Spatial Differences and Influencing Factors of Carbon Emission Intensity in China’s Urban Agglomerations toward the Carbon Neutrality Target
Abstract
:1. Introduction
2. Methodology and Data
2.1. CEI
2.2. ESDA
2.3. Geodetector
2.4. Data Source
3. Results
3.1. Analysis of Time Evolution of CEI in China’s UAs
3.2. Spatial Difference of CEI in China’s UAs
3.3. Influencing Factors of CEI in China’s UAs
4. Conclusions and Policy Implications
4.1. Conclusions
4.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Association, W. State of the Global Climate 2021; CID: 20.500.12592/khwc9c; World Meteorological Association: Geneva, Switzerland, 2022; Available online: https://policycommons.net/artifacts/2434625/1290_statement_2021_en/3456217/ (accessed on 17 July 2023).
- Azam, A.; Rafiq, M.; Shafique, M.; Zhang, H.; Yuan, J. Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis. Energy 2021, 219, 119592. [Google Scholar] [CrossRef]
- Chen, H.; Qi, S.; Tan, X. Decomposition and prediction of China’s carbon emission intensity towards carbon neutrality: From perspectives of national, regional and sectoral level. Sci. Total Environ. 2022, 825, 153839. [Google Scholar] [CrossRef] [PubMed]
- Andiappan, V.; Foo, D.C.Y.; Tan, R.R. Process-to-Policy (P2Pol): Using carbon emission pinch analysis (CEPA) tools for policy-making in the energy sector. Clean. Technol. Environ. 2019, 21, 1383–1388. [Google Scholar] [CrossRef]
- Li, F.; Wu, F.; Chen, L. Harmonious allocation of carbon emission permits based on dynamic multiattribute decision-making method. J. Clean. Prod. 2020, 248, 119184. [Google Scholar] [CrossRef]
- Dong, F.; Li, X.; Long, R.; Liu, X. Regional carbon emission performance in China according to a stochastic frontier model. Renew. Sustain. Energy Rev. 2013, 28, 525–530. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Palmer, P.I.; Liu, Y.; Fang, S.; Bösch, H.; O Dell, C.W.; Tang, X.; Yang, D.; Liu, L.; et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 2020, 586, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Ji, Q. Regional differences and driving factors analysis of carbon emission intensity from transport sector in China. Energy 2021, 224, 120178. [Google Scholar] [CrossRef]
- Fan, W.; Li, L.; Wang, F.; Li, D. Driving factors of CO2 emission inequality in China: The role of government expenditure. China Econ. Rev. 2020, 64, 101545. [Google Scholar] [CrossRef]
- Zhang, Y.; Da, Y. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Z.; Zhang, H. Does industrial agglomeration promote the increase of energy efficiency in China? J. Clean. Prod. 2017, 164, 30–37. [Google Scholar] [CrossRef]
- Liu, K.; Xue, Y.; Chen, Z.; Miao, Y.; Shi, J. Economic spatial structure of China’s urban agglomerations: Regional differences, distribution dynamics, and convergence. Sustain. Cities Soc. 2022, 87, 104253. [Google Scholar] [CrossRef]
- Wang, F.; Fan, W.; Liu, J.; Wang, G.; Chai, W. The effect of urbanization and spatial agglomeration on carbon emissions in urban agglomeration. Environ. Sci. Pollut. Res. 2020, 27, 24329–24341. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xue, M.; Peng, M.; Wang, C. Impact of spatial structure of urban agglomeration on carbon emissions: An analysis of the Shandong Peninsula, China. Technol. Forecast. Soc. 2020, 161, 120313. [Google Scholar] [CrossRef]
- Liu, K.; Wu, Y.; Wang, X.; Wang, C. Impact of spatial structure of urban agglomerations on air pollution in China. China Popul. Resour. Environ. 2020, 30, 28–35. [Google Scholar]
- Xu, W.; Wang, Y.; Sun, S.; Yao, L.; Li, T.; Fu, X. Spatiotemporal heterogeneity of PM2.5 and its driving difference comparison associated with urbanization in China’s multiple urban agglomerations. Environ. Sci. Pollut. Res. 2022, 29, 29689–29703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, M.; Zhang, G.; Chen, J.; Zhang, R.; Cao, Y. Spatiotemporal characteristics and determinants of internal migrant population distribution in China from the perspective of urban agglomerations. PLoS ONE 2021, 16, e246960. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, S.; Li, M.; Cheng, Y.; Wang, C. Study of the Impact of Industrial Restructuring on the Spatial and Temporal Evolution of Carbon Emission Intensity in Chinese Provinces—Analysis of Mediating Effects Based on Technological Innovation. Int. J. Environ. Res. Public Health 2022, 19, 13401. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Meng, Q.; Shi, J.; Liu, Y.; Sun, J.; Shen, W. Regional Differences and Convergence of Carbon Emissions Intensity in Cities along the Yellow River Basin in China. Land 2022, 11, 1042. [Google Scholar] [CrossRef]
- Yang, G.; Wang, F.; Deng, F.; Xiang, X. Impact of Digital Transformation on Enterprise Carbon Intensity: The Moderating Role of Digital Information Resources. Int. J. Environ. Res. Public Health 2023, 20, 2178. [Google Scholar] [CrossRef]
- Liu, X.; Jin, X.; Luo, X.; Zhou, Y. Multi-scale variations and impact factors of carbon emission intensity in China. Sci. Total Environ. 2023, 857, 159403. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Hu, F.; Wang, L.; Wang, K.; Ma, W.; Ruan, N.; Jiang, W. Spatio-Temporal Variation of Carbon Emission Intensity and Spatial Heterogeneity of Influencing Factors in the Yangtze River Delta. Atmosphere 2023, 14, 163. [Google Scholar] [CrossRef]
- Luo, G.; Baležentis, T.; Zeng, S. Per capita CO2 emission inequality of China’s urban and rural residential energy consumption: A Kaya-Theil decomposition. J. Environ. Manag. 2023, 331, 117265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, D. The Spatial-Temporal Evolution of China’s Carbon Emission Intensity and the Analysis of Regional Emission Reduction Potential under the Carbon Emissions Trading Mechanism. Sustainability 2022, 14, 7442. [Google Scholar] [CrossRef]
- Gao, Z.; Li, S.; Cao, X.; Li, Y. Carbon Emission Intensity Characteristics and Spatial Spillover Effects in Counties in Northeast China: Based on a Spatial Econometric Model. Land 2022, 11, 753. [Google Scholar] [CrossRef]
- Ke, N.; Lu, X.; Kuang, B.; Zhang, X. Regional disparities and evolution trend of city-level carbon emission intensity in China. Sustain. Cities Soc. 2023, 88, 104288. [Google Scholar] [CrossRef]
- Fu, L.; Wang, Q. Spatial and Temporal Distribution and the Driving Factors of Carbon Emissions from Urban Production Energy Consumption. Int. J. Environ. Res. Public Health 2022, 19, 12441. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, Y.; Tian, J.; Cheng, F.; Song, P. Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China. Sustainability 2022, 14, 4052. [Google Scholar] [CrossRef]
- Zhao, X.; Burnett, J.W.; Fletcher, J.J. Spatial analysis of China province-level CO2 emission intensity. Renew. Sustain. Energy Rev. 2014, 33, 1–10. [Google Scholar] [CrossRef]
- Liu, Q.; Song, J.; Dai, T.; Shi, A.; Xu, J.; Wang, E. Spatio-temporal dynamic evolution of carbon emission intensity and the effectiveness of carbon emission reduction at county level based on nighttime light data. J. Clean. Prod. 2022, 362, 132301. [Google Scholar] [CrossRef]
- Mardani, A.; Streimikiene, D.; Cavallaro, F.; Loganathan, N.; Khoshnoudi, M. Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017. Sci Total Environ. 2019, 649, 31–49. [Google Scholar] [CrossRef]
- Qin, J.; Tao, H.; Cheng, C.; Brindha, K.; Zhan, M.; Ding, J.; Mu, G. Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China. Sustainability 2020, 12, 1089. [Google Scholar] [CrossRef]
- Han, X.; Cao, T.; Sun, T. Analysis on the variation rule and influencing factors of energy consumption carbon emission intensity in China’s urbanization construction. J. Clean. Prod. 2019, 238, 117958. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Li, S.; Zhang, H. Impact of Land Urbanization on Carbon Emissions in Urban Agglomerations of the Middle Reaches of the Yangtze River. Int. J. Environ. Res. Public Health 2021, 18, 1403. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhang, Y.; Bethel, B.J. An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt. Sustainability 2019, 11, 2362. [Google Scholar] [CrossRef]
- Tian, X.; Bai, F.; Jia, J.; Liu, Y.; Shi, F. Realizing low-carbon development in a developing and industrializing region: Impacts of industrial structure change on CO2 emissions in southwest China. J. Environ. Manag. 2019, 233, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, H.; Zikhali, P.; Lv, Y. Carbon Emissions in China: A Spatial Econometric Analysis at the Regional Level. Sustainability 2014, 6, 6005–6023. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X. Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew. Sustain. Energy Rev. 2016, 58, 943–951. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 2018, 129, 187–201. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Liu, C.; Fang, Z.; Guo, J. Spatial Effects of Technological Progress and Financial Support on China’s Provincial Carbon Emissions. Int. J. Environ. Res. Public Health 2019, 16, 1743. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, X.; Zhang, H.; Liu, Y.; Yue, T.; Liu, G. Energy endowment, environmental regulation, and energy efficiency: Evidence from China. Technol. Forecast. Soc. 2022, 177, 121528. [Google Scholar] [CrossRef]
- Dong, Y.; Jin, G.; Deng, X. Dynamic interactive effects of urban land-use efficiency, industrial transformation, and carbon emissions. J. Clean. Prod. 2020, 270, 122547. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Li, L.; Huang, C. Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective. Appl. Energ. 2018, 211, 218–229. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, X.; Liu, K. Effects of human capital structural evolution on carbon emissions intensity in China: A dual perspective of spatial heterogeneity and nonlinear linkages. Renew. Sustain. Energy Rev. 2021, 135, 110258. [Google Scholar] [CrossRef]
- Xiao, B.; Niu, D.; Wu, H. Exploring the impact of determining factors behind CO2 emissions in China: A CGE appraisal. Sci. Total Environ. 2017, 581–582, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Liu, L.; Xu, X.; Zhao, Y.; Niu, J.; Zhang, Q. Carbon footprint and carbon emission intensity of grassland wind farms in Inner Mongolia. J. Clean. Prod. 2021, 313, 127878. [Google Scholar] [CrossRef]
- You, J.; Ding, G.; Zhang, L. Heterogeneous Dynamic Correlation Research among Industrial Structure Distortion, Two-Way FDI and Carbon Emission Intensity in China. Sustainability 2022, 14, 8988. [Google Scholar] [CrossRef]
- Zhou, Z. The Spatiotemporal Dynamics and Socioeconomic Factors of SO2 Emissions in China: A Dynamic Spatial Econometric Design. Atmosphere 2019, 10, 534. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Zhang, Z. Assessing urban atmospheric environmental efficiency and factors influencing it in China. Environ. Sci. Pollut. Res. 2022, 29, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, R.; Zang, P.; Huang, L.; Ma, S.; Wang, S. Spatiotemporal patterns of global carbon intensities and their driving forces. Sci. Total Environ. 2022, 818, 151690. [Google Scholar] [CrossRef]
- Dong, S.; Xue, Y.; Ren, G.; Liu, K. Urban Green Innovation Efficiency in China: Spatiotemporal Evolution and Influencing Factors. Land 2023, 12, 75. [Google Scholar] [CrossRef]
- Liu, K.; Xue, Y.; Chen, Z.; Miao, Y. The spatiotemporal evolution and influencing factors of urban green innovation in China. Sci. Total Environ. 2023, 857, 159426. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Du, H.; Zhang, X. Driving forces of carbon dioxide emissions in China’s cities: An empirical analysis based on the geodetector method. J. Clean. Prod. 2021, 287, 125169. [Google Scholar] [CrossRef]
- Ali, U.; Guo, Q.; Kartal, M.T.; Nurgazina, Z.; Khan, Z.A.; Sharif, A. The impact of renewable and non-renewable energy consumption on carbon emission intensity in China: Fresh evidence from novel dynamic ARDL simulations. J. Environ. Manag. 2022, 320, 115782. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yuan, W.; Zhang, B.; Wang, S. Does improvement of environmental efficiency matter in reducing carbon emission intensity? Fresh evidence from 283 prefecture-level cities in China. J. Clean. Prod. 2022, 373, 133878. [Google Scholar] [CrossRef]
- Wang, F.; Sun, X.; Reiner, D.M.; Wu, M. Changing trends of the elasticity of China’s carbon emission intensity to industry structure and energy efficiency. Energy Econ. 2020, 86, 104679. [Google Scholar] [CrossRef]
- Chen, H.; Meng, C.; Cao, Q. Measurement and Influencing Factors of Low Carbon Urban Land Use Efficiency—Based on Non-Radial Directional Distance Function. Land 2022, 11, 1052. [Google Scholar] [CrossRef]
- Liu, L.; Qu, J.; Maraseni, T.N.; Niu, Y.; Zeng, J.; Zhang, L.; Xu, L. Household CO2 Emissions: Current Status and Future Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 7077. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, H.; Liu, H.; Liao, C. Urban development sustainability, industrial structure adjustment, and land use efficiency in China. Sustain. Cities Soc. 2023, 89, 104338. [Google Scholar] [CrossRef]
- Xu, S.; He, Z.; Long, R.; Chen, H.; Han, H.; Zhang, W. Comparative analysis of the regional contributions to carbon emissions in China. J. Clean. Prod. 2016, 127, 406–417. [Google Scholar] [CrossRef]
- Lin, X.; Lin, X.; Zhang, J.; He, Q.; Yan, P. Simulation Analysis of Factors Affecting Energy Carbon Emissions in Fujian Province. Sustainability 2022, 14, 13757. [Google Scholar] [CrossRef]
- Quan, C.; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 2020, 734, 138473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Cao, F. Analysis of Economic Efficiency and Influencing Factors of Urban Construction Land in Beijing-Tianjin-Hebei under Carbon Emission Constraints. Land 2022, 11, 1926. [Google Scholar] [CrossRef]
- Tian, Y.; He, C.; Yang, L.; Yi, J.; Ke, B.; Mu, H.; Tu, P.; Ye, Z.; Hong, S. Spatiotemporal Dynamic Correlation Characteristics and Driving Factors of Major Air Pollutant Emissions in China. Atmosphere 2023, 14, 130. [Google Scholar] [CrossRef]
- Chang, J.; Sun, P.; Wei, G. Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration. Land 2022, 11, 1858. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, T.; Chen, L.; Li, L.; Wang, S.; Hu, S.; Yuan, L.; Wang, J.; Wen, M. Investigating the Impacts of Urbanization on PM2.5 Pollution in the Yangtze River Delta of China: A Spatial Panel Data Approach. Atmosphere 2020, 11, 1058. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, F.; Zhang, Y.; Zhang, X. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China. Appl. Energy 2012, 100, 277–284. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, R. Revisiting the environmental kuznets curve hypothesis in 208 counties: The roles of trade openness, human capital, renewable energy and natural resource rent. Environ. Res. 2023, 216, 114637. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, H. The Effect of FDI Agglomeration on Carbon Emission Intensity: Evidence from City-Level Data in China. Sustainability 2023, 15, 1716. [Google Scholar] [CrossRef]
- Liu, K.; Ren, G.; Dong, S.; Xue, Y. The synergy between pollution reduction and carbon reduction in Chinese cities and its influencing factors. Sustain. Cities Soc. 2024, 106, 105348. [Google Scholar] [CrossRef]
Variable Name | Unit | Sample Size | Mean | Standard Deviation | Maximum | Minimum |
---|---|---|---|---|---|---|
Carbon emissions | megaton | 2145 | 46.73 | 49.37 | 457.76 | 1.57 |
Gross domestic product (current price) | ten thousand yuan | 2145 | 29,684,259.81 | 40,739,222.32 | 381,560,000 | 807,964 |
The annual average population of the whole city | ten thousand people | 2145 | 496.56 | 352.57 | 3416 | 73.41 |
The annual average population of municipal districts | ten thousand people | 2145 | 194.42 | 247.59 | 2479 | 20.6 |
The proportion of secondary industry in the GDP | % | 2145 | 48.26 | 10.45 | 84.97 | 10.68 |
Science and technology expenditure level | ten thousand yuan | 2145 | 142,251.50 | 428,620.53 | 5,484,249 | 820 |
The average wage of on-the-job workers | yuan | 2145 | 48,901.08 | 24,731.37 | 173,205 | 4958 |
The actual amount of foreign capital used in that year | Ten thousand dollars | 660 | 118,614.06 | 236,058.73 | 2,113,444 | 0 |
Year | Moran’s I | Z | p Value |
---|---|---|---|
2007 | 0.0930 | 9.2803 | 0.001 |
2011 | 0.0782 | 7.8812 | 0.001 |
2015 | 0.0886 | 8.9131 | 0.001 |
2019 | 0.0761 | 7.6439 | 0.001 |
Year | Economics of Scale | Industrial Structure | Population Urbanization | Resident Income | Technical Progress | Opening Up to the Outside World |
---|---|---|---|---|---|---|
q 2007 | 0.123802 | 0.684343 | 0.639562 | 0.582011 | 0.582011 | 0.582011 |
p value | 0.2072293 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
q 2011 | 0.66013 | 0.667665 | 0.744613 | 0.66013 | 0.66013 | 0.66013 |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
q 2015 | 0.675737 | 0.678242 | 0.784676 | 0.711511 | 0.711511 | 0.711801 |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
q 2019 | 0.017122 | 0.648509 | 0.848253 | 0.680593 | 0.680593 | 0.680593 |
p value | 0.957402 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hui, X.; Liu, K. Spatial Differences and Influencing Factors of Carbon Emission Intensity in China’s Urban Agglomerations toward the Carbon Neutrality Target. Atmosphere 2024, 15, 641. https://doi.org/10.3390/atmos15060641
Wang Y, Hui X, Liu K. Spatial Differences and Influencing Factors of Carbon Emission Intensity in China’s Urban Agglomerations toward the Carbon Neutrality Target. Atmosphere. 2024; 15(6):641. https://doi.org/10.3390/atmos15060641
Chicago/Turabian StyleWang, Yilin, Xianke Hui, and Kai Liu. 2024. "Spatial Differences and Influencing Factors of Carbon Emission Intensity in China’s Urban Agglomerations toward the Carbon Neutrality Target" Atmosphere 15, no. 6: 641. https://doi.org/10.3390/atmos15060641
APA StyleWang, Y., Hui, X., & Liu, K. (2024). Spatial Differences and Influencing Factors of Carbon Emission Intensity in China’s Urban Agglomerations toward the Carbon Neutrality Target. Atmosphere, 15(6), 641. https://doi.org/10.3390/atmos15060641