Assessing the Accuracy of 50 Temperature-Based Models for Estimating Potential Evapotranspiration (PET) in a Mediterranean Mountainous Forest Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Potential Evapotranspiration Empirical Models Temperature-Based Potential Evapotranspiration (PET) Methods
2.3. Statistical Indices and Ranking
3. Results
3.1. Meteorological Conditions
3.2. PET Estimates and Comparisons
3.3. PET Methods Ranking
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fotelli, M.N.; Korakaki, E.; Paparrizos, S.A.; Radoglou, K.; Awada, T.; Matzarakis, A. Environmental controls on the seasonal variation in gas exchange and water balance in a near-coastal Mediterranean Pinus halepensis forest. Forests 2019, 10, 313. [Google Scholar] [CrossRef]
- Fotelli, M.N.; Nahm, M.; Radoglou, K.; Rennenberg, H.; Halyvopoulos, G.; Matzarakis, A. Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. For. Ecol. Manag. 2009, 257, 1157–1164. [Google Scholar] [CrossRef]
- Jayathilake, D.I.; Smith, T. Understanding the role of hydrologic model structures on evapotranspiration-driven sensitivity. Hydrol. Sci. J. 2020, 65, 1474–1489. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Y.; Wei, Z.; Zheng, Z.; Xie, P. Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model. PLoS ONE 2023, 18, e0281478. [Google Scholar] [CrossRef] [PubMed]
- Nedkov, S.; Campagne, S.; Borisova, B.; Krpec, P.; Prodanova, H.; Kokkoris, I.P.; Hristova, D.; Le Clec’h, S.; Santos-Martin, F.; Burkhard, B. Modeling water regulation ecosystem services: A review in the context of ecosystem accounting. Ecosyst. Serv. 2022, 56, 101458. [Google Scholar] [CrossRef]
- Proutsos, N.D.; Tsiros, I.X.; Nastos, P.; Tsaousidis, A. A note on some uncertainties associated with Thornthwaite’s aridity index introduced by using different potential evapotranspiration methods. Atmos. Res. 2021, 260, 105727. [Google Scholar] [CrossRef]
- Roy, D.K. Long short-term memory networks to predict one-step ahead reference evapotranspiration in a subtropical climatic zone. Environ. Process. 2021, 8, 911–941. [Google Scholar] [CrossRef]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought Severity and Trends in a Mediterranean Oak Forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Tsiros, I.X.; Nastos, P.; Proutsos, N.D.; Tsaousidis, A. Variability of the aridity index and related drought parameters in Greece using climatological data over the last century (1900–1997). Atmos. Res. 2020, 240, 104914. [Google Scholar] [CrossRef]
- Boast, C.; Robertson, T. A “micro-lysimeter” method for determining evaporation from bare soil: Description and laboratory evaluation. Soil. Sci. Soc. Am. J. 1982, 46, 689–696. [Google Scholar] [CrossRef]
- Jia, X.; Dukes, M.D.; Jacobs, J.M.; Irmak, S. Weighing lysimeters for evapotranspiration research in a humid environment. Trans. ASABE 2006, 49, 401–412. [Google Scholar] [CrossRef]
- Hirschi, M.; Michel, D.; Lehner, I.; Seneviratne, S.I. A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration. Hydrol. Earth Syst. Sci. 2017, 21, 1809–1825. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Zhu, Z.; Jia, Z.; Zhu, M. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 2013, 487, 24–38. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration–a review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Alexandris, S.; Proutsos, N. How significant is the effect of the surface characteristics on the Reference Evapotranspiration estimates? Agric. Water Manag. 2020, 237, 106181. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W. Crop water requirements. In FAO Irrigation and Drainage Paper 24; Land and Water Development Division; FAO: Rome, Italy, 1977; p. 144. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Proutsos, N.; Tigkas, D.; Tsevreni, I.; Tsevreni, M. Drought Assessment in Nestos River Basin (N. Greece) for the Period 1955–2018. In Proceedings of the 10th International Conference on Information and Communication Technologies in Agriculture, Food and Environment, HAICTA 2022, Athens, Greece, 22–25 September 2022; pp. 429–437. [Google Scholar]
- Tegos, A.; Stefanidis, S.; Cody, J.; Koutsoyiannis, D. On the Sensitivity of Standardized-Precipitation-Evapotranspiration and Aridity Indexes Using Alternative Potential Evapotranspiration Models. Hydrology 2023, 10, 64. [Google Scholar] [CrossRef]
- Vangelis, H.; Tigkas, D.; Tsakiris, G. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J. Arid. Environ. 2013, 88, 130–140. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Allen, R.G.; Clemmens, A.J.; Burt, C.M.; Solomon, K.; O’Halloran, T. Prediction accuracy for projectwide evapotranspiration using crop coefficients and reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 24–36. [Google Scholar] [CrossRef]
- Proutsos, N.; Tigkas, D.; Tsevreni, I.; Alexandris, S.G.; Solomou, A.D.; Bourletsikas, A.; Stefanidis, S.; Nwokolo, S.C. A Thorough Evaluation of 127 Potential Evapotranspiration Models in Two Mediterranean Urban Green Sites. Remote Sens. 2023, 15, 3680. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Z.; Wang, Y.; Zhang, S.; Chu, X.; Yu, P.; Xiong, W.; Zuo, H.; Wang, Y. Spatiotemporal variation and driving forces of reference evapotranspiration in Jing River Basin, northwest China. Hydrol. Process. 2015, 29, 4846–4862. [Google Scholar] [CrossRef]
- Trajkovic, S. Comparison of radial basis function networks and empirical equations for converting from pan evaporation to reference evapotranspiration. Hydrol. Process. Int. J. 2009, 23, 874–880. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Local calibration of the Hargreaves and Priestley-Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Islam, S.; Alam, A.R. Performance evaluation of FAO Penman-Monteith and best alternative models for estimating reference evapotranspiration in Bangladesh. Heliyon 2021, 7, e07487. [Google Scholar] [CrossRef]
- Kisi, O. Comparison of different empirical methods for estimating daily reference evapotranspiration in Mediterranean climate. J. Irrig. Drain. Eng. 2014, 140, 04013002. [Google Scholar] [CrossRef]
- Li, S.; Kang, S.; Zhang, L.; Zhang, J.; Du, T.; Tong, L.; Ding, R. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. J. Hydrol. 2016, 543, 450–461. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F.; Matzarakis, A. Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Theor. Appl. Climatol. 2017, 128, 745–759. [Google Scholar] [CrossRef]
- Samaras, D.A.; Reif, A.; Theodoropoulos, K. Evaluation of radiation-based reference evapotranspiration models under different Mediterranean climates in central Greece. Water Resour. Manag. 2014, 28, 207–225. [Google Scholar] [CrossRef]
- Sharafi, S.; Mohammadi Ghaleni, M. Calibration of empirical equations for estimating reference evapotranspiration in different climates of Iran. Theor. Appl. Climatol. 2021, 145, 925–939. [Google Scholar] [CrossRef]
- Valipour, M.; Eslamian, S. Analysis of potential evapotranspiration using 11 modified temperature-based models. Int. J. Hydrol. Sci. Technol. 2014, 4, 192–207. [Google Scholar] [CrossRef]
- Xystrakis, F.; Matzarakis, A. Evaluation of 13 empirical reference potential evapotranspiration equations on the island of Crete in southern Greece. J. Irrig. Drain. Eng. 2011, 137, 211–222. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Zhou, G.; Han, L.; Liu, W.; Liao, J. 50-year evapotranspiration declining and potential causations in subtropical Guangdong province, southern China. Catena 2015, 128, 185–194. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V. Precipitation and potential evapotranspiration temporal variability and their relationship in two forest ecosystems in Greece. Hydrology 2021, 8, 160. [Google Scholar] [CrossRef]
- Yassen, A.; Nam, W.; Hong, E. Impact of climate change on reference evapotranspiration in Egypt. Catena 2020, 194, 104711. [Google Scholar] [CrossRef]
- Proutsos, N.; Tigkas, D. Growth response of endemic black pine trees to meteorological variations and drought episodes in a Mediterranean region. Atmosphere 2020, 11, 554. [Google Scholar] [CrossRef]
- Sun, G.; Wei, X.; Hao, L.; Sanchis, M.G.; Hou, Y.; Yousefpour, R.; Tang, R.; Zhang, Z. Forest hydrology modeling tools for watershed management: A review. For. Ecol. Manag. 2023, 530, 120755. [Google Scholar] [CrossRef]
- Federer, C.; Vörösmarty, C.; Fekete, B. Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resour. Res. 1996, 32, 2315–2321. [Google Scholar] [CrossRef]
- Fisher, J.B.; DeBiase, T.A.; Qi, Y.; Xu, M.; Goldstein, A.H. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ. Model. Softw. 2005, 20, 783–796. [Google Scholar] [CrossRef]
- Rao, L.; Sun, G.; Ford, C.; Vose, J. Modeling potential evapotranspiration of two forested watersheds in the southern Appalachians. Trans. ASABE 2011, 54, 2067–2078. [Google Scholar] [CrossRef]
- Ha, W.; Kolb, T.E.; Springer, A.E.; Dore, S.; O’Donnell, F.C.; Martinez Morales, R.; Masek Lopez, S.; Koch, G.W. Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests. Ecohydrology 2015, 8, 1335–1350. [Google Scholar] [CrossRef]
- Gebhart, S.; Radoglou, K.; Chalivopoulos, G.; Matzarakis, A. Evaluation of potential evapotranspiration in central Macedonia by EmPEst. In Advances in Meteorology, Climatology and Atmospheric Physics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 451–456. [Google Scholar]
- Bourletsikas, A.; Argyrokastritis, I.; Proutsos, N. Comparative evaluation of 24 reference evapotranspiration equations applied on an evergreen-broadleaved forest. Hydrol. Res. 2018, 49, 1028–1041. [Google Scholar] [CrossRef]
- Emberger, L. Un projet d’une classification des climats du point de vue phytogéographique. Bul. Soc. D’ Hist. Nat. Toulouse 1942, 77, 97–124. [Google Scholar]
- Bagnouls, F.; Gaussen, H. Les climats biologiques et leur classification. Ann. Géographie 1957, 355, 193–220. [Google Scholar] [CrossRef]
- Mantratzis, P. The Influence of Canopy Architecture on Kermes oak (Quercus coccifera L.) Ecophysiology; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2003. (In Greek) [Google Scholar]
- Pereira, A.R.; Pruitt, W.O. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric. Water Manag. 2004, 66, 251–257. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Blaney, H.; Criddle, W. Determining Water Requirements in Irrigated Area from Climatological Irrigation Data; USDA, Soil Conservation Service: Washington, DC, USA, 1950; p. 48. [Google Scholar]
- McCloud, D. Water requirements of field crops in Florida as influenced by climate. Proc. Soil. Sci. Soc. Fla. 1955, 15, 165–172. [Google Scholar]
- Dingman, S. Physical Hydrology, 2nd ed.; Waveland Pr Inc.: Salem, WI, USA, 2008; p. 656. [Google Scholar]
- Hamon, W.R. Computation of direct runoff amounts from storm rainfall. Int. Assoc. Sci. Hydrol. Publ. 1963, 63, 52–62. [Google Scholar]
- Baier, W.; Robertson, G.W. Estimation of latent evaporation from simple weather observations. Can. J. Plant Sci. 1965, 45, 276–284. [Google Scholar] [CrossRef]
- Siegert, E.; Schrödter, H. Erfahrungen mit dem Wasserbilanzschreiber nach Klausing. Dtsch. Gewasserkdl. Mitteilungen 1975, 19, 167–171. [Google Scholar]
- Smith, D.I.; Stopp, P. The River Basin: An Introduction to the Study of Hydrology; Cambridge University Press: Cambridge, UK, 1978. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Kharrufa, N. Simplified equation for evapotranspiration in arid regions. Beiträge Zur. Hydrol. 1985, 5, 39–47. [Google Scholar]
- Mintz, Y.; Walker, G. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature. J. Appl. Meteorol. Climatol. 1993, 32, 1305–1334. [Google Scholar] [CrossRef]
- Camargo, Â.P.d.; Marin, F.R.; Sentelhas, P.C.; Picini, A.G. Ajuste da equação de Thornthwaite para estimar evapotranspiração potencial em climas áridos e superúmidos, com base na ampliturde térmica diária. Rev. Bras. Agrometeorol. 1999, 7, 251–257. [Google Scholar]
- Hargreaves, G.; Samani, Z. Estimating potential evapotranspiration. J. Irrig. Drain. Engr. ASCE 1982, 108, 223–230. [Google Scholar] [CrossRef]
- Samani, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. J. Irrig. Drain. Eng. 2000, 126, 265–267. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V. Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol. Process. 2001, 15, 305–319. [Google Scholar] [CrossRef]
- Trajkovic, S. Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 316–323. [Google Scholar] [CrossRef]
- Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andréassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
- Castaneda, L.; Rao, P. Comparison of methods for estimating reference evapotranspiration in Southern California. J. Environ. Hydrol. 2005, 13, 1–10. [Google Scholar]
- Trajkovic, S. Hargreaves versus Penman-Monteith under humid conditions. J. Irrig. Drain. Eng. 2007, 133, 38–42. [Google Scholar] [CrossRef]
- Ravazzani, G.; Corbari, C.; Morella, S.; Gianoli, P.; Mancini, M. Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins. J. Irrig. Drain. Eng. 2012, 138, 592–599. [Google Scholar] [CrossRef]
- Berti, A.; Tardivo, G.; Chiaudani, A.; Rech, F.; Borin, M. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agric. Water Manag. 2014, 140, 20–25. [Google Scholar] [CrossRef]
- Heydari, M.M.; Heydari, M. Calibration of Hargreaves–Samani equation for estimating reference evapotranspiration in semiarid and arid regions. Arch. Agron. Soil. Sci. 2014, 60, 695–713. [Google Scholar] [CrossRef]
- Dorji, U.; Olesen, J.E.; Seidenkrantz, M.S. Water balance in the complex mountainous terrain of Bhutan and linkages to land use. J. Hydrol. Reg. Stud. 2016, 7, 55–68. [Google Scholar] [CrossRef]
- Lobit, P.; López Pérez, L.; Lhomme, J.-P. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: Development and validation of new methods for Mexico. Part II: Radiation. Theor. Appl. Climatol. 2018, 133, 799–810. [Google Scholar] [CrossRef]
- Althoff, D.; Santos, R.A.d.; Bazame, H.C.; Cunha, F.F.d.; Filgueiras, R. Improvement of Hargreaves–Samani reference evapotranspiration estimates with local calibration. Water 2019, 11, 2272. [Google Scholar] [CrossRef]
- Romanenko, V. Computation of the Autumn Soil Moisture Using a Universal Relationship for a Large Area; Ukrainian Hydrometeorological Research Institute: Kyiv, Ukraine, 1961; pp. 12–25. [Google Scholar]
- Schendel, U. Vegetationswasserverbrauch und-wasserbedarf. Habilit. Kiel. 1967, 137, 1–11. [Google Scholar]
- Antal, E. Új Módszer a Potenciális Evapotranspiráció Számítására; Beszámolók az 1968-ban Végzett Tudományos Kutatásokró; OMI Hiv. Kiadványa: Budapest, Hungary, 1968; Volume XXXIV, pp. 414–423. [Google Scholar]
- Müller, J.; Jörn, P.; Wendling, U. Untersuchungen zur Eignung des ANTAL-Verfahrens für die Bestimmung der potentiellen Evapotranspiration von Gras auf Flachlandstandorten. Z. Für Meteorol. 1990, 40, 189–191. [Google Scholar]
- Linacre, E.T. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric. Meteorol. 1977, 18, 409–424. [Google Scholar] [CrossRef]
- Ahooghalandari, M.; Khiadani, M.; Jahromi, M.E. Developing equations for estimating reference evapotranspiration in Australia. Water Resour. Manag. 2016, 30, 3815–3828. [Google Scholar] [CrossRef]
- Fox, D.G. Judging air quality model performance: A summary of the AMS workshop on dispersion model performance, woods hole, Mass., 8–11 September 1980. Bull. Am. Meteorol. Soc. 1981, 62, 599–609. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Willmott, C.J.; Wicks, D.E. An empirical method for the spatial interpolation of monthly precipitation within California. Phys. Geogr. 1980, 1, 59–73. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Lekakis, E.; Tziachris, P.; Doulgeris, C.; Papadopoulos, F.; Papadopoulos, A.; Papamichail, D. A ranking system for comparing models’ performance combining multiple statistical criteria and scenarios: The case of reference evapotranspiration models. Environ. Model. Softw. 2019, 114, 98–111. [Google Scholar] [CrossRef]
- Rahimikhoob, H.; Sohrabi, T.; Delshad, M. Assessment of reference evapotranspiration estimation methods in controlled greenhouse conditions. Irrig. Sci. 2020, 38, 389–400. [Google Scholar] [CrossRef]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef]
- Valipour, M. Temperature analysis of reference evapotranspiration models. Meteorol. Appl. 2015, 22, 385–394. [Google Scholar] [CrossRef]
- Trajkovic, S.; Kolakovic, S. Evaluation of reference evapotranspiration equations under humid conditions. Water Resour. Manag. 2009, 23, 3057–3067. [Google Scholar] [CrossRef]
- Alexandris, S.; Stricevic, R.; Petkovic, S. Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman-Monteith formula. Eur. Water 2008, 21, 17–28. [Google Scholar]
Method | Equation PET = f(T) * | Equation No | References |
---|---|---|---|
Thornthwaite 1948 | (1) | [50,51] | |
Blaney & Criddle 1950 | (2) | [52] | |
McCloud 1955 | (3) | [53] | |
Hamon 1963 | (4) | [54,55] | |
Baier & Robertson 1965 | (5) | [56] | |
Malmstrom 1969 | (6) | [54] | |
Siegert & Schrödter 1975 | (7) | [57] | |
Blaney & Criddle (Mid. Eur. Ver.) | (8) | [16] | |
Smith & Stopp 1978 | (9) | [58] | |
Hargreaves & Samani 1985 | (10) | [59] | |
Kharrufa 1985 | (11) | [60] | |
Mintz & Walker 1993 | (12) | [61] | |
Camargo et al., 1999 | , | (13) | [62] |
Samani 2000 | (14) | [59,63,64] | |
Xu & Singh 2001 (1) | (15) | [65] | |
Xu & Singh 2001 (2) | (16) | [65] | |
Xu & Singh 2001 (3) | (17) | [65] | |
Xu & Singh 2001 (4) | (18) | [65] | |
Droogers & Allen 2002 (1) | (19) | [26] | |
Droogers & Allen 2002 (2) | (20) | [26] | |
Pereira & Pruitt 2004 | (21) | [50] | |
, for | |||
Trajcovic 2005 (1) | (22) | [66] | |
Trajcovic 2005 (2) | (23) | [66] | |
Oudin 2005 | , for T + 5 > 0 | (24) | [67] |
Castañeda & Rao 2005 (1) | (25) | [68] | |
Trajkovic 2007 | (26) | [69] | |
Tabari & Talaee 2011 (1) | (27) | [27] | |
Tabari & Talaee 2011 (2) | (28) | [27] | |
Ravazzani et al., 2012 | (29) | [70] | |
Berti et al., 2014 | (30) | [71] | |
Heydari & Heydari 2014 | (31) | [72] | |
Dorji et al., 2016 | (32) | [73] | |
Lobit et al., 2018 | (33) | [74] | |
Althoff et al., 2019 | (34) | [75] | |
Proutsos et al., 2023 Model 3 | (35) | [23] | |
Proutsos et al., 2023 Model 4 | (36) | [23] |
Method | Equation PET = f (T, RH) * | Equation No. | References |
---|---|---|---|
Romanenko 1961 | (37) | [76] | |
Schendel 1967 | (38) | [77] | |
Antal 1968 | (39) | [78,79] | |
Linacre 1977 | (40) | [80] | |
Xu & Singh 2001 (5) | (41) | [65] | |
Xu & Singh 2001 (6) | (42) | [65] | |
Xu & Singh 2001 (7) | (43) | [65] | |
Ahooghalaandari et al., 2016 (1) | (44) | [81] | |
Ahooghalaandari et al., 2016 (2) | (45) | [81] | |
Ahooghalaandari et al., 2016 (3) | (46) | [81] | |
Ahooghalaandari et al., 2016 (4) | (47) | [81] | |
Proutsos et al., 2023 Model 6 | (48) | [23] | |
Proutsos et al., 2023 Model 15 | (49) | [23] | |
Equation PET = f (T, PR) * | |||
Droogers & Allen 2002 (3) | (50) | [26] |
PET = f(T) Method | N | Mean | a | b | MBE | RMSE | MAE | sd2 | d | R2 | sRPI | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FAO56–PM | 5389 | 2.428 | ||||||||||
1. Thornthwaite 1948 | 4394 | 2.273 | 0.973 | −0.155 | −0.222 | 0.794 | 0.604 | 0.580 | 0.961 | 0.811 | 0.881 | 19 |
2. Blaney & Criddle 1950 | 5615 | 2.858 | 1.011 | 0.462 | 0.527 | 0.906 | 0.691 | 0.542 | 0.938 | 0.840 | 0.844 | 26 |
3. McCloud 1955 | 5602 | 1.988 | 0.977 | −0.305 | −0.335 | 1.107 | 0.785 | 1.113 | 0.907 | 0.685 | 0.735 | 37 |
4. Hamon 1963 | 5389 | 2.444 | 0.829 | 0.431 | 0.016 | 0.672 | 0.516 | 0.452 | 0.960 | 0.828 | 0.877 | 21 |
5. Baier & Robertson 1965 | 3529 | 3.242 | 1.170 | −0.604 | −0.044 | 0.817 | 0.627 | 0.665 | 0.942 | 0.802 | 0.823 | 32 |
6. Malmstrom 1969 | 5389 | 2.761 | 0.977 | 0.389 | 0.333 | 0.808 | 0.623 | 0.542 | 0.955 | 0.823 | 0.863 | 25 |
7. Siegert & Schrodter 1975 | 5218 | 2.603 | 0.930 | 0.293 | 0.120 | 0.708 | 0.556 | 0.487 | 0.957 | 0.826 | 0.887 | 18 |
8. Blaney & Criddle (MEV) | 5539 | 2.320 | 0.843 | 0.327 | −0.034 | 0.615 | 0.484 | 0.377 | 0.963 | 0.857 | 0.909 | 15 |
9. Smith & Stopp 1978 | 5218 | 2.284 | 0.637 | 0.703 | −0.199 | 0.871 | 0.713 | 0.719 | 0.890 | 0.739 | 0.718 | 38 |
10. Hargreaves-Samani 1985 | 5389 | 2.514 | 0.961 | 0.180 | 0.086 | 0.535 | 0.352 | 0.279 | 0.964 | 0.898 | 0.969 | 2 |
11. Kharrufa 1985 | 5218 | 3.382 | 1.382 | −0.051 | 0.898 | 1.516 | 1.167 | 1.493 | 0.870 | 0.818 | 0.691 | 39 |
12. Mintz & Walker 1993 | 5218 | 2.644 | 0.927 | 0.342 | 0.160 | 0.713 | 0.562 | 0.483 | 0.972 | 0.827 | 0.887 | 17 |
13. Camargo et al. 1999 | 5375 | 2.374 | 0.997 | −0.053 | −0.059 | 0.661 | 0.494 | 0.433 | 0.962 | 0.858 | 0.943 | 8 |
14. Samani 2000 | 5385 | 2.618 | 0.823 | 0.621 | 0.192 | 0.710 | 0.515 | 0.466 | 0.950 | 0.822 | 0.844 | 27 |
15. Xu & Singh 2001 (1) | 4394 | 2.776 | 1.150 | −0.092 | 0.281 | 0.964 | 0.765 | 0.850 | 0.925 | 0.814 | 0.831 | 30 |
16. Xu & Singh 2001 (2) | 4394 | 2.839 | 1.172 | −0.085 | 0.344 | 1.012 | 0.802 | 0.906 | 0.943 | 0.812 | 0.827 | 31 |
17. Xu & Singh 2001 (3) | 5216 | 3.676 | 1.501 | −0.049 | 1.193 | 1.840 | 1.416 | 1.960 | 0.867 | 0.818 | 0.621 | 41 |
18. Xu & Singh 2001 (4) | 5389 | 3.061 | 1.170 | 0.219 | 0.633 | 0.940 | 0.703 | 0.484 | 0.964 | 0.898 | 0.880 | 20 |
19. Droog. & Allen 2002 (1) | 5389 | 2.824 | 1.025 | 0.336 | 0.396 | 0.676 | 0.496 | 0.300 | 0.970 | 0.902 | 0.934 | 11 |
20. Droog. & Allen 2002 (2) | 5389 | 2.654 | 1.023 | 0.169 | 0.226 | 0.603 | 0.402 | 0.313 | 0.971 | 0.898 | 0.961 | 4 |
21. Pereira and Pruit 2004 | 5375 | 2.277 | 0.931 | 0.011 | −0.156 | 0.644 | 0.478 | 0.390 | 0.963 | 0.858 | 0.936 | 10 |
22. Trajkovic 2005 (1) | 4592 | 2.479 | 0.867 | 0.385 | 0.064 | 0.701 | 0.547 | 0.488 | 0.952 | 0.817 | 0.869 | 23 |
23. Trajcovic 2005 (2) | 5615 | 2.292 | 0.785 | 0.467 | −0.039 | 0.547 | 0.410 | 0.298 | 0.968 | 0.898 | 0.926 | 14 |
24. Oudin 2005 | 5606 | 2.319 | 0.916 | 0.165 | −0.015 | 0.588 | 0.436 | 0.345 | 0.961 | 0.871 | 0.942 | 9 |
25. Castañeda & Rao 2005 | 5615 | 3.195 | 0.993 | 0.850 | 0.865 | 1.103 | 0.919 | 0.469 | 0.895 | 0.852 | 0.769 | 36 |
26. Trajkovic 2007 | 5389 | 2.141 | 0.798 | 0.204 | −0.287 | 0.610 | 0.437 | 0.290 | 0.963 | 0.902 | 0.930 | 13 |
27. Tabari & Talaee 2011 (1) | 5389 | 3.389 | 1.296 | 0.242 | 0.960 | 1.285 | 1.000 | 0.730 | 0.876 | 0.898 | 0.772 | 34 |
28. Tabari & Talaee 2011 (2) | 5389 | 3.061 | 1.170 | 0.219 | 0.633 | 0.940 | 0.703 | 0.484 | 0.957 | 0.898 | 0.877 | 22 |
29. Ravazzani et al. 2012 | 5389 | 2.394 | 0.915 | 0.171 | −0.034 | 0.519 | 0.346 | 0.268 | 0.979 | 0.898 | 0.974 | 1 |
30. Berti et al. 2014 | 5389 | 2.187 | 0.841 | 0.145 | −0.241 | 0.581 | 0.406 | 0.279 | 0.963 | 0.897 | 0.943 | 7 |
31. Heydari & Heydari 2014 | 5389 | 2.424 | 1.041 | −0.104 | −0.004 | 0.607 | 0.387 | 0.369 | 0.965 | 0.887 | 0.964 | 3 |
32. Dorji et al. 2016 | 5389 | 2.091 | 0.668 | 0.468 | −0.337 | 0.732 | 0.536 | 0.422 | 0.938 | 0.898 | 0.866 | 24 |
33. Lobit et al. 2018 | 5389 | 2.066 | 0.759 | 0.223 | −0.363 | 0.675 | 0.482 | 0.325 | 0.929 | 0.898 | 0.898 | 16 |
34. Althoff et al. 2019 | 5389 | 2.273 | 0.888 | 0.116 | −0.156 | 0.541 | 0.370 | 0.268 | 0.964 | 0.898 | 0.960 | 5 |
35. Proutsos et al. 2023 M3 | 5218 | 2.208 | 0.893 | −0.009 | −0.276 | 0.893 | 0.691 | 0.721 | 0.932 | 0.751 | 0.820 | 33 |
36. Proutsos et al. 2023 M4 | 5353 | 2.573 | 1.000 | 0.134 | 0.133 | 0.674 | 0.489 | 0.436 | 0.961 | 0.857 | 0.932 | 12 |
PET = f (RH or PR) Method | N | Mean | a | b | MBE | RMSE | MAE | sd2 | d | R2 | sRPI | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|
37. Romanenko 1961 | 5578 | 4.239 | 1.865 | −0.233 | 1.925 | 2.879 | 2.047 | 4.580 | 0.676 | 0.771 | 0.275 | 49 |
38. Schendel 1967 | 5083 | 4.240 | 1.575 | 0.425 | 1.817 | 2.656 | 1.895 | 3.753 | 0.799 | 0.682 | 0.342 | 47 |
39. Antal 1968 | 5376 | 4.303 | 1.604 | 0.416 | 1.880 | 2.540 | 1.906 | 2.918 | 0.861 | 0.774 | 0.438 | 44 |
40. Linacre 1977 | 5383 | 4.442 | 1.339 | 1.194 | 2.017 | 2.453 | 2.021 | 1.951 | 0.865 | 0.740 | 0.412 | 46 |
41. Xu & Singh 2001 (5) | 5516 | 4.586 | 2.008 | −0.172 | 2.302 | 3.278 | 2.397 | 5.446 | 0.738 | 0.778 | 0.214 | 50 |
42. Xu & Singh 2001 (6) | 5385 | 4.389 | 1.325 | 1.174 | 1.962 | 2.402 | 1.967 | 1.922 | 0.890 | 0.737 | 0.432 | 45 |
43. Xu & Singh 2001 (7) | 5374 | 4.975 | 1.492 | 1.362 | 2.553 | 2.993 | 2.554 | 2.438 | 0.811 | 0.764 | 0.279 | 48 |
44. Ahooghal. et al., 2016 (1) | 5615 | 4.141 | 1.156 | 1.390 | 1.810 | 1.967 | 1.812 | 0.591 | 0.901 | 0.880 | 0.591 | 42 |
45. Ahooghal. et al., 2016 (2) | 5615 | 4.423 | 1.125 | 1.741 | 2.093 | 2.220 | 2.094 | 0.550 | 0.830 | 0.885 | 0.503 | 43 |
46. Ahooghal. et al., 2016 (3) | 5581 | 3.312 | 1.263 | 0.277 | 0.969 | 1.347 | 1.062 | 0.873 | 0.928 | 0.875 | 0.771 | 35 |
47. Ahooghal. et al., 2016 (4) | 5612 | 3.683 | 1.339 | 0.493 | 1.352 | 1.671 | 1.376 | 0.963 | 0.886 | 0.885 | 0.681 | 40 |
48. Proutsos et al., 2023 M. 6 | 5614 | 2.887 | 0.933 | 0.680 | 0.557 | 0.865 | 0.683 | 0.438 | 0.948 | 0.852 | 0.836 | 29 |
49. Proutsos et al., 2023 M. 15 | 5387 | 2.446 | 0.832 | 0.426 | 0.017 | 0.736 | 0.576 | 0.542 | 0.938 | 0.795 | 0.841 | 28 |
50. Droog. & Allen 2002 (3) | 5357 | 2.264 | 0.974 | −0.109 | −0.174 | 0.643 | 0.421 | 0.383 | 0.976 | 0.867 | 0.947 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proutsos, N.D.; Fotelli, M.N.; Stefanidis, S.P.; Tigkas, D. Assessing the Accuracy of 50 Temperature-Based Models for Estimating Potential Evapotranspiration (PET) in a Mediterranean Mountainous Forest Environment. Atmosphere 2024, 15, 662. https://doi.org/10.3390/atmos15060662
Proutsos ND, Fotelli MN, Stefanidis SP, Tigkas D. Assessing the Accuracy of 50 Temperature-Based Models for Estimating Potential Evapotranspiration (PET) in a Mediterranean Mountainous Forest Environment. Atmosphere. 2024; 15(6):662. https://doi.org/10.3390/atmos15060662
Chicago/Turabian StyleProutsos, Nikolaos D., Mariangela N. Fotelli, Stefanos P. Stefanidis, and Dimitris Tigkas. 2024. "Assessing the Accuracy of 50 Temperature-Based Models for Estimating Potential Evapotranspiration (PET) in a Mediterranean Mountainous Forest Environment" Atmosphere 15, no. 6: 662. https://doi.org/10.3390/atmos15060662
APA StyleProutsos, N. D., Fotelli, M. N., Stefanidis, S. P., & Tigkas, D. (2024). Assessing the Accuracy of 50 Temperature-Based Models for Estimating Potential Evapotranspiration (PET) in a Mediterranean Mountainous Forest Environment. Atmosphere, 15(6), 662. https://doi.org/10.3390/atmos15060662