Critical Drought Characteristics: A New Concept Based on Dynamic Time Period Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Application
2.2. Homogeneity Tests
- Set 1 is labeled “Homogeneous” if all three methods accept the null hypothesis (H0).
- Set 2 is labeled “Doubtful” if two of the homogeneity tests accept the null hypothesis (H0).
- Set 3 is labeled “Suspect” if only one or none of the homogeneity tests accept the null hypothesis (H0).
2.3. The Standardized Precipitation Index (SPI)
2.4. Drought Characteristics
- Drought duration (D) is defined as follows:
- 2.
- Drought severity (sum): Summation of drought index values within the drought duration.
- 3.
- Drought intensity (I):
- 4.
- Median and peak values for the drought event.
2.5. Dynamic Time Period Scenarios
3. Results
3.1. Homogeneity Test Results
3.2. Drought Characteristics for SPI 1
3.3. Drought Characteristics for SPI 3
3.4. Drought Characteristics for SPI 6
3.5. Drought Characteristics for SPI 12
4. Discussion
4.1. Initial Time Condition and Dynamic Time Period Scenarios
4.2. Drought Definition and Critical Drought Characteristics
4.3. Comparison between Critical and Traditional Drought Characteristics
4.4. Critical Drought Characteristics and Various Sectors
4.5. Previous Studies
4.6. New Parameters for Drought Characterization
4.7. Limitations and Future Opportunities
5. Conclusions
- Significant differences in drought characteristics were observed across different time period scenarios.
- The duration of drought events varied notably when different time periods were considered. For example, for SPI 12, the drought duration varied significantly from 20 to 29 months, and for SPI 6, the drought duration varied between 3 and 13 months.
- The intensity of SPI 1 ranged between −0.89 and −1.33, indicating a 33% increase, and the SPI 3 intensity ranged between −1.08 and −1.91, indicating a 50% increase.
- The proposed methodology using dynamic time period scenarios instead of one time period enhances the precision of identifying critical drought characteristics.
- The selection of a definition of droughts significantly impacts the resulting drought characteristics, highlighting the need for careful selection and further research to understand the implications of different definitions on drought assessments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhammad, W.; Yang, H.; Lei, H.; Muhammad, A.; Yang, D. Improving the regional applicability of satellite precipitation products by ensemble algorithm. Remote Sens. 2018, 10, 577. [Google Scholar] [CrossRef]
- Kesgin, E.; Yaldız, S.G.; Güçlü, Y.S. Spatiotemporal variability and trends of droughts in the Mediterranean coastal region of Türkiye. Int. J. Climatol. 2024, 44, 1036–1057. [Google Scholar] [CrossRef]
- Kharyutkina, E.; Loginov, S.; Martynova, Y.; Sudakov, I. Time series analysis of atmospheric precipitation characteristics in Western Siberia for 1979–2018 across different datasets. Atmosphere 2022, 13, 189. [Google Scholar] [CrossRef]
- Vaheddoost, B.; Mohammadi, B.; Safari, M.J.S. The Association between Meteorological Drought and the State of the Groundwater Level in Bursa, Turkey. Sustainability 2023, 15, 15675. [Google Scholar] [CrossRef]
- Merabti, A.; Meddi, M.; Martins, D.S.; Pereira, L.S. Comparing SPI and RDI applied at local scale as influenced by climate. Water Resour. Manag. 2018, 32, 1071–1085. [Google Scholar] [CrossRef]
- Nassaj, B.N.; Zohrabi, N.; Shahbazi, A.N.; Fathian, H. Evaluating the performance of eight global gridded precipitation datasets across Iran. Dyn. Atmos. Ocean. 2022, 98, 101297. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, H.; Liu, B.; Jiao, W. Spatiotemporal comparison of drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 using various drought indices in google earth engine. Remote Sens. 2022, 14, 1570. [Google Scholar] [CrossRef]
- Gu, L.; Chen, J.; Yin, J.; Sullivan, S.C.; Wang, H.M.; Guo, S.; Zhang, L.; Kim, J.S. Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates. Hydrol. Earth Syst. Sci. 2020, 24, 451–472. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Q.; Jiao, M.; Wu, P.; Gao, X.; Ma, M.; Hong, Y. The temporal-spatial characteristics of drought in the Loess Plateau using the remote-sensed TRMM precipitation data from 1998 to 2014. Remote Sens. 2018, 10, 838. [Google Scholar] [CrossRef]
- Brito, C.S.; da Silva, R.M.; Santos, C.A.G.; Neto, R.M.B.; Coelho, V.H.R. Monitoring meteorological drought in a semiarid region using two long-term satellite-estimated rainfall datasets: A case study of the Piranhas River basin, northeastern Brazil. Atmos. Res. 2021, 250, 105380. [Google Scholar] [CrossRef]
- Water, U.N. Water and climate change. In The United Nations World Water Development Report; Water UN: Geneva, Switzerland, 2020. [Google Scholar]
- World Economic Forum. This Is What Climate Change Costs Economies around the World; World Economic Forum: Cologny, Switzerland, 2023; Available online: www.weforum.org (accessed on 25 March 2024).
- World Meteorological Organization. State of the Global Climate 2022; World Meteorological Organization: Geneva, Switzerland, 2022; Available online: https://wmo.int/ (accessed on 25 March 2024).
- Thomas, T.; Jaiswal, R.K.; Galkate, R.; Nayak, P.C.; Ghosh, N.C. Drought indicators-based integrated assessment of drought vulnerability: A case study of Bundelkhand droughts in central India. Nat. Hazards 2016, 81, 1627–1652. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological drought. US. Weather Bureau Res. Paper, 1965. 45, 1–58.
- Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2007, 21, 821–833. [Google Scholar] [CrossRef]
- World Meteorological Organization. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012; p. 1090. [Google Scholar]
- Mahmoudi, P.; Rigi, A.; Miri Kamak, M. A comparative study of precipitation-based drought indices with the aim of selecting the best index for drought monitoring in Iran. Theor. Appl. Climatol. 2019, 137, 3123–3138. [Google Scholar] [CrossRef]
- Wable, P.S.; Jha, M.K.; Shekhar, A. Comparison of drought indices in a semi-arid river basin of India. Water Resour. Manag. 2019, 33, 75–102. [Google Scholar] [CrossRef]
- Şen, Z. Fuzzy standardized precipitation index (FSPI) for drought early warning procedure. Theor. Appl. Climatol. 2023, 155, 1281–1287. [Google Scholar] [CrossRef]
- Abu Arra, A.; Şişman, E. Innovative Drought Classification Matrix and Acceptable Time Period for Temporal Drought Evaluation. Water Resour. Manag. 2024, 38, 2811–2833. [Google Scholar] [CrossRef]
- Şen, Z.; Şişman, E. Probabilistic standardization index adjustment for standardized precipitation index (SPI). Theor. Appl. Climatol. 2023, 155, 2747–2756. [Google Scholar] [CrossRef]
- Elouissi, A.; Benzater, B.; Dabanli, I.; Habi, M.; Harizia, A.; Hamimed, A. Drought investigation and trend assessment in Macta watershed (Algeria) by SPI and ITA methodology. Arab. J. Geosci. 2021, 14, 1329. [Google Scholar] [CrossRef]
- Gumus, V. Evaluating the effect of the SPI and SPEI methods on drought monitoring over Turkey. J. Hydrol. 2023, 626, 130386. [Google Scholar] [CrossRef]
- Dabanlı, İ.; Mishra, A.K.; Şen, Z. Long-term spatio-temporal drought variability in Turkey. J. Hydrol. 2017, 552, 779–792. [Google Scholar] [CrossRef]
- Burt, S.; Burt, T. Durham Weather and Climate since 1841; Oxford University Press: Oxford, UK, 2022; 580p. [Google Scholar]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Wijngaard, J.; Tank, A.; Können, G. Homogeneity of 20th Century European Daily Temperature and Precipitation Series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Pan, Y.; Chen, Z.; Ren, Z. Assessment of candidate distributions for SPI/SPEI and sensitivity of drought to climatic variables in China. Int. J. Climatol. 2019, 39, 4392–4412. [Google Scholar] [CrossRef]
- Stephens, M.A. Use of the Kolmogorov–Smirnov, Cramer–Von Mises and related statistics without extensive tables. J. R. Stat. Soc. Ser. B: Stat. Methodol. 1970, 32, 115–122. [Google Scholar] [CrossRef]
- Yevjevich, V.M. Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. Ph.D. Thesis, Colorado State University, Collins, CO, USA, 1967. [Google Scholar]
- Abu Arra, A.; Şişman, E. Investigation of the main difference between the run and SPI theories regarding drought characteristics. In Proceedings of the AHI EVRAN 3rd International Congress on Scientific Research, Baku, Azerbaijan, 3–4 May 2023; 2023; Volume 2, pp. 124–134. [Google Scholar]
- Abu Arra, A.; Şişman, E. Characteristics of hydrological and meteorological drought based on intensity-duration-frequency (IDF) curves. Water 2023, 15, 3142. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, T.; Li, Y. Spatiotemporal Characteristics of Drought in Northwest China Based on SPEI Analysis. Atmosphere 2023, 14, 1188. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Implementing crop evapotranspiration in RDI for farm-level drought evaluation and adaptation under climate change conditions. Water Resour. Manag. 2020, 34, 4329–4343. [Google Scholar] [CrossRef]
- Tsakiris, G. Drought risk assessment and management. Water Resour. Manag. 2017, 31, 3083–3095. [Google Scholar] [CrossRef]
- Şişman, E. Self-similar characteristics of drought duration, total deficit, and intensity curves. Arab. J. Geosci. 2020, 13, 8. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought characterisation based on an agriculture-oriented standardised precipitation index. Theor. Appl. Climatol. 2019, 135, 1435–1447. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Romanowicz, R. Uncertainty in SPI calculation and its impact on drought assessment in different climate regions over China. J. Hydrometeorol. 2021, 22, 1369–1383. [Google Scholar] [CrossRef]
- Laimighofer, J.; Laaha, G. How standard are standardized drought indices? Uncertainty components for the SPI & SPEI case. J. Hydrol. 2022, 613, 128385. [Google Scholar]
Station’s Name | Lat. (N) | Lon. (W) | Average Monthly Precipitation (P)—mm | Standard Deviation (mm) | Min. Monthly Precipitation (mm) | Max. Monthly Precipitation (mm) | Skewness |
---|---|---|---|---|---|---|---|
Durham Station | 54.77 | 1.59 | 54.37 | 31.74 | 1.30 | 209.70 | 1.14 |
Monthly Temperature (T)—°C | Standard Deviation °C | ||||||
8.6 | 4.46 |
Scenario | Start and End Year | Time Period Duration (Years) |
---|---|---|
S1 | 1992–2021 | 30 |
S2 | 1982–2021 | 40 |
S3 | 1972–2021 | 50 |
S4 | 1962–2021 | 60 |
S5 | 1952–2021 | 70 |
S6 | 1942–2021 | 80 |
S7 | 1932–2021 | 90 |
S8 | 1922–2021 | 100 |
S9 | 1912–2021 | 110 |
S10 | 1902–2021 | 120 |
S11 | 1892–2021 | 130 |
S12 | 1882–2021 | 140 |
S13 | 1872–2021 | 150 |
Test Name | Test Statistics | p-Value | Result | Homogeneity |
---|---|---|---|---|
Pettitt | 48,958 | 0.378 | Accept | Set 1: Homogenous |
Buishand | 47.583 | 0.629 | Accept | |
SNHT | 6.671 | 0.328 | Accept |
Drought Characteristics SPI 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Years | Drought 1 (September 1996–October 1996) | Drought 2 (March 2011–June 2011) | |||||||||
Scenario | D | P | S | A | M | D | P | S | A | M | |
S1—30 Y | 1992–2021 | 2 | −1.05 | −1.56 | −0.78 | −0.78 | 4 | −2.41 | −3.9 | −0.97 | −0.71 |
S2—40 Y | 1982–2021 | 2 | −1.02 | −1.49 | −0.75 | −0.75 | 4 | −2.39 | −3.77 | −0.94 | −0.67 |
S3—50 Y | 1972–2021 | 2 | −1.01 | −1.48 | −0.74 | −0.74 | 3 | −2.39 | −2.73 | −0.91 | −0.32 |
S4—60 Y | 1962–2021 | 2 | −1.03 | −1.51 | −0.76 | −0.76 | 4 | −2.43 | −3.82 | −0.95 | −0.68 |
S5—70 Y | 1952–2021 | 0 | - | - | - | - | 3 | −2.36 | −2.67 | −0.89 | −0.30 |
S6—80 Y | 1942–2021 | 0 | - | - | - | - | 3 | −2.36 | −2.66 | −0.89 | −0.30 |
S7—90 Y | 1932–2021 | 0 | - | - | - | - | 3 | −2.37 | −2.71 | −0.90 | −0.32 |
S8—100 Y | 1922–2021 | 2 | −1.01 | −1.48 | −0.74 | −0.74 | 4 | −2.39 | −3.74 | −0.94 | −0.66 |
S9—110 Y | 1912–2021 | 2 | −1 | −1.47 | −0.73 | −0.73 | 3 | −2.38 | −2.72 | −0.91 | −0.32 |
S10—120 Y | 1902–2021 | 0 | - | - | - | - | 3 | −2.36 | −2.67 | −0.89 | −0.30 |
S11—130 Y | 1892–2021 | 0 | - | - | - | - | 2 | −2.37 | −2.66 | −1.33 | −1.33 |
S12—140 Y | 1882–2021 | 0 | - | - | - | - | 2 | −2.35 | −2.64 | −1.32 | −1.32 |
S13—150 Y | 1872–2021 | 0 | - | - | - | - | 3 | −2.36 | −2.66 | −0.89 | −0.89 |
Drought Characteristics SPI 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Years | Drought 1 (November 2011–April 2012) | Drought 2 (July 2018–May 2019) | |||||||||
Scenario | D | P | S | A | M | D | P | S | A | M | |
S1—30 Y | 1992–2021 | 6 | −2.53 | −6.74 | −1.12 | −1.05 | 11 | −1.60 | −8.19 | −0.74 | −0.82 |
S2—40 Y | 1982–2021 | 6 | −2.51 | −6.46 | −1.08 | −1.01 | 4 | −1.56 | −4.57 | −1.14 | −1.12 |
S3—50 Y | 1972–2021 | 2 | −2.45 | −3.82 | −1.91 | −1.91 | 4 | −1.52 | −4.41 | −1.1 | −1.08 |
S4—60 Y | 1962–2021 | 6 | −2.55 | −6.53 | −1.09 | −1.02 | 11 | −1.58 | −7.62 | −0.69 | −0.77 |
S5—70 Y | 1952–2021 | 2 | −2.45 | −3.8 | −1.9 | −1.9 | 4 | −1.50 | −4.35 | −1.09 | −1.07 |
S6—80 Y | 1942–2021 | 2 | −2.42 | −3.75 | −1.88 | −1.88 | 4 | −1.48 | −4.28 | −1.07 | −1.05 |
S7—90 Y | 1932–2021 | 2 | −2.46 | −3.83 | −1.92 | −1.92 | 4 | −1.52 | −4.42 | −1.1 | −1.08 |
S8—100 Y | 1922–2021 | 2 | −2.47 | −3.84 | −1.92 | −1.92 | 4 | −1.53 | −4.44 | −1.11 | −1.09 |
S9—110 Y | 1912–2021 | 2 | −2.49 | −3.88 | −1.94 | −1.94 | 4 | −1.54 | −4.47 | −1.12 | −1.10 |
S10—120 Y | 1902–2021 | 2 | −2.46 | −3.82 | −1.91 | −1.91 | 4 | −1.51 | −4.35 | −1.09 | −1.07 |
S11—130 Y | 1892–2021 | 2 | −2.46 | −3.81 | −1.9 | −1.9 | 4 | −1.5 | −4.31 | −1.08 | −1.06 |
S12—140 Y | 1882–2021 | 2 | −2.47 | −3.83 | −1.91 | −1.91 | 4 | −1.51 | −4.34 | −1.08 | −1.07 |
S13—150 Y | 1872–2021 | 2 | −2.45 | −3.81 | −1.9 | −1.9 | 4 | −1.5 | −4.34 | −1.08 | −1.06 |
Drought Characteristics SPI 6 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Years | Drought 1 (August 1991–August 1992) | Drought 2 (May 2017–August 2017) | |||||||||
Scenario | D | P | S | A | M | D | P | S | A | M | |
S1—30 Y | 1992–2021 | 3 | −1.08 | −1.94 | −0.65 | −0.65 | 4 | −1.42 | −2.44 | −0.61 | −0.45 |
S2—40 Y | 1982–2021 | 13 | −2.02 | −13.06 | −1 | −1 | 4 | −1.35 | −2.07 | −0.52 | −0.35 |
S3—50 Y | 1972–2021 | 13 | −1.91 | −12.08 | −0.93 | −0.93 | 2 | −1.26 | −1.72 | −0.86 | −0.86 |
S4—60 Y | 1962–2021 | 13 | −1.98 | −12.69 | −0.98 | −0.97 | 4 | −1.32 | −1.96 | −0.49 | −0.32 |
S5—70 Y | 1952–2021 | 13 | −1.90 | −11.86 | −0.91 | −0.91 | 2 | −1.25 | −1.69 | −0.84 | −0.84 |
S6—80 Y | 1942–2021 | 13 | −1.86 | −11.59 | −0.89 | −0.89 | 2 | −1.22 | −1.65 | −0.82 | −0.82 |
S7—90 Y | 1932–2021 | 13 | −1.93 | −12.19 | −0.94 | −0.94 | 2 | −1.27 | −1.74 | −0.87 | −0.87 |
S8—100 Y | 1922–2021 | 13 | −1.94 | −12.31 | −0.95 | −0.94 | 2 | −1.28 | −1.76 | −0.88 | −0.88 |
S9—110 Y | 1912–2021 | 13 | −1.96 | −12.37 | −0.95 | −0.95 | 2 | −1.29 | −1.76 | −0.88 | −0.88 |
S10—120 Y | 1902–2021 | 13 | −1.92 | −11.84 | −0.91 | −0.91 | 2 | −1.25 | −1.68 | −0.84 | −0.84 |
S11—130 Y | 1892–2021 | 12 | −1.90 | −11.62 | −0.97 | −0.96 | 2 | −1.23 | −1.65 | −0.82 | −0.82 |
S12—140 Y | 1882–2021 | 12 | −1.91 | −11.68 | −0.97 | −0.97 | 2 | −1.24 | −1.66 | −0.83 | −0.83 |
S13—150 Y | 1872–2021 | 13 | −1.89 | −11.65 | −0.90 | −0.96 | 2 | −1.23 | −1.65 | −0.83 | −0.83 |
Drought Characteristics SPI 12 | ||||||
---|---|---|---|---|---|---|
Years | Drought 1 (August 1995–December 1997) | |||||
Scenario | D | P | S | A | M | |
S1—30 Y | 1992–2021 | 29 | −2.21 | −31.48 | −1.09 | −1.15 |
S2—40 Y | 1982–2021 | 23 | −2 | −24.89 | −1.08 | −1.03 |
S3—50 Y | 1972–2021 | 23 | −1.85 | −22.43 | −0.98 | −0.92 |
S4—60 Y | 1962–2021 | 23 | −1.91 | −23.3 | −1.01 | −0.96 |
S5—70 Y | 1952–2021 | 21 | −1.83 | −19.82 | −0.94 | −0.89 |
S6—80 Y | 1942–2021 | 21 | −1.81 | −19.53 | −0.93 | −0.88 |
S7—90 Y | 1932–2021 | 23 | −1.88 | −22.56 | −0.98 | −0.87 |
S8—100 Y | 1922–2021 | 23 | −1.91 | −23.06 | −1 | −0.95 |
S9—110 Y | 1912–2021 | 23 | −1.92 | −22.99 | −1 | −0.88 |
S10—120 Y | 1902–2021 | 20 | −1.84 | −19.66 | −0.98 | −0.90 |
S11—130 Y | 1892–2021 | 20 | −1.83 | −19.26 | −0.96 | −0.88 |
S12—140 Y | 1882–2021 | 20 | −1.85 | −19.49 | −0.97 | −0.89 |
S13—150 Y | 1872–2021 | 20 | −1.84 | −19.57 | −0.98 | −0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Arra, A.; Birpınar, M.E.; Gazioğlu, Ş.A.; Şişman, E. Critical Drought Characteristics: A New Concept Based on Dynamic Time Period Scenarios. Atmosphere 2024, 15, 768. https://doi.org/10.3390/atmos15070768
Abu Arra A, Birpınar ME, Gazioğlu ŞA, Şişman E. Critical Drought Characteristics: A New Concept Based on Dynamic Time Period Scenarios. Atmosphere. 2024; 15(7):768. https://doi.org/10.3390/atmos15070768
Chicago/Turabian StyleAbu Arra, Ahmad, Mehmet Emin Birpınar, Şükrü Ayhan Gazioğlu, and Eyüp Şişman. 2024. "Critical Drought Characteristics: A New Concept Based on Dynamic Time Period Scenarios" Atmosphere 15, no. 7: 768. https://doi.org/10.3390/atmos15070768
APA StyleAbu Arra, A., Birpınar, M. E., Gazioğlu, Ş. A., & Şişman, E. (2024). Critical Drought Characteristics: A New Concept Based on Dynamic Time Period Scenarios. Atmosphere, 15(7), 768. https://doi.org/10.3390/atmos15070768