The Design of a Parameterization Scheme for 137Cs Based on the WRF-Chem Model and Its Application in Simulating the Fukushima Nuclear Accident
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. WRF-Chem Model
2.3. Parameterized Design of Radionuclide 137Cs
2.3.1. Dry Deposition
2.3.2. Wet Deposition
2.4. Simulation of Experimental Design
2.5. Evaluation of Simulation Results Testing
3. Results and Discussion
3.1. Meteorological Field Simulation Analysis
3.2. Analysis of the Spatial Transport of Radionuclide 137Cs
3.3. Radionuclide 137Cs Ground Deposition Analysis
3.4. Analysis of Radionuclide 137Cs Site Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujii, Y.; Satake, K.; Sakai, S.; Shinohara, M.; Kanazawa, T. Tsunami source of the 2011 off the pacific coast of tohoku earthquake. Earth Planets Space 2011, 63, 815–820. [Google Scholar] [CrossRef]
- Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J.F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T.J. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys. 2012, 12, 2313–2343. [Google Scholar] [CrossRef]
- Tsuruta, H.; Oura, Y.; Ebihara, M.; Ohara, T.; Nakajima, T. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations. Sci. Rep. 2014, 4, 6717. [Google Scholar] [CrossRef] [PubMed]
- Diaz Leon, J.; Jaffe, D.A.; Kaspar, J.; Knecht, A.; Miller, M.L.; Robertson, R.G.H.; Schubert, A.G. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J. Environ. Radioact. 2011, 102, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- MacMullin, S.; Giovanetti, G.K.; Green, M.P.; Henning, R.; Holmes, R.; Vorren, K.; Wilkerson, J.F. Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima Dai-ichi reactor accident. J. Environ. Radioact. 2012, 112, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.E.; Seywerd, H.C.J.; Fortin, R.; Carson, J.M.; Saull, P.R.B.; Coyle, M.J.; Van Brabant, A.; Buckle, J.L.; Desjardins, S.M.; Hall, R.M. Aerial measurement of radioxenon concentration off the west coast of Vancouver Island following the Fukushima reactor accident. J. Environ. Radioact. 2011, 102, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Simgen, H.; Arnold, F.; Aufmhoff, H.; Baumann, R.; Kaether, F.; Lindemann, S.; Rauch, L.; Schlager, H.; Schlosser, C.; Schumann, U. Detection of (133)Xe from the Fukushima nuclear power plant in the upper troposphere above Germany. J. Environ. Radioact. 2014, 132, 94–99. [Google Scholar] [CrossRef]
- Bolsunovsky, A.; Dementyev, D. Evidence of the radioactive fallout in the center of Asia (Russia) following the Fukushima Nuclear Accident. J. Environ. Radioact. 2011, 102, 1062–1064. [Google Scholar] [CrossRef] [PubMed]
- Long, N.Q.; Truong, Y.; Hien, P.D.; Binh, N.T.; Sieu, L.N.; Giap, T.V.; Phan, N.T. Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam. J. Environ. Radioact. 2012, 111, 53–58. [Google Scholar] [CrossRef]
- Long, P.K.; Hien, P.D.; Quang, N.H. Atmospheric transport of 131I and 137Cs from Fukushima by the East Asian northeast monsoon. J. Environ. Radioact. 2019, 197, 74–80. [Google Scholar] [CrossRef]
- Kim, C.K.; Byun, J.I.; Chae, J.S.; Choi, H.Y.; Choi, S.W.; Kim, D.; Kim, Y.J.; Lee, D.M.; Park, W.J.; Yim, S.; et al. Radiological impact in Korea following the Fukushima nuclear accident. J. Environ. Radioact. 2012, 111, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-J.; Xu, Y.-S.; Xu, J.; He, Y.-J.; Zhao, X.-Y.; Meng, F.; Bai, Z.-P. Impact of Japan’s Nuclear Leakage on the Typical Areas of Northern China. Res. Environ. Sci. 2013, 26, 274–280. [Google Scholar]
- Onda, Y.; Taniguchi, K.; Yoshimura, K.; Kato, H.; Takahashi, J.; Wakiyama, Y.; Coppin, F.; Smith, H.G. Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial systems. Nat. Rev. Earth Env. 2020, 1, 644–660. [Google Scholar] [CrossRef]
- Wai, K.M.; Yu, P.K. Trans-oceanic transport of 137Cs from the Fukushima nuclear accident and impact of hypothetical Fukushima-like events of future nuclear plants in Southern China. Sci. Total Environ. 2015, 508, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.Y.; Zhuang, H.Y. A Review of Applied Research on Air Pollutant Dispersion Modelling. Environ. Pollut. Prev. 2007, 29, 6. [Google Scholar] [CrossRef]
- Ge, B.Z.; Lu, Q.Q.; Chen, X.S.; Wang, Z.F. A review of the numerical simulations of the atmospheric dispersion of radionuclides. Acta Sci. Circumstantiae 2021, 41, 1599–1609. [Google Scholar] [CrossRef]
- Hultquist, C.; Cervone, G. Comparison of simulated radioactive atmospheric releases to citizen science observations for the Fukushima nuclear accident. Atmos. Environ. 2018, 198, 478–488. [Google Scholar] [CrossRef]
- Mészáros, R.; Leelőssy, Á.; Kovács, T.; Lagzi, I. Predictability of the dispersion of Fukushima-derived radionuclides and their homogenization in the atmosphere. Sci. Rep. 2016, 6, 19915. [Google Scholar] [CrossRef] [PubMed]
- Chanin, D.I.; Sprung, J.L.; Ritchie, L.T.; Jow, H.N. MELCOR Accident Consequence Code System (MACCS); Division of Systems Research, Nuclear Regulatory Commission: Washington, DC, USA; Sandia National Laboratories: Albuquerque, NM, USA, 1990. [Google Scholar]
- Fang, S.; Li, H.; Fang, D. Application of ARCON96 in the evaluation of the habitability of the main control room of nuclear power plant and its comparison with the combined wake model. Radiat. Prot. 2012, 32, 7. [Google Scholar]
- Zhuo, J.; Huang, L.X.; Niu, S.L.; Xie, H.G.; Kuang, F.H. A random walk model to simulate the atmospheric dispersion of radionuclide. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 042017. [Google Scholar] [CrossRef]
- Li, H.; Deng, J.-Y.; Wang, X.-H.; Zhang, L.-X. Diffusion of radionuclide clouds in the atmosphere using Gaussian modelling. Radiat. Prot. 2004, 24, 92–99. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef]
- Yao, R.T.; Xu, X.J.; Hao, H.W.; Yao, Q.S. Modelling of long-range transport of airborne radioactive contaminants released from nuclear risk sites in the Far East region. Radiat. Prot. 2005, 25, 13. [Google Scholar] [CrossRef]
- Leelőssy, Á.; Lagzi, I.; Kovács, A.; Mészáros, R. A review of numerical models to predict the atmospheric dispersion of radionuclides. J. Environ. Radioact. 2018, 182, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Tsang, Y.; Vallis, G.K. A stochastic Lagrangian basis for a probabilistic parameterization of moisture condensation in Eulerian models. J. Atmos. Sci. 2018, 75, 3925–3941. [Google Scholar] [CrossRef]
- Kajino, M.; Sekiyama, T.T.; Mathieu, A.; Korsakissok, I.; Périllat, R.; Quélo, D.; Quérel, A.; Saunier, O.; Adachi, K.; Girard, S.; et al. Lessons learned from atmospheric modeling studies after the Fukushima nuclear accident: Ensemble simulations, data assimilation, elemental process modeling, and inverse modeling. Geochem. J. 2018, 52, 85–101. [Google Scholar] [CrossRef]
- Takemura, T.; Nakamura, H.; Takigawa, M.; Kondo, H.; Satomura, T.; Miyasaka, T.; Nakajima, T. A Numerical Simulation of Global Transport of Atmospheric Particles Emitted from the Fukushima Daiichi Nuclear Power Plant. Sci. Online Lett. Atmos. SOLA 2011, 7, 101–104. [Google Scholar] [CrossRef]
- Christoudias, T.; Lelieveld, J. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmos. Chem. Phys. 2013, 13, 1425–1438. [Google Scholar] [CrossRef]
- Ten Hoeve, J.E.; Jacobson, M.Z. Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy Environ. Energy Environ. Sci. 2012, 9, 8743–8757. [Google Scholar] [CrossRef]
- Morino, Y.; Ohara, T.; Watanabe, M.; Hayashi, S.; Nishizawa, M. Episode analysis of deposition of radiocesium from the Fukushima Daiichi nuclear power plant accident. Environ. Sci. Technol. 2013, 47, 2314–2322. [Google Scholar] [CrossRef] [PubMed]
- Kajino, M.; Sekiyama, T.T.; Igarshi, Y.; Katata, G.; Sawada, M.; Adachi, K.; Zaizen, Y.; Tsuruta, H.; Nakajima, T. Deposition and dispersion of radio-cesium released due to the Fukushima nuclear accident: Sensitivity to meteorological models and physical modules. J. Geophys. Res. Atmos. 2019, 124, 1823–1845. [Google Scholar] [CrossRef]
- Bilgiç, E.; Gündüz, O. Analysis of the impact of various vertical release patterns on the atmospheric dispersion and total deposition of 137Cs from Chernobyl Nuclear Power Plant accident. Environ. Sci. Pollut. Res. 2021, 28, 66864–66887. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; Mckeen, S.A.; Frost, G.; Skamarock, W.C. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Hu, X.; Li, D.; Huang, H.; Shen, S.; Bou-Zeid, E. Modeling and sensitivity analysis of transport and deposition of radionuclides from the Fukushima Dai-ichi accident. Atmos. Chem. Phys. 2014, 14, 11065–11092. [Google Scholar] [CrossRef]
- Fang, S.; Zhuang, S.H.; Goto, D.; Hu, X.Y.; Li, S.; Huang, S.X. Coupled modeling of in- and below-cloud wet deposition for atmospheric 137Cs transport following the Fukushima Daiichi accident using WRF-Chem: A self-consistent evaluation of 25 scheme combinations. Environ. Int. 2022, 158, 106882. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.H.; Fang, S.; Goto, D.; Dong, X.W.; Xu, Y.H.; Sheng, L. Model behavior regarding in- and below-cloud 137Cs wet scavenging following the Fukushima accident using 1-km-resolution meteorological field data. Sci. Total Environ. 2023, 872, 162165. [Google Scholar] [CrossRef] [PubMed]
- Povinec, P.P.; Gera, M.; Holý, K.; Hirose, K.; Lujaniené, G.; Nakano, M.; Plastino, W.; Sýkora, I.; Bartok, J.; Gažák, M. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean. Appl. Radiat. Isot. 2013, 81, 383–392. [Google Scholar] [CrossRef]
- Fei, J.F.; Wang, P.F.; Cheng, X.P.; Huang, X.G.; Wang, Y.B. A regional simulation study on dispersion of nuclear pollution from the damaged Fukushima Nuclear Power Plant. Sci. China Earth Sci. 2014, 57, 1513–1524. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, T.J.; Wang, T.T.; Xie, M.; Zhao, H. Numerical modeling of a continuous photochemical pollution episode in Hong Kong using WRF-Chem. Atmos. Environ. 2008, 38, 8717–8727. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Yang, K.; Zhou, D.G.; Qin, J.; Guo, X.F. Improving the Noah Land Surface Model in Arid Regions with an Appropriate Parameterization of the Thermal Roughness Length. J. Hydrometeorol. 2010, 11, 995–1006. [Google Scholar] [CrossRef]
- Janjic, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 5. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef]
- Baklanov, A.A.; Sørensen, J.H. Parameterisation of radionuclide deposition in atmospheric long-range transport modelling. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 787–799. [Google Scholar] [CrossRef]
Physicochemical Scheme | Option |
---|---|
Microphysical scheme | Lin microphysics scheme [42] |
Longwave radiation scheme | Rapid radiative transfer model [43] |
Shortwave radiation scheme | Dudhia scheme [44] |
Boundary layer scheme | Mellor–Yamada–Janjic scheme [46] |
Land surface process | Noah land surface model [45] |
Cumulus scheme | Grell 3-D scheme [47,48] |
Symbol | Meaning | Unit |
---|---|---|
the air concentration of radionuclides | Bq·m−3 | |
the gradient of the air concentration of radionuclides | ||
the dispersion of the air concentration of radionuclides | ||
the wet scavenging rate of radionuclides | s−1 | |
the radioactive decay rate | s−1 | |
the point source of radionuclides | ||
the turbulent diffusion coefficient | ||
the air concentration of 137Cs | μg·kg−1 | |
the molar mass of 137Cs | g·mol−1 | |
Avogadro’s constant | mol−1 | |
the density of air | kg·m−3 | |
the surface dry deposition | Bq·m−2 | |
the deposition duration | ||
the dry deposition rate | m·s−1 | |
the surface wet deposition | Bq·m−2 | |
the height of the area | ||
the precipitation rate | mm·h−1 | |
a | constant | 8 × 10−5 |
b | constant | 0.8 |
Experiment Name | Experiment Design |
---|---|
Control | No dry and wet deposition |
EX_Dep | Dry and wet deposition |
Tokyo | Chiba | Maebashi | Yamagata | ||
---|---|---|---|---|---|
BIAS | Wind speed | 0.55 | 0.41 | 0.58 | 1.37 |
Wind direction | 6.27 | 7.08 | 9.1 | −7.17 | |
RMSE | Wind speed | 1.57 | 1.54 | 1.79 | 1.90 |
Wind direction | 62.86 | 44.84 | 74.27 | 72.60 |
Station | Experiment Name | CORR | PBIAS | PRMSE | FAC5 | FAC10 |
---|---|---|---|---|---|---|
Tokyo | Control | 0.75 | 79% | 162% | 0.54 | 0.54 |
EX_Dep | 0.81 | 31% | 89% | 0.58 | 0.63 | |
Chiba | Control | 0.81 | 42% | 102% | 0.50 | 0.50 |
EX_Dep | 0.84 | 13% | 77% | 0.52 | 0.58 | |
Maebashi | Control | 0.78 | 112% | 184% | 0.75 | 0.83 |
EX_Dep | 0.82 | 61% | 114% | 0.75 | 0.88 | |
Naraha | Control | 0.85 | 87% | 137% | 0.46 | 0.63 |
EX_Dep | 0.88 | 43% | 71% | 0.5 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Q.; Zang, Z.; Ma, X.; Fang, S.; Hu, Y.; Wang, Y.; Zhuang, S.; Wang, L. The Design of a Parameterization Scheme for 137Cs Based on the WRF-Chem Model and Its Application in Simulating the Fukushima Nuclear Accident. Atmosphere 2024, 15, 646. https://doi.org/10.3390/atmos15060646
Long Q, Zang Z, Ma X, Fang S, Hu Y, Wang Y, Zhuang S, Wang L. The Design of a Parameterization Scheme for 137Cs Based on the WRF-Chem Model and Its Application in Simulating the Fukushima Nuclear Accident. Atmosphere. 2024; 15(6):646. https://doi.org/10.3390/atmos15060646
Chicago/Turabian StyleLong, Qun, Zengliang Zang, Xiaoyan Ma, Sheng Fang, Yiwen Hu, Yijie Wang, Shuhan Zhuang, and Liang Wang. 2024. "The Design of a Parameterization Scheme for 137Cs Based on the WRF-Chem Model and Its Application in Simulating the Fukushima Nuclear Accident" Atmosphere 15, no. 6: 646. https://doi.org/10.3390/atmos15060646
APA StyleLong, Q., Zang, Z., Ma, X., Fang, S., Hu, Y., Wang, Y., Zhuang, S., & Wang, L. (2024). The Design of a Parameterization Scheme for 137Cs Based on the WRF-Chem Model and Its Application in Simulating the Fukushima Nuclear Accident. Atmosphere, 15(6), 646. https://doi.org/10.3390/atmos15060646