Indoor Radon Testing, Effective Dose and Mitigation Measures in a Residential House of a Mining Area
Abstract
:1. Introduction
- Established national reference levels for radon in indoor air and drinking water [15];
- Recommendations for residents to mitigate radon concentrations in existing homes exceeding the national reference levels;
- Mechanical ventilation and/or a radon membrane over the entire base area of the building in combination with a passive or active radon sump system [15].
- Present the results of high indoor radon concentration in a residential test-house;
- Estimate the annual effective dose to average adults;
- Initiate/offer several solutions for radon remediation.
2. Materials and Methods
2.1. Study Area
2.2. Methods of Measurements
2.3. Dose and Health Risk Assessment
3. Results and Discussion
3.1. Radon Activity Concentration
3.2. Effective Dose and Excess Lifetime Cancer Risk
3.3. Mitigation Measures
3.4. Measurements after Application of Mitigation Measures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramola, R.; Negi, S.; Choubey, V. Radon and thoron monitoring in the environment of Kumaun Himalayas: Survey and outcomes. J. Environ. Radioact. 2005, 79, 85–92. [Google Scholar] [CrossRef]
- Cosma, C.; Cucos-Dinu, A.; Papp, B.; Begy, R.; Sainz, C. Soil and building material as main sources of indoor radon in Baita-Stei radon prone area (Romania). J. Environ. Radioact. 2013, 116, 174–179. [Google Scholar] [CrossRef]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. Br. Med. J. 2005, 330, 223–228. [Google Scholar] [CrossRef]
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Field, R.W.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Lyon, J.L.; et al. Residential radon and risk of lung cancer. A combined analysis of seven North American case-control studies. Epidemiology 2005, 16, 137–145. [Google Scholar] [CrossRef]
- Langắrd, S. Gregorius Agricola memorial lecture: Lung cancer—A work-related disease for 500 years, as predicted by Agricola. J. Trace. Elem. Med. Biol. 2015, 31, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Samet, J.M. Radiation and cancer risk: A continuing challenge for epidemiologists. Environ. Health 2011, 10, 541–549. [Google Scholar] [CrossRef]
- UNSCEAR Source and Effect of Ionizing Radiation. The General Assembly with Scientific Annex; Annex B: Exposure of the public and workers from various sources of radiation; UNSCEAR, United Nations: New York, NY, USA, 2010. [Google Scholar]
- Abuelhia, E. Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia. Radiat. Phys. Chem. 2017, 140, 137–140. [Google Scholar] [CrossRef]
- Akamba Mbembe, B.; Manga, A.; Mbida Mbembe, S.; Ele Abiama, P.; Saidou; Ondo Meye, P.; Kofane, T.C.; Ben–Bolie, G.H. Indoor radon (222Rn) measurements and estimation of annual effective dose in Mvangan locality, South Cameroon. Radiat. Prot. Dosim. 2022, 198, 1565–1574. [Google Scholar] [CrossRef]
- Silva, C.R.; Silva-Filho, E.V. Radon concentration and radiation exposure levels in workplace buildings of downtown Rio de Janeiro City, SE Brazil. J. Radioanal. Nucl. Chem. 2020, 326, 1709–1717. [Google Scholar] [CrossRef]
- Yousef, A.M.M.; Zimami, K. Indoor radon levels, influencing factors and annual effective doses in dwellings of Al-Kharj City, Saudi Arabia. J. Radiat. Res. Appl. Sci. 2019, 12, 460–467. [Google Scholar] [CrossRef]
- Gulan, L.; Stajic, J.M.; Bochicchio, F.; Carpentieri, C.; Milic, G.; Nikezic, D.; Zunic, Z.S. Is high indoor radon concentration correlated with specific activity of radium in nearby soil? A study in Kosovo and Metohija. Environ. Sci. Pollut. Res. 2017, 24, 19561–19568. [Google Scholar] [CrossRef] [PubMed]
- Gulan, L.; Forkapić, S.; Spasić, D.; Živković Radovanović, J.; Hansman, J.; Lakatoš, R.; Samardžić, S. Identification of high radon dwellings, risk of exposure and geogenic potential in the mining area of the “Trepča” complex. Indoor Air 2022, 32, e13077. [Google Scholar] [CrossRef]
- Spasić, D.; Gulan, L. High indoor radon case study: Influence of meteorological parameters and indication of radon prone area. Atmosphere 2022, 13, 2120. [Google Scholar] [CrossRef]
- World Health Organization (Ed.) Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- European Commission Council Directive 2013/59/Euratom of 28 January 2013. Off. J. Eur. Union 2013, L13-1, 1–73.
- Cinelli, G.; De Cort, M.; Tollefsen, T. (Eds.) European Atlas of Natural Radiation; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Gaskin, J.; Whyte, J.; Coyle, D. An assessment of uncertainty using two different modelling techniques to estimate the cost effectiveness of mitigating radon in existing housing in Canada. Sci. Total. Environ. 2020, 724, 138092. [Google Scholar] [CrossRef]
- Khan, S.M.; Gomes, J.; Krewski, D.R. Radon interventions around the globe: A systematic review. Heliyon 2019, 5, e01737. [Google Scholar] [CrossRef] [PubMed]
- Finne, I.E.; Kolstad, T.; Larsson, M.; Olsen, B.; Prendergast, J.; Rudjord, A.L. Significant reduction in indoor radon in newly built houses. J. Environ. Radioact. 2019, 196, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Arvela, H.; Holmgren, O.; Reisbacka, H. Review of low-energy construction, airtightness, ventilation strategies and indoor radon: Results from Finnish houses and apartments. Radiat. Protect. Dosim. 2014, 162, 351–363. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Curado, A. Confined spaces in buildings with high indoor radon concentration: A case study analysis with the application of constructive remediation measures. Buildings 2023, 13, 49. [Google Scholar] [CrossRef]
- Dimitrijevic, M.D. Geology of Yugoslavia; Geol. Inst. GEMINI: Belgrade, Serbia, 1997. [Google Scholar]
- Borgna, L.; Di Lella, L.A.; Nannoni, F.; Pisani, A.; Pizzetti, E.; Protano, G.; Riccobono, F.; Rossi, S. The high contents of lead in soils of northern Kosovo. J. Geochem. Explor. 2009, 101, 137–146. [Google Scholar] [CrossRef]
- Di Lella, L.A.; Frati, L.; Loppi, S.; Protano, G.; Riccobono, F. Environmental distribution of uranium and other trace elements at selected Kosovo sites. Chemosphere 2004, 56, 861–865. [Google Scholar] [CrossRef]
- Gulan, L.; Milenkovic, B.; Stajic, J.M.; Vuckovic, B.; Krstic, D.; Zeremski, T.; Ninkov, J. Correlation between radioactivity levels and heavy metal content in the soils of the North Kosovska Mitrovica environment. Environ. Sci. Processes. Impacts 2013, 15, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, F.; Protano, G.; Riccobono, F. Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma 2011, 161, 63–73. [Google Scholar] [CrossRef]
- Airthings Corentium Home: Radon Detector. Corentium AS. Oslo, Norway. 2015. Available online: https://www.airthings.com/home (accessed on 31 January 2024).
- ICRP (International Commission on Radiological Protection) of 26 January, 2018. Summary of ICRP Recommendations on Radon. ICRP Ref. 4836-9756-8598. Available online: http://www.icrpaedia.org/images/f/fd/ICRPRadonSummary.pdf (accessed on 24 March 2024).
- ICRP (International Commission on Radiological Protection). Occupational Intakes of Radionuclides: Part 3; ICRP Publication 137. Ann. ICRP 46 (3–4); SAGE Publication: London, UK, 2017. [Google Scholar]
- Bertoni, G.; El Hajj, T.M.; Gandolla, M. Radon risk assessment and mitigation deadlines. JERA 2022, 3, 7790. [Google Scholar] [CrossRef]
- ICRP (International Commission on Radiological Protection). Radiological Protection against Radon Exposure; ICRP Publication 126. Ann. ICRP, 43(3); SAGE Publication: London, UK, 2014. [Google Scholar]
- ICRP (International Commission on Radiological Protection). The Recommendations of the International Commission on Radiological Protection; ICRP Publication 103. Ann; Pergamon Press: Oxford, UK, 2007. [Google Scholar]
- Denman, A.R.; Crockett, R.G.M.; Groves-Kirkby, C.J.; Phillips, P.S.; Gillmore, G.K.; Woolridge, A.C. The value of seasonal correction factors in assessing the health risk from domestic radon-a case study in Northamptonshire, UK. Environ. Int. 2007, 33, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Papastefanou, C.; Stoulos, S.; Manolopoulou, M.; Ioannidou, A.; Charalambous, S. Indoor radon concentrations in Greek apartment dwellings. Health Phys. 1994, 66, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Taşköprü, C.; İçhedef, M.; Saç, M.M. Diurnal, monthly, and seasonal variations of indoor radon concentrations concerning meteorological parameters. Environ. Monit. Assess. 2023, 195, 25. [Google Scholar] [CrossRef]
- Wilson, D.L.; Gammage, R.B.; Dudney, C.S.; Saultz, R.J. Summer time elevation of 222Rn levels in Huntsville, Alabama. Health Phys. 1991, 60, 189–197. [Google Scholar] [CrossRef]
- Wysocka, M. Radon problems in mining and post-mining areas in Upper Silesia region, Poland. Nukleonika 2016, 61, 307–313. [Google Scholar] [CrossRef]
- Catalano, R.; Imme, G.; Mangano, G.; Morelli, D.; Rosselli, T. Indoor radon survey in Eastern Sicily. Radiat. Meas. 2012, 47, 105–110. [Google Scholar] [CrossRef]
- Yusuff, I.M.; Adagunodo, T.A.; Omoloye, M.A.; Olanrewaju, A.M. Interdependency of soil-gas radon-222 concentration on soil porosity at different soil-depths. J. Phys. Conf. Ser. 2019, 1299, 012099. [Google Scholar] [CrossRef]
- Carrion-Matta, A.; Lawrence, J.; Kang, C.-M.; Wolfson, J.M.; Li, L.; Vieira, C.L.Z.; Schwartz, J.; Demokritou, P.; Koutrakis, P. Predictors of indoor radon levels in the Midwest United States. J. Air Waste Manag. Assoc. 2021, 71, 1515–1528. [Google Scholar] [CrossRef]
- Cho, B.-W.; Choo, C.O.; Kim, M.S.; Hwang, J.; Yun, U.; Lee, S. Spatial relationships between radon and topographical, geological, and geochemical factors and their relevance in all of South Korea. Environ. Earth Sci. 2015, 74, 5155–5168. [Google Scholar] [CrossRef]
- UNSCEAR Sources, effects and risks of ionizing radiation. The General Assembly with Scientific Annexes; ANNEX B Lung cancer from exposure to radon; UNSCEAR, United Nations: New York, NY, USA, 2019. [Google Scholar]
- UNSCEAR Source and Effect of Ionizing Radiation. The General Assembly with Scientific Annex; UNSCEAR, United Nations: New York, NY, USA, 2000. [Google Scholar]
- UNSCEAR (United Nation Scientific Committee on the Effects of Atomic Radiation Report). Vol. II: Sources-to-Effects Assessment for Radon in Homes and Workplaces; UNSCEAR, United Nations: New York, NY, USA, 2006. [Google Scholar]
- ICRP (International Commission on Radiological Protection). Lung Cancer Risk from Radon and Progeny and Statement on Radon; International Commission on Radiological Protection: Ottawa, ON, Canada, 2010; Volume 40. [Google Scholar]
- Kladder, D.L. Case Report and Technical Document. Colorado Vintage Companies 16–03 CO; Progeny Group Limited: Colorado Springs, CO, USA, 2011. [Google Scholar]
- Larsson, L.S. Risk-reduction strategies to expand radon care planning with vulnerable groups. Public Health Nurs. 2014, 31, 526–536. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Curado, A.; Lopes, S.I. Indoor radon mitigation strategies: The Alto Minho region (Northern Portugal) practical case. Indoor Built Environ. 2024, 33, 269–286. [Google Scholar] [CrossRef]
- De Francesco, S.; Pascale Tommasone, F.; Cuoco, E.; Tedesco, D. Indoor radon seasonal variability at different floors of building. Radiat. Meas. 2010, 45, 928–934. [Google Scholar] [CrossRef]
- Yarmoshenko, I.V.; Onishchenko, A.D.; Malinovsky, G.P.; Vasilyev, A.V.; Nazarov, E.I.; Zhukovsky, M.V. Radon concentration in conventional and new energy efficient multistorey apartment houses: Results of survey in four Russian cities. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Gulan, L.; Stajic, J.M.; Spasic, D.; Forkapic, S. Radon levels and indoor air quality after application of thermal retrofit measures—A case study. Air Qual. Atmos. Health 2023, 16, 363–373. [Google Scholar] [CrossRef]
- Ennemoser, O.; Oberdorfer, E.; Brunner, P.; Schneider, P.; Purtscheller, F.; Stingl, V.; Ambach, W. Mitigation of indoor radon in an area with unusually high radon concentrations. Health Phys. 1995, 69, 227–233. [Google Scholar] [CrossRef]
- Henschel, D.B. Analysis of radon mitigation techniques used in existing US houses. Radiat. Prot. Dosim. 1994, 56, 21–27. [Google Scholar] [CrossRef]
- National Collaborating Centre for Environmental Health Effective, NCCEH. Interventions for Reducing Indoor Radon Exposure; NCCEH: Vancouver, BC, Canada, 2008. [Google Scholar]
- Synnott, H.; Colgan, P.A.; Hanley, O.; Fenton, D. The effectiveness of radon remediation in Irish schools. Health Phys. 2007, 92, 50–57. [Google Scholar] [CrossRef]
- Stanley, F.K.T.; Zarezadeh, S.; Dumais, C.D.; Dumais, K.; MacQueen, R.; Clement, F.; Goodarzi, A.A. Comprehensive survey of household radon gas levels and risk factors in southern Alberta. Canadian Med. Assoc. J. Open 2017, 5, E255–E264. [Google Scholar] [CrossRef]
- Arvela, H. Radon Mitigation in blocks of flats. Sci. Total Environ. 2001, 272, 137. [Google Scholar] [CrossRef]
- Pan, L.; Qin, G.; Wang, Q.; Li, F.; Li, W. Development of an anti-radon coating for underground engineering. J. Phys. Conf. Ser. 2022, 2224, 012067. [Google Scholar] [CrossRef]
- Frutos, B.; Martín-Consuegra, F.; Alonso, C.; Perez, G.; Peón, J.; Ruano-Ravina, A.; Barros, J.M.; Santorun, A.M. Inner Wall Filler as a Singular and Significant Source of Indoor Radon Pollution in Heritage Buildings: An Exhalation Method-Based Approach. Build. Environ. 2021, 201, 108005. [Google Scholar] [CrossRef]
- Portaro, M.; Rocchetti, I.; Tuccimei, P.; Galli, G.; Soligo, M.; Ciotoli, G.; Longoni, C.; Vasquez, D.; Sola, F. Indoor Radon Surveying and Mitigation in the Case-Study of Celleno Town (Central Italy) Located in a Medium Geogenic Radon Potential Area. Atmosphere 2024, 15, 425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spasić, D.; Gulan, L.; Vučković, B. Indoor Radon Testing, Effective Dose and Mitigation Measures in a Residential House of a Mining Area. Atmosphere 2024, 15, 745. https://doi.org/10.3390/atmos15070745
Spasić D, Gulan L, Vučković B. Indoor Radon Testing, Effective Dose and Mitigation Measures in a Residential House of a Mining Area. Atmosphere. 2024; 15(7):745. https://doi.org/10.3390/atmos15070745
Chicago/Turabian StyleSpasić, Dušica, Ljiljana Gulan, and Biljana Vučković. 2024. "Indoor Radon Testing, Effective Dose and Mitigation Measures in a Residential House of a Mining Area" Atmosphere 15, no. 7: 745. https://doi.org/10.3390/atmos15070745
APA StyleSpasić, D., Gulan, L., & Vučković, B. (2024). Indoor Radon Testing, Effective Dose and Mitigation Measures in a Residential House of a Mining Area. Atmosphere, 15(7), 745. https://doi.org/10.3390/atmos15070745