Application of Machine Learning Algorithms in Predicting Extreme Rainfall Events in Rwanda
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.2. Methods
3.2.1. Algorithm Selection and Training
3.2.2. Statistical Methods
3.2.3. Arithmetic Operations
4. Results
4.1. Training Dataset Development, Validation, and Rainfall Forecast
4.2. Model Performance on Rainfall Forecast
4.3. LSTM Model Performance over Four Synoptic Stations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Arnell, N.W.; Livermore, M.J.L.; Kovats, S.; Levy, P.E.; Nicholls, R.; Parry, M.L.; Gaffin, S.R. Climate and Socio-Economic Scenarios for Global-Scale Climate Change Impacts Assessments: Characterising the SRES Storylines. Glob. Environ. Chang. 2004, 14, 3–20. [Google Scholar] [CrossRef]
- Cazenave, A.; Le Cozannet, G. Sea Level Rise and Its Coastal Impacts. Earth Futur. 2014, 2, 15–34. [Google Scholar] [CrossRef]
- Singh, R.M.; Gupta, A. Water Pollution-Sources, Effects and Control Water Pollution-Sources, Effects and Control. Res. Gate 2017, 5, 1–17. [Google Scholar]
- Gahlawat, I.N.; Lakra, P. Global Climate Change and Its Effects. Integr. J. Soc. Sci. 2020, 7, 14–23. [Google Scholar]
- Nkomo, J.C.; Nyong, A.O.; Kulindwa, K. The Impacts of Climate Change in Africa. In The Stern Review on the Economics of Climate Change; LSE: London, UK, 2006; 51p. [Google Scholar]
- IPCC. Summary for Policymakers: Synthesis Report. Climate Change. 2023 Synthesis Report; Contribution of Working Groups I, II III to Sixth Assessment Reports; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Kattel, G.R. State of Future Water Regimes in the World’s River Basins: Balancing the Water between Society and Nature. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1107–1133. [Google Scholar] [CrossRef]
- Adger, W.N.; Arnell, N.W.; Tompkins, E.L. Successful Adaptation to Climate Change across Scales. Glob. Environ. Chang. 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Aryal, J.P.; Manchanda, N.; Sonobe, T. Expectations for Household Food Security in the Coming Decades: A Global Scenario. In Future Foods; Elsevier: Amsterdam, The Netherlands, 2022; pp. 107–131. [Google Scholar]
- Zhang, Z.; Kattel, G.R.; Shang, Y.; Wang, G.; Chuai, X.; Wang, Q.; Cui, X.; Miao, L. Steady Decline in Food Self-Sufficiency in Africa from 1961 to 2018. Reg. Environ. Chang. 2023, 23, 79. [Google Scholar] [CrossRef]
- Cohen, B. Urbanization in Developing Countries: Current Trends, Future Projections, and Key Challenges for Sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Hove, M.; Ngwerume, E.; Muchemwa, C. The Urban Crisis in Sub-Saharan Africa: A Threat to Human Security and Sustainable Development. Stab. Int. J. Secur. Dev. 2013, 2, 7. [Google Scholar] [CrossRef]
- Douglas, I.; Alam, K.; Maghenda, M.; Mcdonnell, Y.; McLean, L.; Campbell, J. Unjust Waters: Climate Change, Flooding and the Urban Poor in Africa. Environ. Urban. 2008, 20, 187–205. [Google Scholar] [CrossRef]
- Mikova, K. Effect of Climate Change on Crop Production in Rwanda. Earth Sci. 2015, 4, 120. [Google Scholar] [CrossRef]
- Bakshi, B.; Nawrotzki, R.J.; Donato, J.R.; Lelis, L.S. Exploring the Link between Climate Variability and Mortality in Sub-Saharan Africa. Int. J. Environ. Sustain. Dev. 2019, 18, 206–237. [Google Scholar] [CrossRef]
- Nilsson, M.; Sie, A.; Muindi, K.; Bunker, A.; Ingole, V.; Ebi, K.L. Weather, Climate, and Climate Change Research to Protect Human Health in Sub-Saharan Africa and South Asia. Glob. Health Action 2021, 14 (Suppl. S1), 1984014. [Google Scholar] [CrossRef] [PubMed]
- Opoku, S.K.; Filho, W.L.; Hubert, F.; Adejumo, O. Climate Change and Health Preparedness in Africa: Analysing Trends in Six African Countries. Int. J. Environ. Res. Public Health 2021, 18, 4672. [Google Scholar] [CrossRef] [PubMed]
- Safari, B. Trend Analysis of the Mean Annual Temperature in Rwanda during the Last Fifty Two Years. J. Environ. Prot. 2012, 3, 538–551. [Google Scholar] [CrossRef]
- Ngarukiyimana, J.P.; Fu, Y.; Sindikubwabo, C.; Nkurunziza, I.F.; Ogou, F.K.; Vuguziga, F.; Ogwang, B.A.; Yang, Y. Climate Change in Rwanda: The Observed Changes in Daily Maximum and Minimum Surface Air Temperatures during 1961–2014. Front. Earth Sci. 2021, 9, 619512. [Google Scholar] [CrossRef]
- Safari, B.; Sebaziga, J.N.; Siebert, A. Evaluation of CORDEX-CORE Regional Climate Models in Simulating Rainfall Variability in Rwanda. Int. J. Climatol. 2022, 43, 1112–1140. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, S.S.; Kattel, G.R.; Mkumbo, A.C.; Xiong, C.; Gao, Q.; Shen, Q. Scenario Analysis of Phosphorus Flow in Food Production and Consumption System in the Mwanza Region, Tanzania. Sci. Total Environ. 2023, 879, 162991. [Google Scholar] [CrossRef]
- Mazo, J. Climate Conflict: How Global Warming Threatens Security and What to Do about It; Routledge: Oxfordshire, UK, 2010; Volume 409. [Google Scholar]
- Haggag, M.; Kalisa, J.C.; Abdeldayem, A.W. Projections of Precipitation, Air Temperature and Potential Evapotranspiration in Rwanda under Changing Climate Conditions. Afr. J. Environ. Sci. Technol. 2016, 10, 18–33. [Google Scholar]
- Trisos, C.H.; Adelekan, I.O.; Totin, E.; Ayanlade, A.; Efitre, J.; Gemeda, A.; Kalaba, K.; Lennard, C.; Masao, C.; Mgaya, Y.; et al. Africa. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenb, K., Eds.; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Austin, K.G.; Beach, R.H.; Lapidus, D.; Salem, M.E.; Taylor, N.J.; Knudsen, M.; Ujeneza, N. Impacts of Climate Change on the Potential Productivity of Eleven Staple Crops in Rwanda. Sustainability 2020, 12, 4116. [Google Scholar] [CrossRef]
- Ayugi, B.O.; Chung, E.-S.; Zhu, H.; Ogega, O.M.; Babousmail, H.; Ongoma, V. Projected Changes in Extreme Climate Events over Africa under 1.5 °C, 2.0 °C and 3.0 °C global Warming Levels Based on CMIP6 Projections. Atmos. Res. 2023, 292, 106872. [Google Scholar] [CrossRef]
- Gitz, V.; Meybeck, A.; Lipper, L.; Young, C.; Braatz, S. Climate Change and Food Security: Risks and Responses; FAO: Rome, Italy, 2016. [Google Scholar] [CrossRef]
- MIDMAR. Disaster Management Plan; Ministry of Disaster Management and Refugee Affairs(MIDMAR): Kigali, Rwanda, 2012. [Google Scholar]
- Li, L.; Mind’je, R. Hydrogeological Hazard Susceptibility and Community Risk Perception in Rwanda: A Case Study of Floods and Landslides; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Ngarukiyimana, J.P.; Fu, Y.; Yang, Y.; Ogwang, A. Dominant Atmospheric Circulation Patterns Associated with Abnormal Rainfall Events over Rwanda, East Africa. Int. J. Cliamtology 2017, 38, 187–202. [Google Scholar] [CrossRef]
- Trenberth, K.E. The Impact of Climate Change and Variability on Heavy Precipitation, Floods, and Droughts. Encycl. Hydrol. Sci. 2005, 17, 1–11. [Google Scholar]
- Ziervogel, G.; Johnston, P.; Matthew, M.; Mukheibir, P. Using Climate Information for Supporting Climate Change Adaptation in Water Resource Management in South Africa. Clim. Chang. 2010, 103, 537–554. [Google Scholar] [CrossRef]
- Wagesho, N.; Claire, M. Analysis of Rainfall Intensity-Duration-Frequency Relationship for Rwanda. J. Water Resour. Prot. 2016, 8, 706. [Google Scholar] [CrossRef]
- Wainwright, C.M.; Finney, D.L.; Kilavi, M.; Black, E.; Marsham, J.H. Extreme Rainfall in East Africa, October 2019–January 2020 and Context under Future Climate Change. Weather 2021, 76, 26–31. [Google Scholar] [CrossRef]
- Nibagwire, N.C. Climate Change and Natural Disasters in Africa; Case Study of Rwanda. Master’s Thesis, Pan African University, Yaoundé, Cameroun, 2016. [Google Scholar]
- Perera, D.; Seidou, O.; Agnihotri, J.; Rasmy, M.; Smakhtin, V.; Coulibaly, P.; Mehmood, H. Flood Early Warning Systems: A Review of Benefits, Challenges and Prospects; UNU-INWEH: Hamilton, ON, Canada, 2019. [Google Scholar]
- Umer, Y.; Ettema, J.; Jetten, V.; Steeneveld, G.-J.; Ronda, R. Evaluation of the WRF Model to Simulate a High-Intensity Rainfall Event over Kampala, Uganda. Water 2021, 13, 873. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-Flood Hazard Assessment Using Ensembles and Bayesian-Based Machine Learning Models: Application of the Simulated Annealing Feature Selection Method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef]
- Bochenek, B.; Ustrnul, Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere 2022, 13, 180. [Google Scholar] [CrossRef]
- Mohammed, M.; Khan, M.B.; Bashie, E.B.M. Machine Learning: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Sankalp, S.; Rao, U.M.; Patra, K.C.; Sahoo, S.N. Modeling Gated Recurrent Unit (GRU) Neural Network in Forecasting Surface Soil Wetness for Drought Districts of Odisha. In Modeling and Mitigation Measures for Managing Extreme Hydrometeorological Events Under a Warming Climate; Kasiviswanathan, K.S., Soundharajan, B., Patidar, S., He, J., Ojha, C.S.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 14, pp. 217–229. [Google Scholar] [CrossRef]
- Endalie, D.; Haile, G.; Taye, W. Deep Learning Model for Daily Rainfall Prediction: Case Study of Jimma, Ethiopia. Water Supply 2022, 22, 3448–3461. [Google Scholar] [CrossRef]
- Aderyani, F.R.; Jamshid Mousavi, S.; Jafari, F. Short-Term Rainfall Forecasting Using Machine Learning-Based Approaches of PSO-SVR, LSTM and CNN. J. Hydrol. 2022, 614, 128463. [Google Scholar] [CrossRef]
- Dotse, S.Q. Deep Learning–Based Long Short-Term Memory Recurrent Neural Networks for Monthly Rainfall Forecasting in Ghana, West Africa. Theor. Appl. Climatol. 2023, 155, 0123456789. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, Q.; Liu, Y. Groundwater Potential Mapping in Hubei Region of China Using Machine Learning, Ensemble Learning, Deep Learning and Automl Methods. Nat. Resour. Res. 2022, 31, 2549–2569. [Google Scholar] [CrossRef]
- Dtissibe, F.Y.; Ari, A.A.A.; Abboubakar, H.; Njoya, A.N.; Mohamadou, A.; Thiare, O. A Comparative Study of Machine Learning and Deep Learning Methods for Flood Forecasting in the Far-North Region, Cameroon. Sci. Afr. 2024, 23, e02053. [Google Scholar] [CrossRef]
- Oshodi, I. Machine Learning-Based Algorithms for Weather Forecasting. Int. J. Artif. Intell. Mach. Learn. 2022, 2, 12–20. [Google Scholar] [CrossRef]
- Hochreiter, S. The Vanishing Gradient Problem during Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [Google Scholar] [CrossRef]
- Lechner, M.; Hasani, R. Learning Long-Term Dependencies in Irregularly-Sampled Time Series. arXiv 2020, arXiv:2006.04418. [Google Scholar]
- Puthran, R. Spatio-Temporal Analysis of Hybrid CNN-GRU Model for Prediction of Earthquake for Disaster Management. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 270–281. [Google Scholar]
- Adhikari, U.; Pouyan Nejadhashemi, A.; Herman, M.R. A Review of Climate Change Impacts on Water Resources in East Africa. Trans. ASABE 2015, 58, 1493–1507. [Google Scholar] [CrossRef]
- Persello, C.; Wegner, J.D.; Hänsch, R.; Tuia, D.; Ghamisi, P.; Koeva, M.; Camps-Valls, G. Deep learning and earth observation to support the sustainable development goals: Current approaches, open challenges, and future opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 172–200. [Google Scholar] [CrossRef]
- GoR Green Growth and Climate Resilience; Republic of Rwanda: Kigali, Rwanda, 2011; 100p.
- Kazora, J.; Zhu, W.; Kyaw, T.O.; Sebaziga, J.N.; Rusanganwa, F.; Kagabo, J. Enhancement of East African Monsoon Long Rainfall (March to May) Variability from Weekly to Annual Scale by Climatic Extremes. Atmos. Clim. Sci. 2023, 13, 491–506. [Google Scholar] [CrossRef]
- Akayezu, P.; van Duren, I.C.; Groen, T.A.; Grueter, C.C.; Robbins, M.M. Abundance and Spatial Distribution of the Main Food Species for Mountain Gorillas in the Virunga Massif, Rwanda. Biodivers. Conserv. 2019, 28, 3597–3620. [Google Scholar] [CrossRef]
- Kelemen, M.; Virgala, I.; Kelemenová, T.; Mikova, L.; Frankovský, P.; Lipták, T.; Lörinc, M. Distance Measurement via Using of Ultrasonic Sensor. J. Autom. Control 2015, 3, 71–74. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Muhire, I.; Ahmed, F.; Elbasit, A. Spatio-Temporal Variations of Rainfall Erosivity in Rwanda. J. Soil Sci. Environ. Manag. 2015, 6, 72–83. [Google Scholar]
- Ayugi, B.; Tan, G.; Ullah, W.; Boiyo, R.; Ongoma, V. Inter-comparison of remotely sensed precipitation datasets over Kenya during 1998–2016. Atmos. Res. 2019, 225, 96–109. [Google Scholar] [CrossRef]
- Blum, A.G.; Zaitchik, B.; Alexander, S.; Wu, S.; Zhang, Y.; Shukla, S.; Alemneh, T.; Block, P. A Grand Prediction: Communicating and Evaluating 2018 Summertime Upper Blue Nile Rainfall and Streamflow Forecasts in Preparation for Ethiopia’s New Dam. Front. Water 2019, 1, 3. [Google Scholar] [CrossRef]
- Jonah, K.; Wen, W.; Shahid, S.; Ali, M.A.; Bilal, M.; Habtemicheal, B.A.; Iyakaremye, V.; Qiu, Z.; Almazroui, M.; Wang, Y.; et al. Spatiotemporal variability of rainfall trends and influencing factors in Rwanda. J. Atmos. Sol. Terr. Phys. 2021, 219, 105631. [Google Scholar] [CrossRef]
- Nyasulu, C.; Diattara, A.; Traore, A.; Deme, A.; Ba, C. Towards Resilient Agriculture to Hostile Climate Change in the Sahel Region: A Case Study of Machine Learning-Based Weather Prediction in Senegal. Agriculture 2022, 12, 1473. [Google Scholar] [CrossRef]
- Tang, L.; Gao, W.; Xue, L.; Zhang, G.; Guo, J. Climatological Characteristics of Hydrometeors in Precipitating Clouds over Eastern China and Their Relationship with Precipitation Based on ERA5 Reanalysis. J. Appl. Meteorol. Climatol. 2023, 62, 625–641. [Google Scholar] [CrossRef]
- Davey, R. Scientists Report a Novel Method for Detecting Ice on Wind Turbines; AZoM: Manchester, UK, 2022. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How Does Batch Normalization Help Optimization? In Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Schilling, F. The Effect of Batch Normalization on Deep Convolutional Neural Networks. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2016. [Google Scholar]
- Javid, A.M.; Das, S.; Skoglund, M.; Chatterjee, S. A Relu Dense Layer to Improve the Performance of Neural Networks. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); IEEE: New York, NY, USA, 2021; pp. 2810–2814. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kim, T.; Kim, H.Y. Forecasting Stock Prices with a Feature Fusion LSTM-CNN Model Using Different Representations of the Same Data. PLoS ONE 2019, 14, e0212320. [Google Scholar] [CrossRef] [PubMed]
- Bellec, G.; Scherr, F.; Hajek, E.; Salaj, D.; Legenstein, R.; Maass, W. Biologically Inspired Alternatives to Backpropagation through Time for Learning in Recurrent Neural Nets. arXiv 2019, arXiv:1901.09049. [Google Scholar]
- Abed, M.; Imteaz, M.A.; Ahmed, A.N.; Huang, Y.F. Application of Long Short-Term Memory Neural Network Technique for Predicting Monthly Pan Evaporation. Sci. Rep. 2021, 11, 20742. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ayyub, B.M. Machine Learning for Projecting Extreme Precipitation Intensity for Short Durations in a Changing Climate. Geosciences 2019, 9, 209. [Google Scholar] [CrossRef]
- Bangdiwala, S.I. Regression: Simple Linear. Int. J. Inj. Contr. Saf. Promot. 2018, 25, 113–115. [Google Scholar] [CrossRef]
- Poornima, S.; Pushpalatha, M. Prediction of Rainfall Using Intensified LSTM Based Recurrent Neural Network with Weighted Linear Units. Atmosphere 2019, 10, 668. [Google Scholar] [CrossRef]
- Vasilev, I.; Slater, D.; Spacagna, G.; Roelants, P.; Zocca, V. Python Deep Learning: Exploring Deep Learning Techniques and Neural Network Architectures with Pytorch, Keras, and TensorFlow; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Houmma, I.H.; El Mansouri, L.; Gadal, S.; Garba, M.; Hadria, R. Modelling Agricultural Drought: A Review of Latest Advances in Big Data Technologies. Geomat. Nat. Hazards Risk 2022, 13, 2737–2776. [Google Scholar] [CrossRef]
- Bezu, S.; Demissie, T.; Abebaw, D.; Mungai, C.; Samuel, S.; Radeny, M.A.O.; Huyer, S.; Solomon, D. Climate Change, Agriculture and International Migration Nexus: African Youth Perspective; CCAFS Working Paper; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2020. [Google Scholar]
- Mukanyandwi, V.; Nahayo, L.; Hakorimana, E.; Gasirabo, A.; Otgon, S. Review on Water Resources Management and Key Threats in Rwanda, East Africa. J. Water Secur. 2018, 4, jws2018003. [Google Scholar] [CrossRef]
- Mutabazi, A. Assessment of Operational Framework Related to Climate Change in Rwanda; Rwanda Environment Management Authority: Kigali, Rwanda, 2010; 41p. [Google Scholar]
- Taremwa, N.K.; Gashumba, D.; Butera, A.; Ranganathan, T. Climate Change Adaptation in Rwanda through Indigenous Knowledge Practice. J. Soc. Sci. 2016, 46, 165–175. [Google Scholar] [CrossRef]
- Mohammed, M.; Kolapalli, R.; Golla, N.; Maturi, S.S. Prediction of Rainfall Using Machine Learning Techniques. Int. J. Sci. Technol. Res. 2020, 9, 3236–3240. [Google Scholar]
- Frame, J.M.; Kratzert, F.; Klotz, D.; Gauch, M.; Shalev, G.; Gilon, O.; Qualls, L.M.; Gupta, H.V.; Nearing, G.S. Deep Learning Rainfall–Runoff Predictions of Extreme Events. Hydrol. Earth Syst. Sci. 2022, 26, 3377–3392. [Google Scholar] [CrossRef]
- Mall, R.K.; Kumar, R.; Bhatla, R. Climate Change and Disaster in India. J. South Asian Disaster Stud. 2011, 4, 27–76. [Google Scholar]
- Wu, J.; Liu, H.; Wei, G.; Song, T.; Zhang, C.; Zhou, H. Flash Flood Forecasting Using Support Vector Regression Model in a Small Mountainous Catchment. Water 2019, 11, 1327. [Google Scholar] [CrossRef]
- Zintgraf, L.M.; Cohen, T.S.; Adel, T.; Welling, M. Visualizing Deep Neural Network Decisions: Prediction Difference Analysis. arXiv 2017, arXiv:1702.04595. [Google Scholar]
- Hafashimana, N. Modelling the Effects of Land Use/Cover Change and Rainfall Variability on Landslide Hazards: The Case of Nyabihu District, Rwanda. Master’s Dissertation, University of Botswana, Gaborone, Botswana, 2020. [Google Scholar]
- Nkurunziza, I.; Guirong, T.; Ngarukiyimana, J.P.; Sindikubwabo, C. Influence of the Mascarene High on October-December Rainfall and Their Associated Atmospheric Circulation Anomalies over Rwanda. J. Environ. Agric. Sci. 2019, 20, 1–20. [Google Scholar]
- Patz, J.A.; Grabow, M.L.; Limaye, V.S. When It Rains, It Pours: Future Climate Extremes and Health. Ann. Glob. Health 2014, 80, 332–344. [Google Scholar] [CrossRef]
Station | Latitude | Longitude |
---|---|---|
Kigali Aero | −1.95° | 30.11° |
Kamembe Aero | −2.46° | 28.91° |
Gisenyi Aero | −1.68° | 29.26° |
Ruhengeri Aero | −1.48° | 29.61° |
Model/Station | Kigali Aero | Kamembe Aero | Gisenyi Aero | Ruhengeri Aero | Avg |
---|---|---|---|---|---|
LSTM | 0.003 | 0.008 | 0.007 | 0.004 | 0.005 |
GRU | 0.008 | 0.010 | 0.011 | 0.007 | 0.009 |
CNN | 0.007 | 0.007 | 0.009 | 0.006 | 0.007 |
Model/Station | Kigali Aero | Kamembe Aero | Gisenyi Aero | Ruhengeri Aero |
---|---|---|---|---|
LSTM | 0.997 | 0.998 | 0.997 | 0.998 |
GRU | 0.970 | 0.985 | 0.959 | 0.986 |
CNN | 0.983 | 0.989 | 0.996 | 0.997 |
Model/Station | Kigali Aero | Kamembe Aero | Gisenyi Aero | Ruhengeri Aero |
---|---|---|---|---|
LSTM | 0.003 | 0.004 | 0.009 | 0.004 |
GRU | 0.005 | 0.006 | 0.005 | 0.006 |
CNN | 0.004 | 0.008 | 0.007 | 0.007 |
Model | LSTM vs. CNN | LSTM vs. GRU | ||||
---|---|---|---|---|---|---|
Metrics | RMSE | MAE | R2 | RMSE | MAE | R2 |
p value | 1.43 × 10−272 | 2.80 × 10−275 | 3.83 × 10−247 | 2.08 × 10−274 | 2.80 × 10−275 | 1.92 × 10−256 |
t test | −4,891,431,684,499,790.00 | −6,917,529,027,641,070.00 | 189,151,184,349,557.00 | −6,187,226,056,853,390.00 | 6,917,529,027,641,070.00 | 621,496,748,577,125.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagabo, J.; Kattel, G.R.; Kazora, J.; Shangwe, C.N.; Habiyakare, F. Application of Machine Learning Algorithms in Predicting Extreme Rainfall Events in Rwanda. Atmosphere 2024, 15, 691. https://doi.org/10.3390/atmos15060691
Kagabo J, Kattel GR, Kazora J, Shangwe CN, Habiyakare F. Application of Machine Learning Algorithms in Predicting Extreme Rainfall Events in Rwanda. Atmosphere. 2024; 15(6):691. https://doi.org/10.3390/atmos15060691
Chicago/Turabian StyleKagabo, James, Giri Raj Kattel, Jonah Kazora, Charmant Nicolas Shangwe, and Fabien Habiyakare. 2024. "Application of Machine Learning Algorithms in Predicting Extreme Rainfall Events in Rwanda" Atmosphere 15, no. 6: 691. https://doi.org/10.3390/atmos15060691
APA StyleKagabo, J., Kattel, G. R., Kazora, J., Shangwe, C. N., & Habiyakare, F. (2024). Application of Machine Learning Algorithms in Predicting Extreme Rainfall Events in Rwanda. Atmosphere, 15(6), 691. https://doi.org/10.3390/atmos15060691