Interannual Variability of Water and Heat Fluxes in a Woodland Savanna (Cerrado) in Southeastern Brazil: Effects of Severe Drought and Soil Moisture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Micrometeorological Measurements
2.2. Soil Moisture
2.3. Gap-Filling the Observational Series
2.4. Estimating Model Parameters with Remote Sensing
2.5. Model Calibration
3. Results
3.1. Climatic Characterization
3.2. Soil Moisture
3.3. Turbulent Fluxes of Heat and Water Vapor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira-Filho, A.T.; Ratter, J.A. Vegetation physiognomies and woody flora of the cerrado biome. In The Cerrados of Brazil; Oliveira, P.S., Marquis, R.J., Eds.; Columbia University Press: New York, NY, USA, 2002; pp. 91–120. [Google Scholar]
- Vourlitis, G.L.; Da Rocha, H.R. Flux dynamics in the cerrado and cerrado–forest transition of Brazil. In Ecosystem Function in Global Savannas: Measurement and Modeling at Landscape to Globalscales; Hill, M.J., Hanan, N.P., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 97–116. [Google Scholar]
- Alberton, B.; Torres, R.S.; Silva, T.S.F.; da Rocha, H.R.; Moura, M.S.B.; Morellato, L.P.C. Leafing Patterns and Drivers across Seasonally Dry Tropical Communities. Remote Sens. 2019, 11, 2267. [Google Scholar] [CrossRef]
- da Rocha, H.R.; Manzi, A.O.; Cabral, O.M.; Miller, S.D.; Goulden, M.L.; Saleska, S.R.; Coupe, N.R.; Wofsy, S.C.; Borma, L.S.; Artaxo, P.; et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. Biogeosci. 2009, 114, G00B12. [Google Scholar] [CrossRef]
- Quesada, C.A.; Miranda, A.C.; Hodnett, M.G.; Santos, A.J.B.; Miranda, H.S.; Breyer, L.M. Seasonal and depth variation of soil moisture in a burned open savanna (campo sujo) in central Brazil. Ecol. Appl. 2004, 14, 33–41. [Google Scholar] [CrossRef]
- Gardner, T.A. Tree-Grass Coexistence in the Brazilian Cerrado: Demographic Consequences of Environmental Instability. J. Biogeogr. 2006, 33, 448–463. [Google Scholar] [CrossRef]
- Bucci, S.J.; Scholz, F.G.; Goldstein, G.; Meinzer, F.C.; Franco, A.C.; Zhang, Y.; Hao, G.-Y. Water relations and hydraulic architecture in Cerrado trees: Adjustments to seasonal changes in water availability and evaporative demand. Braz. J. Plant Physiol. 2008, 20, 233–245. [Google Scholar] [CrossRef]
- Santos, A.J.B.; Silva, G.T.D.A.; Miranda, H.S.; Miranda, A.C.; Lloyd, J. Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Funct. Ecol. 2003, 17, 711–719. [Google Scholar] [CrossRef]
- Costa, M.H.; Pires, G.F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 2010, 30, 1970–1979. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Cuartas, L.A.; Leal, K.R.D.; Broedel, E.; Seluchi, M.E.; Michelin, C.M.; Baião, C.F.D.P.; Angulo, E.C.; Almeida, E.K.; et al. Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes, and impacts. Front. Water 2021, 3, 639204. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Brito, S.S.B.; Neto, G.G.R.; Alvalá, R.C.S. Drought between 1963 and 2017 in the Federal District, Brazil. Anu. Inst. Geoci. Ufrj. 2018, 41, 487–498. [Google Scholar] [CrossRef]
- Otto, F.E.L.; Haustein, K.; Uhe, P.; Coelho, C.A.S.; Aravequia, J.A.; Almeida, W.; King, A.; de Perez, E.C.; Wada, Y.; van Oldenborgh, G.J.; et al. Factors other than climate change, main drivers of 2014/15 water shortage in southeast Brazil. Bull. Am. Meteorol. Soc. 2016, 96, S35–S40. [Google Scholar] [CrossRef]
- Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, L.A.; Alves, L.M. Some characteristics and impacts of the drought and water crisis in Southeastern Brazil during 2014 and 2015. J. Water Resour. Prot. 2016, 8, 252–262. [Google Scholar] [CrossRef]
- Cabral, O.M.; da Rocha, H.R.; Gash, J.H.; Freitas, H.C.; Ligo, M.A. Water and energy fluxes from a woodland savanna (cerrado) in southeast Brazil. J. Hydrol. Reg. Stud. 2015, 4, 22–40. [Google Scholar] [CrossRef]
- Furman, A.; Ferre, T.P.A.; Warrick, A.W. A sensitivityanalysis of electrical resistivity tomography array types using analyticalelement modeling. Vadose Zone J. 2003, 2, 416–423. [Google Scholar] [CrossRef]
- Mcneill, J.D. (Ed.) Electromagnetic Terrain Conductivity Measurement Atlow Induction Numbers; Tech. Note TN-6; Geonics Limited of Mississagua: Mississagua, ON, Canada, 1980. [Google Scholar]
- Ferré, P.A.; Rudolph, D.L.; Kachanoski, R.G. Spatial averaging of water contet by time domain reflectometry: Implications for twin rod probes with and without dielectric coating. Water Resour. Res. 1996, 32, 271–279. [Google Scholar] [CrossRef]
- Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring SMC non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett. 2008, 35, L21402. [Google Scholar] [CrossRef]
- Franz, T.E.; Zreda, M.; Ferre, T.P.A.; Rosolem, R.; Zweck, C.; Stillman, S.; Shuttleworth, W.J. Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. Water Resour. Res. 2012, 48, W08515. [Google Scholar] [CrossRef]
- Valenti, M.W.; Cianciaruso, M.V.; Batalha, M.A. Seasonality of litterfall and leaf decomposition in a cerrado site. Braz. J. Biol. 2008, 68, 459–465. [Google Scholar] [CrossRef]
- Latansio-Aidar, S.R.; Oliveira, A.C.P.D.; Rocha, H.R.D.; Aidar, M.P.M. Fitossociologia de um Cerrado denso em área de influência de torre de fluxo de carbono, Pé-de-Gigante, Parque Estadual de Vassununga, SP. Biota Neotrop. 2010, 10, 195–207. [Google Scholar] [CrossRef]
- Pivello, V.R.; Batalha, M.A.; Bitencourt, M.D.; de Mesquita, H.N., Jr. Banco de Dados em SIG para Ecologia Aplicada: Exemplo do Cerrado Pé-de-Gigante, S.P. Cad. Informações Georreferenciadas-CIG 1999, 1. Available online: http://www.cpa.unicamp.br/revista/cigv1n3a4.html (accessed on 16 February 2024).
- Cooper, M.; Ruggiero, P.G.C.; Sparovek, G.; Pires Neto, A.G. Solos da Gleba Cerrado Pé-de-Gigante. O Cerrado Pé-de-Gigante: Ecologia e Conservação–Parque Estadual de Vassununga. Parte 1: Caracterização Física do Cerrado Pé-de-Gigante e Uso das Terras na Região; SMA: São Paulo, Brazil, 2005. [Google Scholar]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapor transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting Eddy-Covariance Flux Underestimates over a Grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef]
- Baatz, R.; Bogena, H.; Franssen, H.-J.H.; Huisman, J.; Qu, W.; Montzka, C.; Vereecken, H. Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods. J. Hydrol. 2014, 516, 231–244. [Google Scholar] [CrossRef]
- Roquette, J.G. Distribuição da biomassa no cerrado e a sua importância na armazenagem do carbono. Ciência Florest. 2018, 28, 1350–1363. [Google Scholar] [CrossRef]
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.; Bounoua, L. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Sabater, M.J. ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Earth Syst. Sci. Data 2019, 13, 4349–4383. [Google Scholar] [CrossRef]
- Sellers, P.J.; Tucker, C.J.; Collatz, G.J.; Los, S.O.; Justice, C.O.; Dazlich, D.A.; Randall, D.A. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 1996, 9, 706–737. [Google Scholar] [CrossRef]
- Rodrigues, T.R.; Vourlitis, G.L.; Lobo, F.A.; Oliveira, R.G.; Nogueira, J.S. Seasonal variation in energy balance and canopy conductance for a tropical savanna ecosystem of south central Mato Grosso, Brazil. J. Geophys. Res. Biogeosci. 2014, 119, 1–13. [Google Scholar] [CrossRef]
- Projeto Mapbiomas—Collection 3 of the Annual Series of Land Cover and Land Use Maps in Brazil. Available online: https://mapbiomas.org/ (accessed on 18 June 2022).
- Ruggiero, P.G.; Batalha, M.A.; Pivello, V.R.; Meirelles, S.T. Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol. 2002, 160, 1–16. [Google Scholar] [CrossRef]
- Rocha, H.R.; Freitas, H.C.; Rosolem, R.; Juárez, R.I.; Tannus, R.N.; Ligo, M.A.; Cabral, O.M.; Dias, M.A. Measurements of CO2 exchange over a woodland savanna (Cerrado sensu stricto) in southeast Brazil. Biota Neotrop. 2002, 2, 1–11. Available online: https://www.biotaneotropica.org.br/v2n1/pt/abstract?article+BN01702012002 (accessed on 10 February 2023). [CrossRef]
- Newville, M.; Stensitzki, T.; Allen, D.B.; Rawlik, M.; Ingargiola, A.; Nelson, A. Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python; Zenodo: Honolulu, HI, USA, 2014. [Google Scholar] [CrossRef]
- Bruno, R.D.; DARocha, H.R.; DEFreitas, H.C.; Goulden, M.L.; Miller, S.D. Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrol. Process. Int. J. 2006, 20, 2477–2489. [Google Scholar] [CrossRef]
- Domingues, L.M.; De Abreu, R.C.; DARocha, H.R. Hydrologic Impact of Climate Change in the Jaguari River in the Cantareira Reservoir System. Water 2022, 14, 1286. [Google Scholar] [CrossRef]
- Klink, C.A.; Machado, R.B. Conservation of the Brazilian cerrado. Conserv. Biol. 2005, 19, 707–713. [Google Scholar] [CrossRef]
- Miranda, H.S.; Bustamante, M.M.; Miranda, A.C. The Fire Factor. In The Cerrado of Brazil: Ecology and Natural History of a Neotropical Savanna; Oliveira, P.S., Marquis, R.J., Eds.; Columbia University Press: New York, NY, USA, 2002; pp. 69–88. [Google Scholar]
- Belcher, C.M. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science an Interdisciplinary Guide to Fire Science; College of Life and Environmental Sciences, University of Exeter: Exeter, UK, 2013. [Google Scholar]
Variable (Unit) | Instrumentation |
---|---|
Air temperature and humidity (°C,%) | CSI HMP45C |
Precipitation (mm) | Hydrological Services TB4 |
Horizontal wind speed (m/s) | RM Young |
Net radiation (W/m2) | REBS Net-Lite |
Latent and sensible heat flux (W/m2) | Eddy correlation using sonic anemometer CSAT3 CSI and Open path gas analyzer LI-7500 |
Soil moisture (m3/m3) | Reflectometer FDR CS615 (2001–2009) and CS616 (2010–2018); CRNS (Hydroinnova LLC) |
Parameter—Radiation | Default | Optimized | |
---|---|---|---|
Leaf transmittance (PAR green leaf) | 0.050 | 0.0100 | |
Leaf transmittance (NIR green leaf) | 0.250 | 0.3050 | |
Leaf transmittance (PAR dry leaf) | 0.001 | 0.0050 | |
Leaf transmittance (NIR dry leaf) | 0.001 | 0.0050 | |
Leaf reflectance (PAR green leaf) | 0.100 | 0.0100 | |
Leaf reflectance (NIR green leaf) | 0.450 | 0.1000 | |
Leaf reflectance (PAR dry leaf) | 0.130 | 0.2050 | |
Leaf reflectance (NIR dry leaf) | 0.390 | 0.3500 | |
Soil reflectance (PAR) | 0.080 | 0.1550 | |
Soil reflectance (NIR) | 0.200 | 0.2050 | |
Leaf angle distribution factor | 0.250 | 0.0500 | |
Parameter—physiology | Default JFM/JJA | Optimized JFM | Optimized JJA |
Photosynthetic-conductance slope factor (m) | 8.00 | 8.29 | 12.95 |
Average leaf turnover time (gmudmu) | 0.90 | 0.51 | 0.30 |
Canopy greenness fraction (N) | 0.90/0.60 | 0.99 | 0.43 |
Maximum Rubisco assimilation (Vmax, μmolm−2s−1) | 100.0 | 120.0 | 119.9 |
Season | Air Temperature (°C) | Precipitation (mm/year) | Rn (W/m2) | LE (W/m2) | H (W/m2) | G (W/m2) | ET (mm/d) | Et (mm/d) | Es (mm/d) | Ei (mm/d) |
---|---|---|---|---|---|---|---|---|---|---|
Annual | 22.1 | 1309 | 127.9 | 100.6 | 48.8 | −1.8 | 3.5 | 2.3 | 0.7 | 0.4 |
Rainy season | 23.3 | 1108 | 147.3 | 118.7 | 51.8 | −1.6 | 4.0 | 2.6 | 0.9 | 0.5 |
Dry season | 20.0 | 128 | 88.6 | 65.1 | 42.9 | −2.0 | 2.2 | 1.7 | 0.3 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Conceição, L.F.C.; da Rocha, H.R.; Navarrete, N.V.; Rosolem, R.; Cabral, O.M.R.; de Freitas, H.C. Interannual Variability of Water and Heat Fluxes in a Woodland Savanna (Cerrado) in Southeastern Brazil: Effects of Severe Drought and Soil Moisture. Atmosphere 2024, 15, 668. https://doi.org/10.3390/atmos15060668
da Conceição LFC, da Rocha HR, Navarrete NV, Rosolem R, Cabral OMR, de Freitas HC. Interannual Variability of Water and Heat Fluxes in a Woodland Savanna (Cerrado) in Southeastern Brazil: Effects of Severe Drought and Soil Moisture. Atmosphere. 2024; 15(6):668. https://doi.org/10.3390/atmos15060668
Chicago/Turabian Styleda Conceição, Lucas F. C., Humberto R. da Rocha, Nelson V. Navarrete, Rafael Rosolem, Osvaldo M. R. Cabral, and Helber C. de Freitas. 2024. "Interannual Variability of Water and Heat Fluxes in a Woodland Savanna (Cerrado) in Southeastern Brazil: Effects of Severe Drought and Soil Moisture" Atmosphere 15, no. 6: 668. https://doi.org/10.3390/atmos15060668
APA Styleda Conceição, L. F. C., da Rocha, H. R., Navarrete, N. V., Rosolem, R., Cabral, O. M. R., & de Freitas, H. C. (2024). Interannual Variability of Water and Heat Fluxes in a Woodland Savanna (Cerrado) in Southeastern Brazil: Effects of Severe Drought and Soil Moisture. Atmosphere, 15(6), 668. https://doi.org/10.3390/atmos15060668