intraseasonal variation over Sumatera, Indonesia, observed with the equatorial atmosphere radar. Ann. Geophys. 2004, 22, 3899–3916. [Google Scholar] [CrossRef]
- Wheeler, M.C.; Hendon, H.H.; Cleland, S.; Meinke, H.; Donald, A. Impacts of the Madden-Julian oscillation on Australian rainfall and circulation. J. Clim. 2009, 22, 1482–1498. [Google Scholar] [CrossRef]
- Zhou, S.; L’Heureux, M.; Weaver, S.; Kumar, A. A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Clim. Dyn. 2012, 38, 1459–1471. [Google Scholar] [CrossRef]
- Trismidianto; Andarini, D.F.; Muharsyah, R.; Purwaningsih, A.; Risyanto Nauval, F.; Fathrio, I.; Harjupa, W.; Nuryanto, D.E.; Harjana, T.; Satiadi, D.; et al. Interactions among Cold Surge, Cross-Equatorial Northerly Surge, and Borneo Vortex in influencing extreme rainfall during Madden–Julian oscillation over the Indonesia Maritime Continent. Meteorol. Atmos. Phys. 2023, 135, 43. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bui, H.T.; Ishidara, H.; Shaowei, N. Evaluation of the use of global satellite–gauge and satellite-only precipitation products in stream flow simulations. Appl. Water Sci. 2019, 9, 52. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Wheeler, M.C.; Hendon, H.H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- Hidayat, R.; Kizu, S. Influence of the Madden–Julian Oscillation on Indonesian rainfall variability in austral summer. Int. J. Climatol. 2010, 30, 1816–1825. [Google Scholar] [CrossRef]
- Matthews, A.J.; Pickup, G.; Peatman, S.C.; Clews, P.; Martin, J. The effect of the Madden-Julian Oscillation on station rainfall and river level in the Fly River system, Papua New Guinea. J. Geophys. Res. Atmos. 2013, 118, 10–926. [Google Scholar] [CrossRef]
- Peatman, S.C.; Matthews, A.J.; Stevens, D.P. Propagation of the Madden–Julian oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Q. J. R. Meteorol. Soc. 2014, 140, 814–825. [Google Scholar] [CrossRef]
- Lim, S.Y.; Marzin, C.; Xavier, P.; Chang, C.-P.; Timbal, B. Impacts of boreal winter monsoon cold surges and the interaction with MJO on Southeast Asia rainfall. J. Clim. 2017, 30, 4267–4281. [Google Scholar] [CrossRef]
- Xavier, P.; Rahmat, R.; Cheong, W.K.; Wallace, E. Influence of Madden-Julian Oscillation on Southeast Asia rainfall extremes: Observations and predictability. Geophys. Res. Lett. 2014, 41, 4406–4412. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Moncrieff, M.W.; Miller, M.J. The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 1976, 102, 373–394. [Google Scholar] [CrossRef]
- Air Weather Service: The Use of Skew-T Log-P Diagram in Analysis and Forecasting, Technical Report No. AWS/TR-79/006 Rev., 1979. Available online: http://www.atmo.arizona.edu/students/courselinks/spring13/atmo570/Homework_WAF2/SkewTDocumentation.pdf (accessed on 30 May 2024).
- Love, B.S.; Matthews, A.J.; Lister, G.M.S. The diurnal cycle of precipitation over the maritime continent in a high-resolution atmospheric model. Q. J. R. Meteorol. Soc. 2011, 137, 934–947. [Google Scholar] [CrossRef]
- Xavier, P.; Lim, S.Y.; Ammar Bin Abdullah, M.F.; Bala, M.; Chenoli, S.N.; Handayani, A.S.; Marzin, C.; Permana, D.; Tangang, F.; Williams, K.D.; et al. Seasonal Dependence of Cold Surges and their Interaction with the Madden–Julian Oscillation over Southeast Asia. J. Clim. 2020, 33, 2467–2482. [Google Scholar] [CrossRef]
- Da Silva, N.A.; Matthews, A.J. Impact of the Madden–Julian Oscillation on extreme precipitation over the western Maritime Continent and Southeast Asia. Q. J. R. Meteorol. Soc. 2021, 147, 3434–3453. [Google Scholar] [CrossRef]
- Chang, C.P.; Harr, P.A.; Chen, H.J. Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Weather Rev. 2005, 113, 489–503. [Google Scholar] [CrossRef]
- Chang, C.P.; McBride, J.; Liu, C.H. Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. J. Clim. 2005, 18, 287–301. [Google Scholar] [CrossRef]
- Satiadi, D.; Purwaningsih, A.; Harjupa, W.; Trismidianto Andarini, D.F.; Nauval, F.; Saufina, E.; Harjana, T.; Risyanto Rahmatia, F.; Pratama, R.; Devianto, D.; et al. Impacts of CENS and MJO phenomena on diurnal cycle of local convection, moisture convergence, and rainfall over land, coast, and sea areas in the western part of Java Island. Meteorol. Atmos. Phys. 2023, 135, 42. [Google Scholar] [CrossRef]
- Davidson, N.E. Short-term fluctuations in the Australian monsoon during winter Monex. Mon. Weather Rev. 1984, 112, 1697–1708. [Google Scholar] [CrossRef]
- Woolnough, S.J.; Slingo, J.M.; Hoskins, B.J. The Relationship between Convection and Sea Surface Temperature on Intraseasonal Timescales. J. Clim. 2000, 13, 2086–2104. [Google Scholar] [CrossRef]
- Vincent, C.L.; Lane, T.P. Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian oscillation event through the Maritime Continent. Mon. Weather Rev. 2016, 144, 1983–2005. [Google Scholar] [CrossRef]
- Hendon, H.H.; Woodberry, K. The diurnal cycle of tropical convection. J. Geophys. Res. 1993, 98, 16623–16637. [Google Scholar] [CrossRef]
- Gray, W.M.; dan Jacobson, R.W. Diurnal Variation of Deep Convective System in The Tropics. Mon. Weather Rev. 1977, 105, 1171–1188. [Google Scholar] [CrossRef]
- Murakami, M. Analysis of the deep convective activity over the western Pacific and Southeast Asia. Part I: Diurnal variation. J. Meteor. Soc. Japan 1983, 61, 60–75. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Geotis, S.G.; Marks, F.D., Jr.; West, A.K. Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Weather Rev. 1981, 109, 1595–1614. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Zipser, E.J. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Clim. 2003, 16, 1456–1475. [Google Scholar] [CrossRef]
- Fukutomi, Y. Tropical synoptic-scale waves propagating across the Maritime Continent and northern Australia. J. Geophys. Res. Atmos. 2019, 124, 7665–7682. [Google Scholar] [CrossRef]
- Hu, H.; Li, Y.; Yang, X.-Q.; Wang, R.; Mao, K.; Yu, P. Influences of oceanic processes between the Indian and Pacific basins on the eastward propagation of MJO events crossing the Maritime Continent. J. Geophys. Res. Atmos. 2023, 128, e2022JD038239. [Google Scholar] [CrossRef]
Condition | Ts | Td | V | CAPE | CINH | VIMFC |
---|---|---|---|---|---|---|
Inactive MJO + SS | −0.25 | −0.72 | −0.43 | −0.78 | −0.29 | 0.82 |
Active MJO + SS | −0.31 | −0.39 | −0.23 | 0.45 | −0.18 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trismidianto; Satiadi, D.; Harjupa, W.; Fathrio, I.; Risyanto; Saufina, E.; Muharsyah, R.; Nuryanto, D.E.; Nauval, F.; Andarini, D.F.; et al. Southerly Surge Impact on Rainfall Patterns in Southern Indonesia during Winter Monsoon and Madden–Julian Oscillation (MJO). Atmosphere 2024, 15, 840. https://doi.org/10.3390/atmos15070840
Trismidianto, Satiadi D, Harjupa W, Fathrio I, Risyanto, Saufina E, Muharsyah R, Nuryanto DE, Nauval F, Andarini DF, et al. Southerly Surge Impact on Rainfall Patterns in Southern Indonesia during Winter Monsoon and Madden–Julian Oscillation (MJO). Atmosphere. 2024; 15(7):840. https://doi.org/10.3390/atmos15070840
Chicago/Turabian StyleTrismidianto, Didi Satiadi, Wendi Harjupa, Ibnu Fathrio, Risyanto, Elfira Saufina, Robi Muharsyah, Danang Eko Nuryanto, Fadli Nauval, Dita Fatria Andarini, and et al. 2024. "Southerly Surge Impact on Rainfall Patterns in Southern Indonesia during Winter Monsoon and Madden–Julian Oscillation (MJO)" Atmosphere 15, no. 7: 840. https://doi.org/10.3390/atmos15070840
APA StyleTrismidianto, Satiadi, D., Harjupa, W., Fathrio, I., Risyanto, Saufina, E., Muharsyah, R., Nuryanto, D. E., Nauval, F., Andarini, D. F., Purwaningsih, A., Harjana, T., Praja, A. S., Witono, A., Juaeni, I., & Suhandi, B. (2024). Southerly Surge Impact on Rainfall Patterns in Southern Indonesia during Winter Monsoon and Madden–Julian Oscillation (MJO). Atmosphere, 15(7), 840. https://doi.org/10.3390/atmos15070840