Trace Extraction and Repair of the F Layer from Pictorial Ionograms
Abstract
:1. Introduction
2. Noise Preprocessing
2.1. Invalid Signal Suppression
2.2. Inverse Iteration Based on 8-Connected Components
3. Coupling Noise Processing
3.1. Canny Arithmetic Edge Extraction
- (1)
- Smooth the ionogram by building a Gaussian filter.
- (2)
- Calculate the gradient size and direction for each pixel. Horizontal, vertical, positive diagonal, and negative diagonal are defined as four special directions. The gradient direction of a pixel within 22.5 degrees clockwise and counterclockwise in one of the four special directions is replaced by the special direction. Traverse through all the pixels and reserve the pixels that have the largest gradient value in the gradient direction. Then, delete the rest of the pixels.
- (3)
- Set two thresholds, tg and td, the values of which are 0.2 times and 0.05 times the maximum gradient value. Pixels with a gradient value greater than tg will be marked. For pixels with a gradient value between tg and td, if at least one pixel in the 8-connected adjacent domain has a gradient value greater than tg, they are also marked. Then, unmarked pixels are deleted to remove the weak edges. The residual noise is further deleted by the threshold-based weak edge identification.
3.2. Coupling Noise Removal
4. Trace Repair
4.1. Gap Filling
4.2. Trace Skeletonization
- (1)
- Traverse each pixel of the ionogram and set up iteration parameters f1 and f2. Initialize the two parameters to 0. Select the pixels in the axial and diagonal adjacency domain, which fulfill the following three requirements: 1. the number of non-zero pixels belongs to the interval [2, 6]; 2. the number of 0–1 jumps observed in the clockwise direction is 1; 3. the four pixels in the axial adjacency domain are recorded clockwise as p1, p2, p3, and p4, respectively, and satisfy p2 × p4 × p6 = 0 and p4 × p6 × p8 = 0. Then, delete the pixels and mark f1 = 1.
- (2)
- Change the judgment condition in (1) to p2 × p4 × p8 = 0 and p2 × p6 × p8 = 0 and redetermine the conditions. If there is a pixel satisfying the conditions, delete it and mark f2 = 1.
- (3)
- Repeat (1) and (2) until f1 × f2 = 0, i.e., there is no pixel satisfying all the conditions in (1) or (2).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muldrew, D.B. Nonvertical propagation and delayed-echo generation observed by the topside sounders. Proc. IEEE 1969, 57, 1097–1107. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Grigoriev, G.I. Study of the Mesosphere and Lower Thermosphere by the Method of Creating Artificial Periodic Irregularities of the Ionospheric Plasma. Atmosphere 2022, 13, 1346. [Google Scholar] [CrossRef]
- Rastogi, R.G.; Patel, V.L. Effect of interplanetary magnetic field on ionosphere over the magnetic equator. Proc. Indian Acad. Sci. 1975, 82, 121–141. [Google Scholar] [CrossRef]
- Danilov, A.D.; Lastovicka, J. Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2001, 2, 209–224. [Google Scholar]
- Borchevkina, O.; Karpov, I.; Karpov, M. Meteorological Storm Influence on the Ionosphere Parameters. Atmosphere 2020, 11, 1017. [Google Scholar] [CrossRef]
- Venkatesh, K.; Pallamraju, D.; Dalsania, K.P.; Chakrabarty, D.; Pant, T.K. Evaluation of the performance of F-layer peak height models used in IRI-2016 over the Indian equatorial and low latitudes. Adv. Space Res. 2024, 73, 3797–3807. [Google Scholar] [CrossRef]
- Zhbankov, G.A.; Danilkin, N.P.; Maltseva, O.A. Influence of the ionosphere on the accuracy of the satellite navigation system. Acta Astronaut. 2022, 190, 194–201. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Huang, X. Automatic calculation of electron density profiles from digital ionograms: 1. Automatic O and X trace identification for topside ionograms. Radio Sci. 1982, 17, 421–434. [Google Scholar] [CrossRef]
- Huang, X.; Reinisch, B.W. Automatic calculation of electron density profiles from digital ionograms: 2. True height inversion of topside ionograms with the profile-fitting method. Radio Sci. 1982, 17, 837–844. [Google Scholar]
- Reinisch, B.W.; Huang, X. Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms. Radio Sci. 1983, 18, 477–492. [Google Scholar] [CrossRef]
- Fox, M.W.; Blundell, C. Automatic scaling of digital ionograms. Radio Sci. 1989, 24, 747–761. [Google Scholar] [CrossRef]
- Ding, Z.; Ning, B.; Wan, W.; Liu, L. Automatic scaling of F2-layer parameters from ionograms based on the empirical orthogonal function (EOF) analysis of ionospheric electron density. Earth Planets Space 2007, 59, 51–58. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Zhao, Z.; Zhang, Y.; Zhu, P.; Sun, H. An automatic scaling technique for obtaining F2 parameters and F1 critical frequency from vertical incidence ionograms. Radio Sci. 2013, 48, 739–751. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, G.; Lan, T.; Zhu, P.; Song, H.; Zhou, C.; Cui, X.; Zhao, Z.; Zhang, Y. Improvement of automatic scaling of vertical incidence ionograms by simulated annealing. J. Atmos. Sol.-Terr. Phys. 2015, 133, 178–184. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, S.; Zhang, S.; Fang, G.; Wang, J. Automatic scaling of F layer from ionograms. Radio Sci. 2013, 48, 334–343. [Google Scholar] [CrossRef]
- Chen, Z.; Gong, Z.; Zhang, F.; Fang, G. A new ionogram automatic scaling method. Radio Sci. 2018, 53, 1149–1164. [Google Scholar] [CrossRef]
- Scotto, C. A method for processing ionograms based on correlation technique. Phys. Chem. Earth C Sol.-Terr. Planet. Sci. 2001, 26, 367–371. [Google Scholar] [CrossRef]
- Scotto, C.; Pezzopane, M. A method for automatic scaling of sporadic E layers from ionograms. Radio Sci. 2007, 42, RS2012. [Google Scholar] [CrossRef]
- Pezzopane, M.; Scotto, C. A method for automatic scaling of F1 critical frequencies from ionograms. Radio Sci. 2008, 43, RS2S91. [Google Scholar] [CrossRef]
- Pezzopane, M.; Scotto, C. Highlighting the F2 trace on an ionogram to improve Autoscala performance. Comp. Geosci. 2010, 36, 1168–1177. [Google Scholar] [CrossRef]
- Lan, T.; Jiang, C.; Yang, G.; Zhang, Y.; Zhao, Z. Investigation of automatic scaling of the F2 layer for film ionogram. Prog. Geophys. 2017, 32, 56–65. [Google Scholar]
- Huang, G.-H.; Dmitriev, A.V.; Lin, C.-H.; Chang, Y.-C.; Hsieh, M.-C.; Tsogtbaatar, E.; Mendoza, M.M.; Hsu, H.-W.; Lin, Y.-C.; Tsai, L.-C.; et al. The development of Spatial Attention U-Net for the recovery of ionospheric measurements and extraction of ionospheric parameters. Radio Sci. 2022, 57, e2022RS007471. [Google Scholar] [CrossRef]
- Scotto, C.; Pezzopane, M. Removing multiple reflections from the F2 layer to improve Autoscala performance. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1929–1934. [Google Scholar] [CrossRef]
- Zheng, H.; Ji, G.; Wang, G.; Zhao, Z.; He, S. Automatic scaling of F layer from ionograms based on image processing and analysis. J. Atmos. Sol.-Terr. Phys. 2013, 105–106, 110–118. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Zhang, T.; Suen, C. A Fast Parallel Algorithm for Thinning Digital Patterns. Commun. ACM 1984, 27, 236–239. [Google Scholar] [CrossRef]
Signal | Average Pixel | Dispersion Rate | Retention Rate |
---|---|---|---|
NoVal | 5641.6 | 2.0755 | 8.86% |
E | 2478.8 | 3.3256 | 8.60% |
NNE | 3441.4 | 3.2823 | 7.58% |
NNW | 1828.8 | 3.1809 | 5.58% |
W | 1680.2 | 3.0833 | 7.08% |
SSW | 1814.5 | 3.2005 | 6.23% |
SSE | 1767.6 | 3.2845 | 9.01% |
Vo+ | 2369.6 | 2.1120 | 53.50% |
Vo− | 623.8 | 2.7746 | 25.50% |
X+ | 1622.7 | 2.0038 | 62.36% |
X− | 379.0 | 2.5463 | 35.54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Qiao, L.; Yan, C.; Qiu, Z.; Wang, K. Trace Extraction and Repair of the F Layer from Pictorial Ionograms. Atmosphere 2024, 15, 769. https://doi.org/10.3390/atmos15070769
Wang J, Qiao L, Yan C, Qiu Z, Wang K. Trace Extraction and Repair of the F Layer from Pictorial Ionograms. Atmosphere. 2024; 15(7):769. https://doi.org/10.3390/atmos15070769
Chicago/Turabian StyleWang, Jiayi, Lei Qiao, Chunxiao Yan, Zhaoyang Qiu, and Kejie Wang. 2024. "Trace Extraction and Repair of the F Layer from Pictorial Ionograms" Atmosphere 15, no. 7: 769. https://doi.org/10.3390/atmos15070769
APA StyleWang, J., Qiao, L., Yan, C., Qiu, Z., & Wang, K. (2024). Trace Extraction and Repair of the F Layer from Pictorial Ionograms. Atmosphere, 15(7), 769. https://doi.org/10.3390/atmos15070769