Placing 21st Century Warming in Southern California, USA in a Multi-Century Historical Context
Abstract
:1. Introduction
2. Methods
2.1. Data Collection and Processing
2.2. Growth/Climate Model Development, Calibration, and Verification
2.3. Data Analysis
3. Results and Discussion
3.1. Model Development and Validation
3.2. Reconstructed Tmin 1658–2020
3.3. Mechanisms of 21st Century Warming
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, K.E.; Cook, E.C.; Anchukaitis, K.J.; Cook, B.I.; Smerdon, J.E.; Seager, R.; Harley, G.L.; Spei, B. Increasing prevalence of hot drought across western North America since the 16th century. Sci. Adv. 2024, 10, eadj4289. [Google Scholar] [CrossRef]
- Available online: https://www.census.gov/popclock/ (accessed on 15 February 2024).
- Available online: https://www.bea.gov/data/gdp/gdp-state (accessed on 15 February 2024).
- Available online: https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/agricultural-production-and-prices/ (accessed on 15 February 2024).
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W.; Butt, N.; Dolanc, C.R.; Holguin, A.; Moritz, M.A.; North, M.P.; Safford, H.D.; Stephenson, N.L.; Thorne, J.H.; van Mantgem, P.J. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 2015, 6, 1–10. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Abatzoglou, J.T.; Adamowski, J.; Modaresi Rad, A.; AghaKouchak, A.; Pausata, F.S.; Sadegh, M. Elevation-dependent intensification of fire danger in the western United States. Nat. Commun. 2023, 14, 1773. [Google Scholar] [CrossRef] [PubMed]
- Goss, M.; Swain, D.L.; Abatzoglou, J.T.; Sarhadi, A.; Kolden, C.A.; Williams, A.P.; Diffenbaugh, N.S. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 2020, 15, 094016. [Google Scholar] [CrossRef]
- Li, S.; Banerjee, T. Spatial and temporal pattern of wildfires in California from 2000 to 2019. Sci. Rep. 2020, 11, 8779. [Google Scholar] [CrossRef] [PubMed]
- Mote, P.W.; Li, S.; Lettenmaier, D.P.; Xiao, M.; Engel, R. Dramatic declines in snowpack in the western US. NPJ Clim. Atmos. Sci. 2018, 1, 2. [Google Scholar] [CrossRef]
- O’Leary III, D.S.; Hall, D.K.; DiGirolamo, N.E.; Riggs, G.A. Regional trends in snowmelt timing for the western United States throughout the MODIS era. Phys. Geogr. 2022, 43, 285–307. [Google Scholar] [CrossRef]
- Hemming-Schroeder, N.M.; Gutierrez, A.A.; Allison, S.D.; Randerson, J.T. Estimating individual tree mortality in the Sierra Nevada using lidar and multispectral reflectance data. J. Geophys. Res. Biogeosci. 2023, 128, e2022JG007234. [Google Scholar] [CrossRef]
- Knapp, P.A.; Soulé, P.T.; Mitchell, T.J.; Catherwood, A.A.; Lewis, H.S. Increasing radial growth in old-growth high-elevation conifers in Southern California, USA, during the exceptional “hot drought” of 2000–2020. Int. J. Biometeorl. 2024, 68, 743–748. [Google Scholar] [CrossRef]
- Available online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/divisional/time-series/0407/tmin/12/10/1895-2023?trend=true&trend_base=10&begtrendyear=2000&endtrendyear=2023 (accessed on 10 February 2024).
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [PubMed]
- AghaKouchak, A.; Mirchi, A.; Madani, K.; Di Baldassarre, G.; Nazemi, A.; Alborzi, A.; Anjileli, H.; Azarderakhsh, M.; Chlang, F.; Hassanzadeh, E. Anthropogenic drought: Definition, challenges, and opportunities. Rev. Geophys. 2021, 59, e2019RG000683. [Google Scholar] [CrossRef]
- Overpeck, J.T. The challenge of hot drought. Nature 2013, 503, 350–351. [Google Scholar] [CrossRef] [PubMed]
- Soulé, P.T.; Knapp, P.A. The evolution of “Hot” droughts in Southern California, USA from the 20th to the 21st century. J. Arid Environ. 2024, 220, 105118. [Google Scholar] [CrossRef]
- Swain, D.L.; Singh, D.; Horton, D.E.; Mankin, J.S.; Ballard, T.C.; Diffenbaugh, N.S. Remote linkages to anomalous winter atmospheric ridging over the northeastern Pacific. Geophys. Res. Atmos. 2017, 122, 12–194. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Let. 2012, 39, L06801. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Let. 2015, 10, 014005. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. How is rapid Arctic warming influencing weather patterns in lower latitudes? Arctic Antarct. Alp. Res. 2021, 53, 219–220. [Google Scholar] [CrossRef]
- Cvijanovic, I.; Santer, B.D.; Bonfils, C.; Lucas, D.D.; Chiang, J.C.; Zimmerman, S. Future loss of Arctic sea-ice cover could drive a substantial decrease in California’s rainfall. Nat. Commun. 2017, 8, 1947. [Google Scholar] [CrossRef]
- Bonan, D.B.; Lehner, F.; Holland, M.M. Partitioning uncertainty in projections of Arctic sea ice. Environ. Res. Let. 2021, 16, 044002. [Google Scholar] [CrossRef]
- Briffa, K.R.; Jones, P.D.; Schweingruber, F.H. Tree-ring density reconstructions of summer temperature patterns across western North America since 1600. J. Clim. 1992, 5, 735–754. [Google Scholar] [CrossRef]
- Salzer, M.W.; Bunn, A.G.; Graham, N.E.; Hughes, M.K. Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Clim. Dyn. 2014, 42, 1517–1526. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M.; Schubert, S.; Wang, H.; Lyon, B.; Kumar, A.; Nakamura, J.; Henderson, N. Causes of the 2011–14 California drought. J. Clim. 2015, 28, 6997–7024. [Google Scholar] [CrossRef]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, A.M.; Livneh, B. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Stahle, D.W.; Fye, F.K.; Cook, E.R.; Griffin, R.D. Tree-ring reconstructed megadroughts over North America since AD 1300. Clim. Chang. 2007, 83, 133–149. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cook, E.R.; Cleaveland, M.K.; Therrell, M.D.; Meko, D.M.; Grissino-Mayer, H.D.; Watson, E.; Luckman, B.H. Tree-ring data document 16th century megadrought over North America. Eos 2000, 81, 121–125. [Google Scholar] [CrossRef]
- Carroll, A.L.; Sillett, S.C.; Palladini, M.; Campbell-Spickler, J. Dendrochronological analysis of Sequoia sempervirens in an interior old-growth forest. Dendrochronologia 2018, 52, 29–39. [Google Scholar] [CrossRef]
- Meko, D.M.; Stockton, C.W.; Boggess, W.R. A tree-ring reconstruction of drought in Southern California. J. Ofthe Am. Water Resour. Assoc. 1980, 16, 594–600. [Google Scholar] [CrossRef]
- Scuderi, L.A. A 2000-year tree ring record of annual temperatures in the Sierra Nevada mountains. Science 1993, 259, 1433–1436. [Google Scholar] [CrossRef]
- Sharp, R.V. San Jacinto fault zone in the Peninsular Ranges of southern California. GSA Bull. 1967, 78, 705–730. [Google Scholar] [CrossRef]
- Singer, E. Geology of the Imperial Valley California: A Monograph. 1998. Available online: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=8423 (accessed on 5 December 2023).
- Allen, B.H. Habitat Description: Mixed Sierran Conifer (SMC). 2005. Available online: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=67311 (accessed on 5 December 2023).
- Available online: https://psl.noaa.gov/data/usclimdivs/boundaries.html (accessed on 21 October 2023).
- U.S. Geological Survey. USGS 3D Elevation Program Digital Elevation Model. Available online: https://elevation.nationalmap.gov/arcgis/rest/services/3DEPElevation/ImageServer (accessed on 10 March 2024).
- Stokes, M.A. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996; pp. 1–73. [Google Scholar]
- Guay, R. WinDENDRO: User’s Guide; Regent Instruments. Inc.: Quebec, QC, Canada, 2012. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Cook, E.R.; Holmes, R.L. Users Manual for Program ARSTAN; Laboratory of Tree-Ring Research, University of Arizona: Tucson, AZ, USA, 1986; pp. 50–65. [Google Scholar]
- Michaelsen, J. Cross-validation in statistical climate forecast models. J. Clim. Appl. Meteorol. 1987, 26, 1589–1600. [Google Scholar] [CrossRef]
- Fritts, H.C. Reconstructing Large-Scale Climatic Patterns from Tree-Ring Data; University of Arizona Press: Tucson, AZ, USA, 1991; pp. 1–286. [Google Scholar]
- Rodionov, S.N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 2004, 31, L09204. [Google Scholar] [CrossRef]
- Rodionov, S.; Overland, J.E. Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES J. Mar. Sci. 2005, 62, 328–332. [Google Scholar] [CrossRef]
- Dai, A. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim. Dyn. 2013, 41, 633–646. [Google Scholar] [CrossRef]
- LaDochy, S.; Medina, R.; Patzert, W. Recent California climate variability: Spatial and temporal patterns in temperature trends. Clim. Res. 2007, 33, 159–169. [Google Scholar] [CrossRef]
- Available online: https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.anom.data (accessed on 29 February 2024).
- Available online: https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat (accessed on 29 February 2024).
- Available online: https://noaadata.apps.nsidc.org/NOAA/G02135/seaice_analysis/ (accessed on 29 February 2024).
- Esper, J.; Krusic, P.J.; Ljungqvist, F.C.; Luterbacher, J.; Carrer, M.; Cook, E.; Davi, N.K.; Hartl-Meier, C.; Kirdyanov, A.; Konter, O.; et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 2016, 145, 134–151. [Google Scholar] [CrossRef]
- Williams, A.P.; Cook, B.I.; Smerdon, J.E. Rapid intensification of the emerging southwestern North American megadrought in 2020–2021. Nat. Clim. Chang. 2022, 12, 232–234. [Google Scholar] [CrossRef]
- Wahl, E.R.; Zorita, E.; Diaz, H.F.; Hoell, A. Southwestern United States drought of the 21st century presages drier conditions into the future. Commun. Earth Environ. 2022, 3, 202. [Google Scholar] [CrossRef]
- Heeter, K.J.; Harley, G.L.; Abatzoglou, J.T.; Anchukaitis, K.J.; Cook, E.R.; Coulthard, B.L.; Dye, L.A.; Homfeld, I.K. Unprecedented 21st century heat across the Pacific Northwest of North America. Npj Clim. Atmos. Sci. 2023, 6, 5. [Google Scholar] [CrossRef]
- Knapp, P.A.; Soulé, P.T. Spatio-Temporal Linkages between Declining Arctic Sea-Ice Extent and Increasing Wildfire Activity in the Western United States. Forests 2017, 8, 313. [Google Scholar] [CrossRef]
- Zou, Y.; Rasch, P.J.; Wang, H.; Xie, Z.; Zhang, R. Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic. Nat. Commun. 2021, 12, 6048. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, A.; Álvarez-Esteban, R.; Penas, Á.; del Río, S. Analysis of recent mean temperature trends and relationships with teleconnection patterns in California (US). App. Sci. 2022, 12, 5831. [Google Scholar] [CrossRef]
- Swain, D.L.; Horton, D.E.; Singh, D.; Diffenbaugh, N.S. Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Sci. Adv. 2016, 2, e1501344. [Google Scholar] [CrossRef] [PubMed]
Chronology | Sampled Trees (n) | Cores (n) | Series Intercorrelation | Mean Sensitivity | Correlation with Annual Tmin (r) |
---|---|---|---|---|---|
Jeffrey pine (JP) | 23 | 42 | 0.65 | 0.28 | 0.61 ** |
Sugar pine (SP) | 28 | 52 | 0.65 | 0.29 | 0.57 ** |
Composite (JP & SP) | 18 | 26 | 0.59 | 0.28 | 0.71 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knapp, P.A.; Catherwood, A.A.; Soulé, P.T. Placing 21st Century Warming in Southern California, USA in a Multi-Century Historical Context. Atmosphere 2024, 15, 649. https://doi.org/10.3390/atmos15060649
Knapp PA, Catherwood AA, Soulé PT. Placing 21st Century Warming in Southern California, USA in a Multi-Century Historical Context. Atmosphere. 2024; 15(6):649. https://doi.org/10.3390/atmos15060649
Chicago/Turabian StyleKnapp, Paul A., Avery A. Catherwood, and Peter T. Soulé. 2024. "Placing 21st Century Warming in Southern California, USA in a Multi-Century Historical Context" Atmosphere 15, no. 6: 649. https://doi.org/10.3390/atmos15060649
APA StyleKnapp, P. A., Catherwood, A. A., & Soulé, P. T. (2024). Placing 21st Century Warming in Southern California, USA in a Multi-Century Historical Context. Atmosphere, 15(6), 649. https://doi.org/10.3390/atmos15060649