Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurement of Socioeconomic Variables
2.2. Calculation of Normalized Difference Vegetation Index (NDVI) and PM2.5
2.3. Measurement of Age-Standardized Mortality Rate (ASMR) for CBD
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donkor, E.S. Stroke in the21stCentury: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018, 3538165. [Google Scholar] [CrossRef]
- Hsieh, C.-Y.; Wu, D.P.; Sung, S.-F. Registry-based stroke research in Taiwan: Past and future. Epidemiol. Health 2018, 40, e2018004. [Google Scholar] [CrossRef] [PubMed]
- Paul, L.A.; Hystad, P.; Burnett, R.T.; Kwong, J.C.; Crouse, D.L.; van Donkelaar, A.; Tu, K.; Lavigne, E.; Copes, R.; Martin, R.V.; et al. Urban green space and the risks of dementia and stroke. Environ. Res. 2020, 186, 109520. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.H.; Sørensen, M.; Hvidtfeldt, U.A.; Ketzel, M.; Christensen, J.H.; Brandt, J.; Frohn, L.M.; Massling, A.; Khan, J.; Münzel, T.; et al. Concomitant exposure to air pollution, green space and noise, and risk of myocardial infarction: A cohort study from Denmark. Eur. J. Prev. Cardiol. 2024, 31, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Baljepally, V.S.; Metheny, W. Rural-urban disparities in baseline health factors and procedure outcomes. J. Natl. Med. Assoc. 2022, 114, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Landier, W.; Paskett, E.D.; Peters, K.B.; Merrill, J.K.; Phillips, J.; Osarogiagbon, R.U. Rural–Urban Disparities in Cancer Outcomes: Opportunities for Future Research. JNCI J. Natl. Cancer Inst. 2022, 114, 940–952. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Wu, T.Y. Characteristics of urbanization level in Taiwan districts. Geogr. Res. 1986, 12, 287–323. [Google Scholar]
- Wu, C.-D.; Chen, Y.-C.; Pan, W.-C.; Zeng, Y.-T.; Chen, M.-J.; Guo, Y.L.; Lung, S.-C.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.-Y.; Lee, H.-Y.; Chen, Y.-C.; Zeng, Y.-T.; Chern, Y.-R.; Chen, N.-T.; Lung, S.-C.C.; Su, H.-J.; Wu, C.-D. Using a land use regression model with machine learning to estimate ground level PM2.5. Environ. Pollut. 2021, 277, 116846. [Google Scholar] [CrossRef]
- Chen, P. Lessons from Taiwan’s Economic Development. Orbis 2016, 60, 515–530. [Google Scholar] [CrossRef]
- Tai, S.-Y.; He, J.-S.; Kuo, C.-T.; Kawachi, I. Urban–rural disparities in the incidence of diabetes-related complications in Taiwan: A propensity score matching analysis. J. Clin. Med. 2020, 9, 3012. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hua, X.; Ren, X.; Ouyang, M.; Chen, C.; Li, Y.; Yin, X.; Song, P.; Chen, X.; Wu, S.; et al. Increasing burden of stroke in China: A systematic review and meta-analysis of prevalence, incidence, mortality, and case fatality. Int. J. Stroke 2022, 18, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Kapral, M.K.; Austin, P.C.; Jeyakumar, G.; Hall, R.; Chu, A.; Khan, A.M.; Jin, A.Y.; Martin, C.; Manuel, D.; Silver, F.L.; et al. Rural-urban differences in stroke risk factors, incidence, and mortality in people with and without prior stroke. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e004973. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.R.; Chang, H.T.; Lin, M.H.; Chen, T.J.; Chou, L.F.; Hwang, S.J. Rural-urban disparities in family physician practice patterns: A nationwide survey in Taiwan. Int. J. Health Plan. Manag. 2019, 34, e464–e473. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M.G.; Adelstein, A.M.; Robinson, N.; Rose, G.A. Changing social-class distribution of heart disease. BMJ 1978, 2, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, P.A.C.; Luhar, S.; Williamson, E.; Barreto, M.L.; Kinra, S. Socioeconomic position and cardiovascular mortality in 63 million adults from Brazil. Heart 2021, 107, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-K.; Huang, Z.-S.; Ng, S.-K.; Chan, K.-W.A.; Wang, Y.-S.; Liu, H.-W.; Lee, J.-J. Impact of alcohol consumption and cigarette smoking on stroke among the elderly in Taiwan. Stroke 1995, 26, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.-I.; Chiou, H.-Y. Stroke: Morbidity, Risk Factors, and Care in Taiwan. J. Stroke 2014, 16, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-S.; Chiang, T.-L.; Lee, T.-K. Stroke Prevalence in Taiwan. Stroke 1997, 28, 1579–1584. [Google Scholar] [CrossRef]
- Mullachery, P.H.; Bilal, U. Social cross-over in cardiovascular disease: Context matters. Heart 2021, 107, 778–780. [Google Scholar] [CrossRef]
- Wilker, E.H.; Wu, C.-D.; McNeely, E.; Mostofsky, E.; Spengler, J.; Wellenius, G.A.; Mittleman, M.A. Green space and mortality following ischemic stroke. Environ. Res. 2014, 133, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-X.; Ma, X.-L.; Huang, W.-Z.; Luo, Y.-N.; He, C.-J.; Zhong, X.-M.; Dadvand, P.; Browning, M.H.E.M.; Li, L.; Zou, X.-G.; et al. Green space and cardiovascular disease: A systematic review with meta-analysis. Environ. Pollut. 2022, 301, 118990. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-Y.; Zhao, T.; Browning, M.H.; Heinrich, J.; Dharmage, S.C.; Jalaludin, B.; Knibbs, L.D.; Liu, X.-X.; Luo, Y.-N.; James, P.; et al. Greenspace and human health: An umbrella review. Innovation 2021, 2, 100164. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Choi, S.; Kim, K.; Kim, S.M.; Park, S.M. Association between urban green space and the risk of cardiovascular disease: A longitudinal study in seven Korean metropolitan areas. Environ. Int. 2019, 125, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Richardson, E.; Pearce, J.; Mitchell, R.; Day, P.; Kingham, S. The association between green space and cause-specific mortality in urban New Zealand: An ecological analysis of green space utility. BMC Public Health 2010, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Gullón, P.; Fontán-Vela, M.; Díez, J.; Nieuwenhuijsen, M.; Rojas-Rueda, D.; Escobar, F.; Franco, M. Who benefits from green spaces? Surrounding greenness and incidence of cardiovascular disease in a population-based electronic medical records cohort in Madrid. Int. J. Hygiene Environ. Health 2023, 252, 114221. [Google Scholar] [CrossRef]
- Nguyen, P.-Y.; Astell-Burt, T.; Rahimi-Ardabili, H.; Feng, X. Green Space Quality and Health: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 11028. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-Y.; Hu, L.-W.; Jalaludin, B.; Knibbs, L.D.; Markevych, I.; Heinrich, J.; Bloom, M.S.; Morawska, L.; Lin, S.; Jalava, P.; et al. Association Between residential greenness, cardiometabolic disorders, and cardiovascular disease among adults in China. JAMA Netw. Open 2020, 3, e2017507. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, Q.; Meng, X.; Zhang, L.; Kan, H.; Chen, R. Association of residential greenness with incident chronic obstructive pulmonary disease: A prospective cohort study in the UK Biobank. Environ. Int. 2023, 171, 107654. [Google Scholar] [CrossRef]
Rural Area (n = 1730) | Urban Area (n = 1850) | p | |
---|---|---|---|
CBD mortality (1/100,000 people) | 39.52 ± 24.17 | 29.37 ± 8.26 | <0.001 |
NDVI | 0.61 ± 0.14 | 0.46 ± 0.15 | <0.001 |
Low income (%) | 3.00 ± 2.68 | 1.31 ± −0.71 | <0.001 |
Education (%) | 13.32 ± 3.83 | 24.31 ± 7.57 | <0.001 |
Tax payment (NTD 10,000) | 506.4 ± 71.5 | 560.8 ± 102.4 | <0.001 |
2011 | 2014 | 2017 | 2020 | p Trends | |
---|---|---|---|---|---|
Rural areas (n = 1730) | |||||
CBD mortality | 41.34 ± 20.40 | 41.93 ± 25.97 | 36.72 ± 22.09 | 36.46 ± 19.66 (−11.8%) * | <0.001 |
NDVI | 0.590 ± 0.137 | 0.598 ± 0.132 | 0.620 ± 0.141 | 0.632 ± 0.141 (7.1%) | 0.020 |
PM2.5 concentration | 29.61 ± 8.35 | 27.33 ± 7.42 | 21.61 ± 6.72 | 13.80 ± 4.62 (−52.0%) * | <0.001 |
Low income % | 2.41 ± 2.73 | 2.44 ± 2.62 | 2.21 ± 2.15 | 2.07 ± 1.89 (−14.1%) | 0.327 |
Education % | 14.87 ± 5.87 | 14.80 ± 5.58 | 17.19 ± 6.11 | 19.55 ± 6.62 (31.5%) | <0.001 |
Tax payment (10,000 NTD) | 51.64 ± 6.23 | 55.63 ± 5.88 | 57.63 ± 5.95 | 40.07 ± 5.81 (−22.4%) | <0.001 |
Urban areas (n = 1850) | |||||
CBD mortality | 32.51 ± 8.49 | 31.69 ± 9.00 | 28.84 ± 8.10 | 26.27 ± 7.72 (−19.2%) * | <0.001 |
NDVI | 0.440 ± 0.143 | 0.445 ± 0.144 | 0.456 ± 0.145 | 0.472 ± 0.150 (7.3%) | 0.996 |
PM2.5 concentration | 33.02 ± 8.34 | 30.27 ± 6.67 | 23.99 ± 6.03 | 15.31 ± 4.11 (−53.6%) * | <0.001 |
Low income % | 1.56 ± 1.28 | 2.04 ± 1.71 | 1.81 ± 1.55 | 1.67 ± 1.52 (7.05%) | 0.042 |
Education % | 19.88 ± 7.14 | 20.96 ± 9.0.8 | 23.75 ± 9.58 | 26.20 ± 9.29 (31.8%) | <0.001 |
Tax payment (10,000 NTD) | 54.30 ± 7.75 | 57.79 ± 7.56 | 59.68 ± 7.01 | 41.64 ± 7.23 (−23.3%) | <0.001 |
Pooled OLS | REM | Pooled OLS | REM | Pooled OLS | REM | Pooled OLS | REM | |
---|---|---|---|---|---|---|---|---|
Rural areas (n = 1730) | ||||||||
Low income (%) | 4.10 ** | 3.00 ** | 2.96 ** | 2.24 * | 3.30 ** | 2.82 ** | 3.36 ** | 2.95 ** |
Education (%) | −1.60 ** | −1.39 ** | −1.25 ** | −1.27 ** | −1.12 ** | −0.90 ** | ||
NDVI | 17.4 ** | 19.5 ** | 18.6 ** | 24.2 ** | ||||
Tax payments | −0.003 | −0.013 * | ||||||
Time | −0.34 ** | −0.58 ** | ||||||
R2 | 0.207 | 0.207 | 0.255 | 0.255 | 0.290 | 0.289 | 0.291 | 0.288 |
Rho | 0.334 | 0.301 | 0.289 | 0.286 | ||||
Urban areas (n = 1850) | ||||||||
Low income (%) | 0.41 | 0.43 | −0.05 | −0.08 | 0.30 | 0.16 | 0.31 | 0.18 |
Education (%) | −0.46 ** | −0.44 ** | −0.41 ** | −0.42 ** | −0.39 ** | −0.27 ** | ||
NDVI | 8.1 ** | 6.2 * | 9.0 ** | 7.0 ** | ||||
Tax payments | 0.003 | −0.002 | ||||||
Time | −0.32 ** | −0.48 ** | ||||||
R2 | 0.001 | 0.001 | 0.176 | 0.176 | 0.194 | 0.193 | 0.211 | 0.206 |
Rho | 0.358 | 0.256 | 0.241 | 0.227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-Y.; Lin, P.-Y.; Wu, C.-D.; Liang, W.-M.; Kuo, H.-W. Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality. Atmosphere 2024, 15, 642. https://doi.org/10.3390/atmos15060642
Lin W-Y, Lin P-Y, Wu C-D, Liang W-M, Kuo H-W. Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality. Atmosphere. 2024; 15(6):642. https://doi.org/10.3390/atmos15060642
Chicago/Turabian StyleLin, Wen-Yu, Ping-Yi Lin, Chih-Da Wu, Wen-Miin Liang, and Hsien-Wen Kuo. 2024. "Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality" Atmosphere 15, no. 6: 642. https://doi.org/10.3390/atmos15060642
APA StyleLin, W.-Y., Lin, P.-Y., Wu, C.-D., Liang, W.-M., & Kuo, H.-W. (2024). Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality. Atmosphere, 15(6), 642. https://doi.org/10.3390/atmos15060642