Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. The Standardized Precipitation Evapotranspiration Index (SPEI)
3.2. Model
3.3. Model Architecture Design
3.4. Flash Drought Identification
4. Results
4.1. Evaluation of Hydro-Climatic Data in Response to Drought
4.2. Identifying and Mapping Flash Drought Events
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. Chapter I Drought as a Natural Hazard: Concepts and Definitions; Drought A Glob. Assess; Drought Mitigation Center Faculty Publications: Lincoln, NE, USA, 2000. [Google Scholar]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Wu, C.; Ning, S.; Jin, J.; Zhou, Y.; Zhou, L.; Bai, X.; Zhang, L.; Cui, Y. Construction and application of comprehensive drought index based on uncertainty cloud reasoning algorithm. Sci. Total Environ. 2021, 779, 146533. [Google Scholar] [CrossRef]
- Barbosa, H.A. Understanding the rapid increase in drought stress and its connections with climate desertification since the early 1990s over the Brazilian semi-arid region. Arid Environ. 2024, 222, 105142. [Google Scholar] [CrossRef]
- Ahmad, S.K.; Kumar, S.V.; Lahmers, T.M.; Wang, S.; Liu, P.-W.; Wrzesien, M.L.; Bindlish, R.; Getirana, A.; Locke, K.A.; Holmes, T.R.; et al. Flash Drought Onset and Development Mechanisms Captured with Soil Moisture and Vegetation Data Assimilation. Water Resour. Res. 2022, 58, e2022WR032894. [Google Scholar] [CrossRef]
- Lisonbee, J.; Woloszyn, M.; Skumanich, M. Making sense of flash drought: Definitions, indicators, and where we go from here. J. Appl. Serv. Climatol. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. THE DROUGHT MONITOR. Bull. Am. Meteorol. Soc. 2022, 83, 1181–1190. [Google Scholar] [CrossRef]
- Yuan, X.; Ma, F.; Li, H.; Chen, S. A review on multi-scale drought processes and prediction under global change. Trans. Atmos. Sci. 2020, 43, 225–237. [Google Scholar]
- Mukherjee, S.; Mishra, A.K. A Multivariate Flash Drought Indicator for Identifying Global Hotspots and Associated Climate Controls. Geophys. Res. Lett. 2022, 49, 2. [Google Scholar] [CrossRef]
- Ji, Y.; Fu, J.; Lu, Y.; Liu, B. Three-dimensional-based global drought projection under global warming tendency. Atmos. Res. 2023, 291, 106812. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Hao, Z.; Hao, F.; Li, C. Projections of future meteorological droughts in China under CMIP6 from a three-dimensional perspective. Agric. Water Manag. 2021, 252, 106849. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Berg, A.M.; Cook, B.I.; Zhang, Y.; Hagemann, S.; Lorenz, R.; Seneviratne, S.I.; Gentine, P. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl. Acad. Sci. USA 2019, 116, 18848–18853. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, R.; Singh, V.P.; Xu, C.Y.; Yu, H.; Fan, K.; Wu, Z. Droughts across China: Drought factors, prediction and impacts. Sci. Total Environ. 2022, 803, 150018. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ford, T.W.; Wang, J.K.; Khong, A.; Harris, E.; Lindgren, T.; Goldberg, D.W.; Li, Z. The north American soil moisture database development and applications. Bull. Am. Meteorol. Soc. 2016, 97, 1441–1460. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Hassanzadeh, P.; Pasha, S. Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data. Sci. Rep. 2020, 10, 1317. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Zhu, X.X.; Reichstein, M. Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. Generating high resolution climate change projections through single image super-resolution: An abridged version. IJCAI Int. Jt. Conf. Artif. Intell. 2018, 5389–5393. [Google Scholar] [CrossRef]
- Gibson, P.B.; Chapman, W.E.; Altinok, A.; Monache, L.D.; DeFlorio, M.J.; Waliser, D.E. Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts. Commun. Earth Environ. 2021, 2, 159. [Google Scholar] [CrossRef]
- Wei, T.; Li, Y.F. Does tail label help for large-scale multi-label learning? IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 2315–2324. [Google Scholar]
- IBGE Instituto Brasileiro de Geografia e Estatística. População. Estados. Rio de Janeiro. IBGE 2023. Available online: http://censo2023.ibge.gov.br/apps/atlas/ (accessed on 20 April 2024).
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil-past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Barbosa, H.A. Flash drought and its characteristics in northeastern South America during 2004–2022 using satellite-based products. Atmosphere 2023, 14, 1629. [Google Scholar] [CrossRef]
- Beck, H.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Lutsko, N.J.; Dufour, A.; Zeng, Z.; Jiang, X.; van Dijk, A.I.J.M.; Miralles, D.G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data 2023, 10, 724. [Google Scholar] [CrossRef]
- Buriti, C.; Humberto, A.B.; Franklin, P.; Kumar, T.V.L.; Manoj, K.T.; Koteswara, R. Un siglo de sequías: ¿por qué las políticas de agua no desarrollaron la región semiárida brasileña? Rev. Bras. De Meteorol. 2020, 35, 683–688. [Google Scholar] [CrossRef]
- Giovannettone, J.; Franklin, P.; Humberto, B.A.; Carlos, A.C.; Kumar, T.V.L. Characterization of links between hydro-climate indices and long-term precipitation in Brazil using correlation analysis. Int. J. Climatol. 2020, 40, 5527–5541. [Google Scholar] [CrossRef]
- Xavier, A.C.; Scanlon, B.R.; King, C.W.; Alves, A.I. New improved Brazilian daily weather gridded data (1961–2020). Int. J. Climatol. 2022, 42, 8390–8404. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lopez-Moreno, J.I. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- González-Zamora, Á.; Sánchez, N.; Martínez-Fernández, J.; Gumuzzio, Á.; Piles, M.; Olmedo, E. Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain). Phys. Chem. Earth Parts A/B/C 2015, 83–84, 123–136. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Lakshmi Kumar, T.V. Influence of rainfall variability on the vegetation dynamics over Northeastern Brazil. J. Arid Environ. 2016, 124, 377–387. [Google Scholar] [CrossRef]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Sun, T.; Ferreira, V.; He, X.; Andam-Akorful, S. Water Availability of São Francisco River Basin Based on a Space-Borne Geodetic Sensor. Water 2016, 8, 213. [Google Scholar] [CrossRef]
- Shen, R.; Huang, A.; Li, B.; Guo, J. Construction of a drought monitoring model using deep learning based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 48–57. [Google Scholar] [CrossRef]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3d convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 221–231. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Khosravi, K.; Panahi, M.; Golkarian, A.; Keesstra, S.D.; Saco, P.M.; Bui, D.T.; Lee, S. Convolutional neural network approach for spatial prediction of flood hazard at national scale of iran. J. Hydrol. 2020, 591, 125552. [Google Scholar] [CrossRef]
- He, M.; Kimball, J.S.; Yi, Y.; Running, S.; Guan, K.; Jensco, K.; Maxwell, B.; Maneta, M. Impacts of the 2017 flash drought in the US Northern plains informed by satellite-based evapotranspiration and solar-induced fluorescence. Environ. Res. Lett. 2019, 14, 074019. [Google Scholar] [CrossRef]
- Prodhan, F.A.; Zhang, J.; Hasan, S.S.; Pangali Sharma, T.P.; Mohana, H.P. A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions. Environ. Model. Softw. 2022, 149, 105327. [Google Scholar] [CrossRef]
- Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Lawrence, S.; Burns, I.; Back, A.; Tsoi, A.C.; Giles, C.L. Neural network classification and prior class probabilities. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 295–309. [Google Scholar]
Product/Data Name | Time Period | Temporal Resolution | Spatial Resolution | Data Source | Accessed on |
---|---|---|---|---|---|
P | 2010 to 2020 | Daily | 0.1° | https://github.com/AlexandreCandidoXavier/BR-DWGD | 15 November 2023 |
PET | 2010 to 2020 | Daily | 0.1° | ||
SMOS L3 SSM (asc) | 2010 to 2020 | Daily | 0.225° | http://bec.icm.csic.es | 10 October 2023 |
SMOS L3 SSM (des) | 2010 to 2020 | Daily | 0.225° | http://bec.icm.csic.es | 10 October 2023 |
NDVI | 2010 to 2020 | Daily | 3 km | https://lapismet.com.br/ | 12 November 2023 |
Drought Category | SPEI | Probability [%] 1 | SSM |
---|---|---|---|
Non-drought | >1.00 | >77.50 | >25th |
Near normal (FD1) | 0.99 to −0.99 | 68.30 | 20th–25th |
Moderate dry (FD2) | −1.00 to −1.49 | 9.20 | 15th–20th |
Severe dry (FD3) | −1.50 to −1.99 | 4.40 | 10th–15th |
Extreme dry (FD4) | <−2.00 | 2.30 | <10th |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, H.A.; Buriti, C.O.; Kumar, T.V.L. Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil. Atmosphere 2024, 15, 761. https://doi.org/10.3390/atmos15070761
Barbosa HA, Buriti CO, Kumar TVL. Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil. Atmosphere. 2024; 15(7):761. https://doi.org/10.3390/atmos15070761
Chicago/Turabian StyleBarbosa, Humberto A., Catarina O. Buriti, and T. V. Lakshmi Kumar. 2024. "Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil" Atmosphere 15, no. 7: 761. https://doi.org/10.3390/atmos15070761
APA StyleBarbosa, H. A., Buriti, C. O., & Kumar, T. V. L. (2024). Deep Learning for Flash Drought Detection: A Case Study in Northeastern Brazil. Atmosphere, 15(7), 761. https://doi.org/10.3390/atmos15070761