Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Socioeconomic Variables
2.2. Calculation of Normalized Difference Vegetation Index (NDVI) and PM2.5
2.3. Measurement of Age-Standardized Mortality Rate (ASMR) for CBD
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donkor, E.S. Stroke in the21stCentury: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018, 3538165. [Google Scholar] [CrossRef]
- Hsieh, C.-Y.; Wu, D.P.; Sung, S.-F. Registry-based stroke research in Taiwan: Past and future. Epidemiol. Health 2018, 40, e2018004. [Google Scholar] [CrossRef] [PubMed]
- Paul, L.A.; Hystad, P.; Burnett, R.T.; Kwong, J.C.; Crouse, D.L.; van Donkelaar, A.; Tu, K.; Lavigne, E.; Copes, R.; Martin, R.V.; et al. Urban green space and the risks of dementia and stroke. Environ. Res. 2020, 186, 109520. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.H.; Sørensen, M.; Hvidtfeldt, U.A.; Ketzel, M.; Christensen, J.H.; Brandt, J.; Frohn, L.M.; Massling, A.; Khan, J.; Münzel, T.; et al. Concomitant exposure to air pollution, green space and noise, and risk of myocardial infarction: A cohort study from Denmark. Eur. J. Prev. Cardiol. 2024, 31, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Baljepally, V.S.; Metheny, W. Rural-urban disparities in baseline health factors and procedure outcomes. J. Natl. Med. Assoc. 2022, 114, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Landier, W.; Paskett, E.D.; Peters, K.B.; Merrill, J.K.; Phillips, J.; Osarogiagbon, R.U. Rural–Urban Disparities in Cancer Outcomes: Opportunities for Future Research. JNCI J. Natl. Cancer Inst. 2022, 114, 940–952. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Wu, T.Y. Characteristics of urbanization level in Taiwan districts. Geogr. Res. 1986, 12, 287–323. [Google Scholar]
- Wu, C.-D.; Chen, Y.-C.; Pan, W.-C.; Zeng, Y.-T.; Chen, M.-J.; Guo, Y.L.; Lung, S.-C.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.-Y.; Lee, H.-Y.; Chen, Y.-C.; Zeng, Y.-T.; Chern, Y.-R.; Chen, N.-T.; Lung, S.-C.C.; Su, H.-J.; Wu, C.-D. Using a land use regression model with machine learning to estimate ground level PM2.5. Environ. Pollut. 2021, 277, 116846. [Google Scholar] [CrossRef]
- Chen, P. Lessons from Taiwan’s Economic Development. Orbis 2016, 60, 515–530. [Google Scholar] [CrossRef]
- Tai, S.-Y.; He, J.-S.; Kuo, C.-T.; Kawachi, I. Urban–rural disparities in the incidence of diabetes-related complications in Taiwan: A propensity score matching analysis. J. Clin. Med. 2020, 9, 3012. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hua, X.; Ren, X.; Ouyang, M.; Chen, C.; Li, Y.; Yin, X.; Song, P.; Chen, X.; Wu, S.; et al. Increasing burden of stroke in China: A systematic review and meta-analysis of prevalence, incidence, mortality, and case fatality. Int. J. Stroke 2022, 18, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Kapral, M.K.; Austin, P.C.; Jeyakumar, G.; Hall, R.; Chu, A.; Khan, A.M.; Jin, A.Y.; Martin, C.; Manuel, D.; Silver, F.L.; et al. Rural-urban differences in stroke risk factors, incidence, and mortality in people with and without prior stroke. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e004973. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.R.; Chang, H.T.; Lin, M.H.; Chen, T.J.; Chou, L.F.; Hwang, S.J. Rural-urban disparities in family physician practice patterns: A nationwide survey in Taiwan. Int. J. Health Plan. Manag. 2019, 34, e464–e473. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M.G.; Adelstein, A.M.; Robinson, N.; Rose, G.A. Changing social-class distribution of heart disease. BMJ 1978, 2, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, P.A.C.; Luhar, S.; Williamson, E.; Barreto, M.L.; Kinra, S. Socioeconomic position and cardiovascular mortality in 63 million adults from Brazil. Heart 2021, 107, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-K.; Huang, Z.-S.; Ng, S.-K.; Chan, K.-W.A.; Wang, Y.-S.; Liu, H.-W.; Lee, J.-J. Impact of alcohol consumption and cigarette smoking on stroke among the elderly in Taiwan. Stroke 1995, 26, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.-I.; Chiou, H.-Y. Stroke: Morbidity, Risk Factors, and Care in Taiwan. J. Stroke 2014, 16, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-S.; Chiang, T.-L.; Lee, T.-K. Stroke Prevalence in Taiwan. Stroke 1997, 28, 1579–1584. [Google Scholar] [CrossRef]
- Mullachery, P.H.; Bilal, U. Social cross-over in cardiovascular disease: Context matters. Heart 2021, 107, 778–780. [Google Scholar] [CrossRef]
- Wilker, E.H.; Wu, C.-D.; McNeely, E.; Mostofsky, E.; Spengler, J.; Wellenius, G.A.; Mittleman, M.A. Green space and mortality following ischemic stroke. Environ. Res. 2014, 133, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-X.; Ma, X.-L.; Huang, W.-Z.; Luo, Y.-N.; He, C.-J.; Zhong, X.-M.; Dadvand, P.; Browning, M.H.E.M.; Li, L.; Zou, X.-G.; et al. Green space and cardiovascular disease: A systematic review with meta-analysis. Environ. Pollut. 2022, 301, 118990. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-Y.; Zhao, T.; Browning, M.H.; Heinrich, J.; Dharmage, S.C.; Jalaludin, B.; Knibbs, L.D.; Liu, X.-X.; Luo, Y.-N.; James, P.; et al. Greenspace and human health: An umbrella review. Innovation 2021, 2, 100164. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Choi, S.; Kim, K.; Kim, S.M.; Park, S.M. Association between urban green space and the risk of cardiovascular disease: A longitudinal study in seven Korean metropolitan areas. Environ. Int. 2019, 125, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Richardson, E.; Pearce, J.; Mitchell, R.; Day, P.; Kingham, S. The association between green space and cause-specific mortality in urban New Zealand: An ecological analysis of green space utility. BMC Public Health 2010, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Gullón, P.; Fontán-Vela, M.; Díez, J.; Nieuwenhuijsen, M.; Rojas-Rueda, D.; Escobar, F.; Franco, M. Who benefits from green spaces? Surrounding greenness and incidence of cardiovascular disease in a population-based electronic medical records cohort in Madrid. Int. J. Hygiene Environ. Health 2023, 252, 114221. [Google Scholar] [CrossRef]
- Nguyen, P.-Y.; Astell-Burt, T.; Rahimi-Ardabili, H.; Feng, X. Green Space Quality and Health: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 11028. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-Y.; Hu, L.-W.; Jalaludin, B.; Knibbs, L.D.; Markevych, I.; Heinrich, J.; Bloom, M.S.; Morawska, L.; Lin, S.; Jalava, P.; et al. Association Between residential greenness, cardiometabolic disorders, and cardiovascular disease among adults in China. JAMA Netw. Open 2020, 3, e2017507. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, Q.; Meng, X.; Zhang, L.; Kan, H.; Chen, R. Association of residential greenness with incident chronic obstructive pulmonary disease: A prospective cohort study in the UK Biobank. Environ. Int. 2023, 171, 107654. [Google Scholar] [CrossRef]
Rural Area (n = 1730) | Urban Area (n = 1850) | p | |
---|---|---|---|
CBD mortality (1/100,000 people) | 39.52 ± 24.17 | 29.37 ± 8.26 | <0.001 |
NDVI | 0.61 ± 0.14 | 0.46 ± 0.15 | <0.001 |
Low income (%) | 3.00 ± 2.68 | 1.31 ± −0.71 | <0.001 |
Education (%) | 13.32 ± 3.83 | 24.31 ± 7.57 | <0.001 |
Tax payment (NTD 10,000) | 506.4 ± 71.5 | 560.8 ± 102.4 | <0.001 |
2011 | 2014 | 2017 | 2020 | p Trends | |
---|---|---|---|---|---|
Rural areas (n = 1730) | |||||
CBD mortality | 41.34 ± 20.40 | 41.93 ± 25.97 | 36.72 ± 22.09 | 36.46 ± 19.66 (−11.8%) * | <0.001 |
NDVI | 0.590 ± 0.137 | 0.598 ± 0.132 | 0.620 ± 0.141 | 0.632 ± 0.141 (7.1%) | 0.020 |
PM2.5 concentration | 29.61 ± 8.35 | 27.33 ± 7.42 | 21.61 ± 6.72 | 13.80 ± 4.62 (−52.0%) * | <0.001 |
Low income % | 2.41 ± 2.73 | 2.44 ± 2.62 | 2.21 ± 2.15 | 2.07 ± 1.89 (−14.1%) | 0.327 |
Education % | 14.87 ± 5.87 | 14.80 ± 5.58 | 17.19 ± 6.11 | 19.55 ± 6.62 (31.5%) | <0.001 |
Tax payment (10,000 NTD) | 51.64 ± 6.23 | 55.63 ± 5.88 | 57.63 ± 5.95 | 40.07 ± 5.81 (−22.4%) | <0.001 |
Urban areas (n = 1850) | |||||
CBD mortality | 32.51 ± 8.49 | 31.69 ± 9.00 | 28.84 ± 8.10 | 26.27 ± 7.72 (−19.2%) * | <0.001 |
NDVI | 0.440 ± 0.143 | 0.445 ± 0.144 | 0.456 ± 0.145 | 0.472 ± 0.150 (7.3%) | 0.996 |
PM2.5 concentration | 33.02 ± 8.34 | 30.27 ± 6.67 | 23.99 ± 6.03 | 15.31 ± 4.11 (−53.6%) * | <0.001 |
Low income % | 1.56 ± 1.28 | 2.04 ± 1.71 | 1.81 ± 1.55 | 1.67 ± 1.52 (7.05%) | 0.042 |
Education % | 19.88 ± 7.14 | 20.96 ± 9.0.8 | 23.75 ± 9.58 | 26.20 ± 9.29 (31.8%) | <0.001 |
Tax payment (10,000 NTD) | 54.30 ± 7.75 | 57.79 ± 7.56 | 59.68 ± 7.01 | 41.64 ± 7.23 (−23.3%) | <0.001 |
Pooled OLS | REM | Pooled OLS | REM | Pooled OLS | REM | Pooled OLS | REM | |
---|---|---|---|---|---|---|---|---|
Rural areas (n = 1730) | ||||||||
Low income (%) | 4.10 ** | 3.00 ** | 2.96 ** | 2.24 * | 3.30 ** | 2.82 ** | 3.36 ** | 2.95 ** |
Education (%) | −1.60 ** | −1.39 ** | −1.25 ** | −1.27 ** | −1.12 ** | −0.90 ** | ||
NDVI | 17.4 ** | 19.5 ** | 18.6 ** | 24.2 ** | ||||
Tax payments | −0.003 | −0.013 * | ||||||
Time | −0.34 ** | −0.58 ** | ||||||
R2 | 0.207 | 0.207 | 0.255 | 0.255 | 0.290 | 0.289 | 0.291 | 0.288 |
Rho | 0.334 | 0.301 | 0.289 | 0.286 | ||||
Urban areas (n = 1850) | ||||||||
Low income (%) | 0.41 | 0.43 | −0.05 | −0.08 | 0.30 | 0.16 | 0.31 | 0.18 |
Education (%) | −0.46 ** | −0.44 ** | −0.41 ** | −0.42 ** | −0.39 ** | −0.27 ** | ||
NDVI | 8.1 ** | 6.2 * | 9.0 ** | 7.0 ** | ||||
Tax payments | 0.003 | −0.002 | ||||||
Time | −0.32 ** | −0.48 ** | ||||||
R2 | 0.001 | 0.001 | 0.176 | 0.176 | 0.194 | 0.193 | 0.211 | 0.206 |
Rho | 0.358 | 0.256 | 0.241 | 0.227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-Y.; Lin, P.-Y.; Wu, C.-D.; Liang, W.-M.; Kuo, H.-W. Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality. Atmosphere 2024, 15, 642. https://doi.org/10.3390/atmos15060642
Lin W-Y, Lin P-Y, Wu C-D, Liang W-M, Kuo H-W. Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality. Atmosphere. 2024; 15(6):642. https://doi.org/10.3390/atmos15060642
Chicago/Turabian StyleLin, Wen-Yu, Ping-Yi Lin, Chih-Da Wu, Wen-Miin Liang, and Hsien-Wen Kuo. 2024. "Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality" Atmosphere 15, no. 6: 642. https://doi.org/10.3390/atmos15060642
APA StyleLin, W. -Y., Lin, P. -Y., Wu, C. -D., Liang, W. -M., & Kuo, H. -W. (2024). Urban–Rural Disparity in Socioeconomic Status, Green Space and Cerebrovascular Disease Mortality. Atmosphere, 15(6), 642. https://doi.org/10.3390/atmos15060642