Observation-Based Ozone Formation Rules by Gradient Boosting Decision Trees Model in Typical Chemical Industrial Parks
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Datasets
2.3. Pearson Correlation Coefficient
2.4. GBDT Model
2.4.1. Algorithm
- (1)
- The model was initialized with constants c to minimize the loss function as in Equation (2):
- (2)
- For the mth regression trees, m = 1, 2, …, M.
- (a)
- For the ith variable, i = 1, 2, …, N, the value of the negative gradient of the loss function was calculated based on the current model fm-1(x) according to Equation (3) and taken as the approximate value of the residual error.
- (b)
- Then, a regression tree was fitted to rmi to obtain the leaf node area Rmj of the jth leaf node in the mth tree, j = 1, 2, …, J.
- (c)
- For the jth leaf node, a linear search was used to estimate the values of the leaf node areas to minimize the loss function value, as shown in Equation (4):
- (d)
- The regression tree was updated as in Equation (5):
- (3)
- Finally, the final regression model was obtained as in Equation (6):
2.4.2. Operation Framework
2.4.3. Preprocessing
2.5. Model Performance Indices
3. Results
3.1. Temporal Variation in Atmospheric Pollutants and Meteorological Parameters
3.1.1. Conventional Atmospheric Pollutants
3.1.2. VOCs
3.1.3. Meteorological Parameters
3.2. Observation-Based Correlation Analysis
3.3. Ozone Formation Rules Based on the GBDT Model
3.3.1. Model Performance
3.3.2. Ozone Formation Rules
- (1)
- Meteorological factors (RH and temperature)
- (2)
- Atmospheric pollutants (NO2 and PM2.5)
4. Discussion
4.1. Ozone Formation Mechanisms
4.2. Control Strategies for Ozone Pollution
4.3. Advantages, Disadvantages and Prospect
- (1)
- The investigation of ozone formation rules is conducted through a comprehensive analysis of pollutant emissions from sources and meteorological data using machine learning techniques.
- (2)
- The assessment of the impacts of dominant factors on ozone levels during days with high ozone pollution compared to those without pollution.
- (3)
- The exploration of the quantized effects of pollution prevention and control measures on ozone pollution.
5. Conclusions
- (1)
- The temporal variation of pollutants and meteorological parameters were comprehensively discussed. The ozone level exhibited a temporal variation consistent with temperature but opposite to that of NO2. RH showed stronger correlations than other influencing factors. Additionally, PM2.5 and VOCs, particularly alkenes and aromatics, were identified as unstable factors that also influenced ozone formation. Ozone pollution was found to be most prevalent during the months of April to October (M4–10).
- (2)
- The GBDT model was employed to investigate the ozone formation rules in M4–10. Results revealing the importance of permutation revealed that RH, NO2, temperature, and PM2.5 were the four most influential factors in ozone formation. The ozone level in the park was found to be more sensitive to meteorological parameters than atmospheric pollutants. An RH of 50% was identified as being most conducive to ozone accumulation. At RH level above 50%, every 1% increase in RH corresponded to a reduction in ozone concentration of approximately 1.01 μg·m−3 and 2.69 μg·m−3 at temperatures ranging from 5–20 °C and 25–37 °C, respectively. The increase in temperature resulted in elevated ozone concentrations, with the ozone concentration rising by 1.86 μg·m−3 and 3.46 μg·m−3 at RH levels of 20–50% for temperature ranges of 10–22 °C and 22–36 °C respectively, for every increment of 1 °C. The process of ozone generation resulting from NO2 depletion can be divided into a steady period, slow climbing period, rapid climbing period, and equilibrium period. The ratio of ozone production to NO2 consumption was 0.10 and 2.73 as the NO2 concentration decreased from 80 μg·m−3 to 52 μg·m−3 and from 41 μg·m−3 to 20 μg·m−3. Furthermore, the relationship between ozone concentration and PM2.5 concentration exhibited a non-monotonic pattern.
- (3)
- The mechanisms of four dominant factors influencing ozone formation were also discussed. Temperature and RH primarily regulate the direction of physical and chemical reactions involved in ozone formation, while NO2 and PM2.5 predominantly affect ozone through precursor emissions and chemical reactions. Comprehensive measures need to be implemented for the prevention and control of ozone pollution in industrial parks, including seasonal capacity adjustments and reduction of NOx and reactive VOC emissions. In future studies, it is essential to enhance the assessment of the impacts exerted by dominant factors on ozone levels during polluted days and non-polluted days while also quantifying the effects of diverse pollution prevention and control measures on ozone concentrations.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsu, C.Y.; Chiang, H.C.; Shie, R.H.; Ku, C.H.; Lin, T.Y.; Chen, M.J.; Chen, N.T.; Chen, Y.C. Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk. Environ. Pollut. 2018, 240, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiu, G.; Lu, Y.; Gao, S.; Li, L.; Chen, L.; Huang, Q.; Yang, Y.; Che, X.; Chen, X.; et al. Application of an emission profile-based method to trace the sources of volatile organic compounds in a chemical industrial park. Sci. Total Environ. 2021, 768, 144694. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.Y.; Lin, Y.C.; Zhang, Y.L. Characteristics and Source Apportionment of Atmospheric VOCs in the Nanjing Industrial Area in Autumn. China Environ. Sci. 2020, 41, 2565–2576. [Google Scholar]
- Cheng, N.N.; Jing, D.J.; Zhang, C.; Chen, Z.W.; Li, W.; Li, S.J.; Wang, Q.L. Process-based VOCs source profiles and contributions to ozone formation and carcinogenic risk in a typical chemical synthesis pharmaceutical industry in China. Sci. Total Environ. 2021, 752, 141899. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.L.; Li, S.J.; Dong, M.L.; Li, W.; Gao, X.; Ye, R.M.; Zhang, D.X. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan. Atmos. Environ. 2018, 182, 234–241. [Google Scholar] [CrossRef]
- Wei, W.; Lv, Z.F.; Li, Y.; Wang, L.T.; Cheng, S.Y.; Liu, H. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China. Atmos. Environ. 2018, 175, 44–53. [Google Scholar] [CrossRef]
- Benedict, K.B.; Prenni, A.J.; El-Sayed, M.M.H.; Hecobian, A.; Zhou, Y.; Gebhart, K.A.; Sive, B.C.; Schichtel, B.A.; Collett, J.L. Volatile organic compounds and ozone at four national parks in the southwestern United States. Atmos. Environ. 2020, 239, 117783. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Wang, L.; Liu, C.; Fan, S.; Chen, C.; Tong, Y.; Lin, X.; Gao, Z. Temporal characteristics of carbon dioxide and ozone over a rural-cropland area in the Yangtze River Delta of eastern China. Sci. Total Environ. 2021, 757, 143750. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.Y.; Zhang, L.Y.; Yao, C.H.; Xie, T.T.; Rao, L.F.; Lu, H.; Liu, X.C.; Wang, Q.Y.; Lu, S.L. Relationships between chemical elements of PM2.5 and O3 in Shanghai atmosphere based on the 1-year monitoring observation. J. Environ. Sci. 2020, 95, 49–57. [Google Scholar] [CrossRef]
- Pope, R.J.; Rap, A.; Pimlott, M.A.; Barret, B.; Le Flochmoen, E.; Kerridge, B.J.; Siddans, R.; Latter, B.G.; Ventress, L.J.; Boynard, A.; et al. Quantifying the tropospheric ozone radiative effect and its temporal evolution in the satellite era. Atmos. Chem. Phys. 2024, 24, 3613–3626. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Li, M.; Wan, X.; Zhao, X.W.; Wu, Y.; Liu, X.X.; Li, X. Important contributions of alkenes and aromatics to VOCs emissions, chemistry and secondary pollutants formation at an industrial site of central eastern China. Atmos. Environ. 2021, 244, 117927. [Google Scholar] [CrossRef]
- Ou, J.M.; Huang, Z.J.; Klimont, Z.; Jia, G.L.; Zhang, S.H.; Li, C.; Meng, J.; Mi, Z.F.; Zheng, H.R.; Shan, Y.L.; et al. Role of export industries on ozone pollution and its precursors in China. Nat. Commun. 2020, 11, 5492. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.Y.; Wang, C.; Zhu, B.; Chen, X.; Feng, N.; Yu, G.H.; Huang, X.F. Long-term observations of oxygenated volatile organic compounds (OVOCs) in an urban atmosphere in southern China, 2014–2019. Environ. Pollut. 2021, 270, 116301. [Google Scholar] [CrossRef] [PubMed]
- Hazarika, S.; Borah, P.; Prakash, A. The assessment of return probability of maximum ozone concentrations in an urban environment of Delhi: A Generalized Extreme Value analysis approach. Atmos. Environ. 2019, 202, 53–63. [Google Scholar] [CrossRef]
- Lv, D.Q.; Lu, S.H.; Tan, X.; Shao, M.; Xie, S.D.; Wang, L.F. Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds (VOCs) emitted from a local petroleum refinery in Shandong. Environ. Pollut. 2021, 274, 116589. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.L.; Sheng, D.P.; Wu, C.Z.; Zhao, J.K.; Li, F.L.; Yao, S.D.; Ou, X.J.; Li, W.; Chen, J.M. Exploring ozone formation rules and concentration response to the change of precursors based on artificial neural network simulation in a typical industrial park. Heliyon 2023, 9, e20125. [Google Scholar] [CrossRef] [PubMed]
- Jing, D.J.; Cheng, N.N.; Zhang, C.; Chen, Z.W.; Cai, X.N.; Li, S.J.; Zhao, J.K.; Wang, Q.L.; Li, W. A novel approach for VOC source apportionment combining characteristic factor and pattern recognition technology in a Chinese industrial area. J. Environ. Sci. 2022, 121, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Shukla, K.; Dadheech, N.; Kumar, P.; Khare, M. Regression-based flexible models for photochemical air pollutants in the national capital territory of megacity Delhi. Chemosphere 2021, 272, 129611. [Google Scholar] [CrossRef] [PubMed]
- Swartz, J.S.; Van Zyl, P.G.; Beukes, J.P.; Labuschagne, C.; Brunke, E.G.; Portafaix, T.; Galy-Lacaux, C.; Pienaar, J.J. Twenty-one years of passive sampling monitoring of SO2, NO2 and O3 at the Cape Point GAW station, South Africa. Atmos. Environ. 2020, 222, 117128. [Google Scholar] [CrossRef]
- Tao, H.R.; Xing, J.; Zhou, H.S.; Pleim, J.; Ran, L.M.; Chang, X.; Wang, S.X.; Chen, F.; Zheng, H.T.; Li, J.H. Impacts of improved modeling resolution on the simulation of meteorology, air quality, and human exposure to PM2.5, O3 in Beijing, China. J. Clean. Prod. 2020, 243, 118574. [Google Scholar] [CrossRef]
- Liang, C.J.; Cheng, K.L.; Liang, J.J. Quantification of the impact of the offshore petrochemical industrial park on ambient ozone using photochemical grid modeling and assessment monitoring. Environ. Sci. Pollut. Res. 2018, 25, 29752–29765. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Pang, X.B.; Lyu, Y.; Li, J.J.; Xing, B.; Chen, J.M.; Mao, Y.P.; Shang, Q.Q.; Wu, H.N. Characteristics and sources analysis of ambient volatile organic compounds in a typical industrial park: Implications for ozone formation in 2022 Asian Games. Sci. Total Environ. 2022, 848, 157746. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.T.; Xin, Y.Y.; Zhang, C.L.; Liu, J.F.; Liu, P.F.; He, X.W.; Mu, Y.J. Ambient volatile organic compounds in urban and industrial regions in Beijing: Characteristics, source apportionment, secondary transformation and health risk assessment. Sci. Total Environ. 2023, 855, 158873. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.G.; Yao, S.L.; Wang, D.F. Analysis of a typical ozone pollution event in Suzhou industrial park in spring. Adm. Technol. Environ. Monit. 2023, 35, 26–32. [Google Scholar]
- Li, J.; Zhai, C.Z.; Yu, J.Y.; Liu, R.L.; Li, Y.Q.; Zeng, L.M.; Xie, S.D. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci. Total Environ. 2018, 627, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Yin, S.S.; Yu, S.J.; Bai, L.; Wang, X.D.; Lu, X.; Ma, S.L. Characteristics of ozone pollution and the sensitivity to precursors during early summer in central plain, China. J. Environ. Sci. 2021, 99, 354–368. [Google Scholar] [CrossRef]
- Duo, B.; Cui, L.L.; Wang, Z.Z.; Li, R.; Zhang, L.W.; Fu, H.B.; Chen, J.M.; Zhang, H.F.; Qiong, A. Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors. J. Environ. Sci. 2018, 63, 28–42. [Google Scholar] [CrossRef]
- Do, K.T. Computational and Geo-Spatial Approaches to Investigate Multi-Scale Air Quality Trends in Southern California. Ph.D. Thesis, University of California, Riverside, CA, USA, 2023. [Google Scholar]
- Kaffashzadeh, N.; Solmon, F.; Shahbazi, H.; Bidokhti, A.A.A. Trend analysis of measured surface ozone at the megacity of Tehran for the summertime 2007–2021. Atmos. Environ. 2024, 321, 120289. [Google Scholar] [CrossRef]
- Lee, H.J.; Kuwayama, T.; FitzGibbon, M. Trends of ambient O3 levels associated with O3 precursor gases and meteorology in California: Synergies from ground and satellite observations. Remote Sens. Environ. 2023, 284, 113358. [Google Scholar] [CrossRef]
- Feng, R.; Wang, Q.; Huang, C.C.; Liang, J.; Luo, K.; Fan, J.R.; Zheng, H.J. Ethylene, xylene, toluene and hexane are major contributors of atmospheric ozone in Hangzhou, China, prior to the 2022 Asian Games. Environ. Chem. Lett. 2019, 17, 1151–1160. [Google Scholar] [CrossRef]
- Dang, R.J.; Liao, H.; Fu, Y. Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012–2017. Sci. Total Environ. 2021, 754, 142394. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.J.; Wang, S.J.; Xu, Q.; Ho, T. Characterization and sensitivity analysis on ozone pollution over the Beaumont-Port Arthur Area in Texas of USA through source apportionment technologies. Atmos. Res. 2021, 247, 105249. [Google Scholar] [CrossRef]
- Sun, L.; Xue, L.K.; Wang, Y.H.; Li, L.L.; Lin, J.T.; Ni, R.J.; Yan, Y.Y.; Chen, L.L.; Li, J.; Zhang, Q.Z.; et al. Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015. Atmos. Chem. Phys. 2019, 19, 1455–1469. [Google Scholar] [CrossRef]
- Zhan, Y.; Luo, Y.Z.; Deng, X.F.; Grieneisen, M.L.; Zhang, M.H.; Di, B.F. Spatiotemporal prediction of daily ambient ozone level across China using random forest for human exposure assessment. Environ. Pollut. 2018, 233, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.Y.; Xiao, Q.Y.; Meng, X.; Geng, G.N.; Wang, Y.J.; Lyapustin, A.; Gu, D.F.; Liu, Y. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. Environ. Pollut. 2018, 242, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Kaminska, J.A. The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wroclaw. J. Environ. Manag. 2018, 217, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.B.; Zhen, L.; Yao, Q.F.; Xiao, Y.P.; Liu, J.S.; Chen, B.H.; Xu, W. Understanding the spatial and seasonal variation of the ground-level ozone in Southeast China with an interpretable machine learning and multi-source remote sensing. Sci. Total Environ. 2024, 917, 170570. [Google Scholar] [CrossRef] [PubMed]
- Sayeed, A.; Choi, Y.; Eslami, E.; Lops, Y.; Roy, A.; Jung, J. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Netw. 2020, 121, 396–408. [Google Scholar] [CrossRef]
- Hassan, M.A.; Faheem, M.; Mehmood, T.; Yin, Y.; Liu, J. Assessment of mSeteorological and air quality drivers of elevated ambient ozone in Beijing via machine learning approach. Environ. Sci. Pollut. Res. 2023, 30, 104086–104099. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Luis, M.A.; Lauret, P. Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data. Int. J. Forecast. 2018, 34, 529–547. [Google Scholar] [CrossRef]
- Gu, Q.H.; Chang, Y.X.; Xiong, N.X.; Chen, L. Forecasting Nickel futures price based on the empirical wavelet transform and gradient boosting decision trees. Appl. Soft Comput. 2021, 109, 107472. [Google Scholar] [CrossRef]
- Zhang, T.N.; He, W.H.; Zheng, H.; Cui, Y.P.; Song, H.Q.; Fu, S.L. Satellite-based ground PM2.5 estimation using a gradient boosting decision tree. Chemosphere 2021, 268, 128801. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.Y.; Wang, H.; Li, S.L. Prediction of international roughness index based on stacking fusion model. Sustainability 2022, 14, 6949. [Google Scholar] [CrossRef]
- Cheng, N.N. Research on Ozone Emission Characteristics, Ozone Influencing Mechanism and Pollution Source Tracing in Typical Chemical Industrial Park. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2022. [Google Scholar]
- Jiang, X.Y. Risk Analysis of Chemical Terminal Operation in Zhapu Port Area of Jiaxing Port. Master’s Thesis, Zhejiang Ocean University, Zhoushan, China, 2023. [Google Scholar]
- Li, Q.Q.; Su, G.J.; Li, C.Q.; Liu, P.F.; Zhao, X.X.; Zhang, C.L.; Sun, X.; Mu, Y.J.; Wu, M.G.; Wang, Q.L.; et al. An investigation into the role of VOCs in SOA and ozone production in Beijing, China. Sci. Total Environ. 2020, 720, 137536. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Duan, F.K.; He, K.B.; Qin, Y.; Tong, D.; Geng, G.N.; Liu, X.Y.; Li, H.; Yang, S.; Ye, S.Q.; et al. Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016. J. Environ. Sci. 2019, 83, 8–20. [Google Scholar] [CrossRef]
- Xiao, C.C.; Chang, M.; Guo, P.K.; Gu, M.F.; Li, Y. Analysis of air quality characteristics of Beijing-Tianjin-Hebei and its surrounding air pollution transport channel cities in China. J. Environ. Sci. 2020, 87, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Statistical Learning Method, 2nd ed.; Tsinghua University Press: Beijing, China, 2019. [Google Scholar]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; Hoogh, K.D.; Donato, F.D.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M.; et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Ecology and Environmnet of the People’s Republic of China, Ambient air quality standards, 2012.
- Guan, Y.N.; Wang, L.; Wang, S.J.; Zhang, Y.H.; Xiao, J.Y.; Wang, X.L.; Duan, E.H.; Hou, L.A. Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang, China. J. Environ. Sci. 2020, 97, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Q.; Zhang, L.; Wen, Y.; Shi, K. Sensitivity analysis of O3 formation to its precursors-Multifractal approach. Atmos. Environ. 2021, 251, 118275. [Google Scholar] [CrossRef]
- Wang, M.; Chen, W.T.; Zhang, L.; Qin, W.; Zhang, Y.; Zhang, X.Z.; Xie, X. Ozone pollution characteristics and sensitivity analysis using an observation-based model in Nanjing, Yangtze River Delta Region of China. J. Environ. Sci. 2020, 93, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Y.H.; Yao, D.; Zhao, S.M.; Yang, S.H.; Ji, D.S.; Sun, J.; Wang, Y.H.; Liu, Z.R.; Hu, B.; et al. Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain. Environ. Pollut. 2020, 263, 114657. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.P.; Li, K.; Guo, H.; Morawska, L.; Zhou, B.N.; Zeren, Y.Z.; Jiang, F.; Chen, C.H.; Goldstein, A.H.; Xu, X.B.; et al. A synergistic ozone-climate control to address emerging ozone pollution challenges. One Earth 2023, 6, 964–977. [Google Scholar] [CrossRef]
- Li, L.; Yang, W.D.; Lu, S.; Wu, W.C.; Yuan, J.; Xie, S.Q.; Wu, D.; Li, M.; Cao, M.Y.; Cheng, P. Characteristics of ozone pollution and its relationship with meteorological factors in Jiaxing city. Acta Sci. Nat. Univ. Sunyatseni 2022, 61, 147–153. [Google Scholar]
- Wang, J.; Yao, Z.; Wang, M.Y.; Chen, S.M.; Long, T.; Wang, H.L.; Li, H.; Guo, X.R.; Hao, J.H.; Nie, L. VOCs Pollution Characteristics and Health Risk Assessment in Typical Industrial Parks in Beijing: Environmental Impact of High and New Technology Industries. Environ. Sci. 2024, 45, 2019–2027. [Google Scholar]
- Wang, L.; Zhao, Y.; Shi, J.S.; Ma, J.M.; Liu, X.Y.; Han, D.L.; Gao, H.; Huang, T. Predicting ozone formation in petrochemical industrialized Lanzhou city by interpretable ensemble machine learning. Environ. Pollut. 2023, 318, 120798. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yu, H.F.; Xu, B.; Wang, Z.Y.; Wang, F.; Wei, Y.T.; Liang, W.Q.; Liu, J.X.; Liang, D.N.; Feng, Y.C.; et al. Machine learning coupled structure mining method visualizes the impact of multiple drivers on ambient ozone. Commun. Earth Environ. 2023, 4, 265. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef]
- Rathore, A.; Gopikrishnan, G.S.; Kuttippurath, J. Changes in tropospheric ozone over India: Variability, long-term trends and climate forcing. Atmos. Environ. 2023, 309, 119959. [Google Scholar] [CrossRef]
- Ma, R.; Ban, J.; Wang, Q.; Zhang, Y.; Yang, Y.; He, M.Z.; Li, S.S.; Shi, W.J.; Li, T.T. Random forest model based fine scale spatiotemporal O3 trends in the Beijing-Tian-Hebei region in China, 2010 to 2017. Environ. Pollut. 2021, 276, 116635. [Google Scholar] [CrossRef] [PubMed]
- Won, W.S.; Oh, R.; Lee, W.; Ku, S.; Su, P.C.; Yoon, Y.J. Hygroscopic properties of particulate matter and effects of their interactions with weather on visibility. Sci. Rep. 2021, 11, 16401. [Google Scholar] [CrossRef]
- Ma, S.; Shao, M.; Zhang, Y.; Dai, Q.; Xie, M. Sensitivity of PM2.5 and O3 pollution episodes to meteorological factors over the North China Plain. Sci. Total Environ. 2021, 792, 148474. [Google Scholar] [CrossRef] [PubMed]
Monitoring Parameters | Detection Method | Detection Limitation/ Precision | Data Collected Spans | Temporal Resolution | |
---|---|---|---|---|---|
Atmospheric pollutants | O3 | absorption spectrophotometry | 0.05 ppb | January 2014~December 2018 | 1 h |
NOx | chemiluminescence | 0.4 ppb | January 2014~December 2018 | 1 h | |
SO2 | ultraviolet fluorescence | 0.5 ppb | January 2014~December 2018 | 1 h | |
CO | gas filter correlation analysis | 0.04 ppm | January 2014~December 2018 | 1 h | |
PM2.5 | β-ray turbidity | 4 μg·m−3 | January 2015~December 2018 | 1 h | |
VOCs | gas chromatography-mass spectrometry | 0.15 ppb | January 2018~December 2018 | 1 h | |
Meteorological parameters | Temperature | NTC negative temperature coefficient thermistor | ±0.2 °C | January 2018~December 2018 | 1 h |
RH | Capacitive sensing | ±2% RH | January 2018~December 2018 | 1 h | |
P | MEMS Capacitive sensing | ±0.5 hPa | January 2018~December 2018 | 1 h | |
WS | ultrasonic wave | ±0.3 m/s | January 2018~December 2018 | 1 h | |
WD | ultrasonic wave | RMSE < 3° (>1.0 m/s) | January 2018~December 2018 | 1 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, N.; Jing, D.; Gu, Z.; Cai, X.; Shi, Z.; Li, S.; Chen, L.; Li, W.; Wang, Q. Observation-Based Ozone Formation Rules by Gradient Boosting Decision Trees Model in Typical Chemical Industrial Parks. Atmosphere 2024, 15, 600. https://doi.org/10.3390/atmos15050600
Cheng N, Jing D, Gu Z, Cai X, Shi Z, Li S, Chen L, Li W, Wang Q. Observation-Based Ozone Formation Rules by Gradient Boosting Decision Trees Model in Typical Chemical Industrial Parks. Atmosphere. 2024; 15(5):600. https://doi.org/10.3390/atmos15050600
Chicago/Turabian StyleCheng, Nana, Deji Jing, Zhenyu Gu, Xingnong Cai, Zhanhong Shi, Sujing Li, Liang Chen, Wei Li, and Qiaoli Wang. 2024. "Observation-Based Ozone Formation Rules by Gradient Boosting Decision Trees Model in Typical Chemical Industrial Parks" Atmosphere 15, no. 5: 600. https://doi.org/10.3390/atmos15050600
APA StyleCheng, N., Jing, D., Gu, Z., Cai, X., Shi, Z., Li, S., Chen, L., Li, W., & Wang, Q. (2024). Observation-Based Ozone Formation Rules by Gradient Boosting Decision Trees Model in Typical Chemical Industrial Parks. Atmosphere, 15(5), 600. https://doi.org/10.3390/atmos15050600