Air Quality in the Cartagena Basin in South-Western Europe and the Impact of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Measurements
2.2. Harmonic Analysis
2.3. Lamb Weather Types
3. Results and Discussion
3.1. The Whole Period
3.2. The Impact of the Lockdown
3.2.1. The Concentration Series around the Lockdown Period
3.2.2. The Lockdown Period
3.2.3. The Influence of the Lockdown on the Weekly Cycle
3.2.4. Concentrations following Lamb Weather Types
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, H.; Yang, Z.; Yang, J.; Tao, Y.; Zhang, L. Comprehensive evaluation of environmental air quality based on the entropy weights and concentration variation trends of pollutants. Atmosphere 2022, 13, 1978. [Google Scholar] [CrossRef]
- Bilgili, L.; Celebi, U.B. Emission routing in maritime transportation. In Energy, Transportation and Global Warming; Grammelis, P., Ed.; Springer: Cham, Switzerland, 2016; pp. 837–849. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. The activity-based methodology to assess ship emissions—A review. Environ. Pollut. 2017, 231, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Isaksen, I.S.A.; Berntsen, T.; Collins, W.J.; Corbett, J.J.; Endresen, O.; Grainger, R.G.; Maldanova, J.; Schlager, H.; Stevenson, D.S. Transport impacts on atmosphere and climate: Shipping. Atmos. Environ. 2010, 44, 4735–4771. [Google Scholar] [CrossRef]
- Saraçoǧlu, H.; Deniz, C.; Kiliç, A. An investigation on the effects of ship sourced emissions in Izmir port, Turkey. Sci. World J. 2013, 2013, 218324. [Google Scholar] [CrossRef] [PubMed]
- Yau, P.S.; Lee, S.C.; Corbett, J.J.; Wang, C.; Cheng, Y.; Ho, K.F. Estimation of exhaust emission from ocean-going vessels in Hong Kong. Sci. Total Environ. 2012, 431, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, A.; Deniz, C. Inventory of shipping emissions in Izmit gulf, Turkey. Environ. Prog. Sustain. Energy 2010, 29, 221–232. [Google Scholar] [CrossRef]
- Cooper, D.A. Exhaust emissions from ships at Berth. Atmos. Environ. 2003, 37, 3817–3830. [Google Scholar] [CrossRef]
- Saxe, H.; Larsen, T. Air pollution from ships in three Danish ports. Atmos. Environ. 2004, 38, 4057–4067. [Google Scholar] [CrossRef]
- Dalsøren, S.B.; Eide, M.S.; Endresen, O.; Mjelde, A.; Gravir, G.; Isaksen, I.S.A. Update on emissions and environmental impacts from the international fleet of ships: The contribution from major ship types and ports. Atmos. Chem. Phys. 2009, 9, 2171–2194. [Google Scholar] [CrossRef]
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from ship emissions: A global assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef]
- Dore, A.J.; Vieno, M.; Tang, Y.S.; Dragosits, U.; Dosio, A.; Weston, K.J.; Sutton, M.A. Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmos. Environ. 2007, 41, 2355–2367. [Google Scholar] [CrossRef]
- Papanastasiou, D.K.; Melas, D. Climatology and impact on air quality of sea breeze in an urban coastal environment. Int. J. Climatol. 2009, 29, 305–315. [Google Scholar] [CrossRef]
- Mavrakou, T.; Philippopoulos, K.; Deligiorgi, D. The impact of sea breeze under different synoptic patterns on air pollution within Athens basin. Sci. Total Environ. 2012, 433, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, Y.; Ma, W.; Fu, Q.; Yang, X.; Li, C.; Zhou, B.; Yu, Q.; Chen, L. Characteristics and ship traffic source identification of air pollutants in China’s largest port. Atmos. Environ. 2013, 64, 277–286. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, Y.; Ma, W.; Ma, H.; Feng, J.; Yu, Q.; Yang, X.; Ng, S.K.W.; Fu, Q.; Chen, L. Spatial and seasonal dynamics of ship emissions over the Yangtze River Delta and East China Sea and their potential environmental influence. Environ. Sci. Technol. 2016, 50, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Tzannatos, E. Ship emissions and their externalities for the port of Piraeus—Greece. Atmos. Environ. 2010, 44, 400–407. [Google Scholar] [CrossRef]
- Matthias, V.; Bewersdorff, I.; Aulinger, A.; Quante, M. The contribution of ship emissions to air pollution in the North Sea regions. Environ. Pollut. 2010, 158, 2241–2250. [Google Scholar] [CrossRef]
- Song, S.K.; Shon, Z.H. Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea. Environ. Sci. Pollut. Res. 2014, 21, 6612–6622. [Google Scholar] [CrossRef]
- International Maritime Organisation. International Convention for the Prevention of Pollution from Ships (MARPOL). Available online: https://www.imo.org/en (accessed on 3 October 2023).
- Castells Sanabra, M.; Usabiaga Santamaría, J.J.; Martínez De Osés, F.X. Manoeuvring and hotelling external costs: Enough for alternative energy sources? Marit. Policy Manag. 2014, 41, 42–60. [Google Scholar] [CrossRef]
- Alver, F.; Saraç, B.A.; Alver Şahin, Ü. Estimating of shipping emissions in the Samsun Port from 2010 to 2015. Atmos. Pollut. Res. 2018, 9, 822–828. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B. Environmental cost and eco-efficiency from vessel emissions in Las Palmas Port. Transp. Res. Part e-Logist. Transp. Rev. 2015, 83, 126–140. [Google Scholar] [CrossRef]
- Villalba, G.; Gemechu, E.D. Estimating GHG emissions of marine ports-the case of Barcelona. Energy Policy 2011, 39, 1363–1368. [Google Scholar] [CrossRef]
- García, M. Cruceros: Colosos del turismo masivo de alta contaminación. Ecol. Política Tur. 2016, 52, 98–102. [Google Scholar]
- Papaefthimiou, S.; Maragkogianni, A.; Andriosopoulos, K. Evaluation of cruise ships emissions in the Mediterranean basin: The case of Greek ports. Int. J. Sustain. Transp. 2016, 10, 985–994. [Google Scholar] [CrossRef]
- De Melo Rodríguez, G.; Martin-Alcalde, E.; Murcia-González, J.C.; Saurí, S. Evaluating air emission inventories and indicators from cruise vessels at ports. WMU J. Marit. Aff. 2017, 16, 405–420. [Google Scholar] [CrossRef]
- Cesari, D.; Genga, A.; Ielpo, P.; Siciliano, M.; Mascolo, G.; Grasso, F.M.; Contini, D. Source apportionment of PM2.5 in the harbour-industrial area of Brindisi (Italy): Identification and estimation of the contribution of in-port ship emissions. Sci. Total Environ. 2014, 497–498, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Cirera, L.; Rodríguez, M.; Giménez, J.; Jiménez, E.; Saez, M.; Guillén, J.J.; Medrano, J.; Martínez-Victoria, M.A.; Ballester, F.; Moreno-Grau, S.; et al. Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain. Environ. Sci. Pollut. Res. 2009, 16, 152–161. [Google Scholar] [CrossRef] [PubMed]
- García-Ayllón, S. Air pollution derivatives linked to changes in urban mobility patterns during COVID-19: The Cartagena case study. Environ. Sci. Proc. 2022, 24, 3. [Google Scholar] [CrossRef]
- García-Ayllón, S.; Kyriakidis, P. Spatial analysis of environmental impacts linked to changes in urban mobility patterns during COVID-19: Lessons learned from the Cartagena case study. Land 2022, 11, 81. [Google Scholar] [CrossRef]
- Doval-Miñarro, M.; Bueso, M.C. A comparative study of air pollutant concentrations before the COVID-19 pandemic and in the new normal in the Región de Murcia (Spain). Atmosphere 2023, 14, 147. [Google Scholar] [CrossRef]
- Costa-Gómez, I.; Suarez-Suarez, M.; Moreno, J.M.; Moreno-Grau, S.; Negral, L.; Arroyo-Manzanares, N.; López-García, I.; Peñalver, R. A novel application of thermogravimetry-mass spectrometry for polystyrene quantification in the PM10 and PM2.5 fractions of airborne microplastics. Sci. Total Environ. 2023, 856, 159041. [Google Scholar] [CrossRef] [PubMed]
- Caniato, M.; Bettarello, F.; Gasparella, A. Indoor and outdoor noise changes due to the COVID-19 lockdown and their effects on individuals’ expectations and preferences. Sci. Rep. 2021, 11, 16533. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, X.; Zhu, C. Night-time skyglow dynamics during the COVID-19 Epidemic in Guangbutun region of Wuhan City. Remote Sens. 2022, 14, 4451. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Sabrin, S.; Karimi, M.; Nazari, R.; Fahad, M.G.R.; Peters, R.W.; Uddin, A. The impact of stay-at-home orders on air-quality and COVID-19 mortality rate in the United States. Urban Clim. 2021, 39, 100946. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Jeon, H.W.; Sung, U.J.; Sohn, J.R. Impact of the COVID-19 outbreak on air quality in Korea. Atmosphere 2020, 11, 1137. [Google Scholar] [CrossRef]
- Calidad del Aire de la Región de Murcia. Available online: https://sinqlair.carm.es/calidadaire/ (accessed on 3 October 2023).
- Autoridad Portuaria de Cartagena. Available online: https://www.apc.es/webapc/publicaciones/documentacion (accessed on 3 October 2023).
- Pérez, I.A.; Sánchez, M.L.; García, M.A.; Pardo, N.; Fernández-Duque, B. Statistical analysis of the CO2 and CH4 annual cycle on the northern plateau of the Iberian Peninsula. Atmosphere 2020, 11, 769. [Google Scholar] [CrossRef]
- Jenkinson, A.F.; Collison, F.P. An Initial Climatology of Gales over the North Sea; Synoptic Climatology Branch Memorandum No. 62; Meteorological Office: Bracknelly, UK, 1977. [Google Scholar]
- National Oceanic and Atmospheric Administration. Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html (accessed on 31 October 2023).
- Jang, E.; Do, W.; Park, G.; Kim, M.; Yoo, E. Spatial and temporal variation of urban air pollutants and their concentrations in relation to meteorological conditions at four sites in Busan, South Korea. Atmos. Pollut. Res. 2017, 8, 89–100. [Google Scholar] [CrossRef]
- Lee, H.; Park, S.; Mayer, H. Statistical characteristics of air quality index DAQx*-Specific air pollutants differentiated by types of air quality monitoring stations: A case study of Seoul, Republic of Korea. Sustainability 2023, 15, 8599. [Google Scholar] [CrossRef]
- Xiong, J.; Li, J.; Gao, F.; Zhang, Y. City wind impact on air pollution control for urban planning with different time-scale considerations: A case study in Chengdu, China. Atmosphere 2023, 14, 1068. [Google Scholar] [CrossRef]
- He, R.R. Quantifying the weekly cycle effect of air pollution in cities of China. Stoch. Environ. Res. Risk Assess. 2023, 37, 2445–2457. [Google Scholar] [CrossRef] [PubMed]
- Consejería de Medio Ambiente, Universidades, Investigación y Mar Menor. Dirección General de Medio Ambiente. Available online: https://sinqlair.carm.es/calidadaire/redvigilancia/redvigilancia.aspx (accessed on 20 June 2024).
- Song, X.; Zhang, D.; Li, X.; Lu, X.; Wang, M.; Zhang, B.; Zhang, R. Simultaneous observations of peroxyacetyl nitrate and ozone in Central China during static management of COVID-19: Regional transport and thermal decomposition. Atmos. Res. 2023, 294, 106958. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, H.; Zhang, Z.; Zheng, S.; Liu, H. Year-round changes in tropospheric nitrogen dioxide caused by COVID-19 in China using satellite observation. J. Environ. Sci. 2023, 132, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Menteş, Y.; Angin, S.N.; Qaid, A. Impact of the COVID-19 outbreak on urban air, Land surface temperature and air pollution in cold climate zones. Environ. Res. 2023, 237, 116887. [Google Scholar] [CrossRef] [PubMed]
- Putaud, J.-P.; Pisoni, E.; Mangold, A.; Hueglin, C.; Sciare, J.; Pikridas, M.; Savvides, C.; Ondracek, J.; Mbengue, S.; Wiedensohler, A.; et al. Impact of 2020 COVID-19 lockdowns on particulate air pollution across Europe. Atmos. Chem. Phys. 2023, 23, 10145–10161. [Google Scholar] [CrossRef]
- Lara, R.; van Drooge, B.L.; Canals-Angerri, A.; Amato, F.; Alastuey, A.; Querol, X.; Negral, L. Key factors for abating particulate matter in a highly industrialized area in N Spain: Fugitive emissions and secondary aerosol precursors. Chemosphere 2023, 341, 139959. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dwivedi, S.K. Assessment of air quality in Lucknow, India during the festival of Diwali for four successive years amid the COVID-19 pandemic lockdown. Phys. Chem. Earth 2023, 131, 103439. [Google Scholar] [CrossRef]
- Shaygan, M.; Mokarram, M. Investigating patterns of air pollution in metropolises using remote sensing and neural networks during the COVID-19 pandemic. Adv. Space Res. 2023, 72, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Chen, Z.; Wang, X.; Yue, M.; Liu, J.; Jiang, Y.; Zhao, Z.; Cai, G. Systematic and dynamic impacts of the COVID-19 pandemic on marine economic development, air pollution and energy consumption: A case study of China’s coastal regions. Ocean Coastal Manag. 2023, 244, 106774. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Sun, X.; Xu, S.; Shan, M.; Yuan, Q.; Liu, L.; Du, Z.; Liu, D.; Xu, D.; et al. Variation in concentration and sources of black carbon in a megacity of China during the COVID-19 pandemic. Geophys. Res. Lett. 2020, 47, e2020GL090444. [Google Scholar] [CrossRef]
- Yuan, Q.; Qi, B.; Hu, D.; Wang, J.; Zhang, J.; Yang, H.; Zhang, S.; Liu, L.; Xu, L.; Li, W. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 2021, 751, 141820. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Gao, Y.; Han, Y.; Zhang, Y.; Zhang, B.; Fu, H.; Wang, G. Elucidating the mechanisms of rapid O3 increase in North China Plain during COVID-19 lockdown period. Sci. Total Environ. 2024, 906, 167622. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; He, Q.; Xiao, Y.; Yang, J. Do city lockdowns effectively reduce air pollution? Technol. Forecast. Soc. Chang. 2023, 197, 122885. [Google Scholar] [CrossRef]
- Pérez, I.A.; García, M.A. Climate change in the Iberian Peninsula by weather types and temperature. Atmos. Res. 2023, 284, 106596. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Peculiar weather patterns effects on air pollution and COVID-19 spread in Tokyo metropolis. Environ. Res. 2023, 228, 115907. [Google Scholar] [CrossRef] [PubMed]
- Han, B.S.; Park, K.; Kwak, K.H.; Park, S.B.; Jin, H.G.; Moon, S.; Kim, J.W.; Baik, J.J. Air quality change in Seoul, South Korea under covid-19 social distancing: Focusing on PM2.5. Int. J. Environ. Res. Public Health 2020, 17, 6208. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, Z.; Qu, K.; Xu, J.; Zhang, J.; Yang, H.; Wang, W.; Sui, X.; Wei, M.; Liu, H. Spatial characteristics and influence of topography and synoptic systems on PM2.5 in the eastern monsoon region of China. Aerosol Air Qual. Res. 2023, 23, 220393. [Google Scholar] [CrossRef]
- Chen, T.L.; Hsiao, T.C.; Chen, A.Y.; Chang, K.E.; Lin, T.C.; Griffith, S.M.; Chou, C.C.K. A traffic-induced shift of ultrafine particle sources under COVID-19 soft lockdown in a subtropical urban area. Environ. Int. 2024, 187, 108658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Cegarra, J.-L.; Pérez, I.A.; García, M.Á. Air Quality in the Cartagena Basin in South-Western Europe and the Impact of the COVID-19 Pandemic. Atmosphere 2024, 15, 783. https://doi.org/10.3390/atmos15070783
Moreno-Cegarra J-L, Pérez IA, García MÁ. Air Quality in the Cartagena Basin in South-Western Europe and the Impact of the COVID-19 Pandemic. Atmosphere. 2024; 15(7):783. https://doi.org/10.3390/atmos15070783
Chicago/Turabian StyleMoreno-Cegarra, José-Luis, Isidro A. Pérez, and M. Ángeles García. 2024. "Air Quality in the Cartagena Basin in South-Western Europe and the Impact of the COVID-19 Pandemic" Atmosphere 15, no. 7: 783. https://doi.org/10.3390/atmos15070783
APA StyleMoreno-Cegarra, J. -L., Pérez, I. A., & García, M. Á. (2024). Air Quality in the Cartagena Basin in South-Western Europe and the Impact of the COVID-19 Pandemic. Atmosphere, 15(7), 783. https://doi.org/10.3390/atmos15070783