Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles
Abstract
:1. Introduction
2. Methodology
3. Sources of Particulate Matter Emissions and Their Effect on Human Health
3.1. Health Risk Due to Fine and Ultrafine Particles
3.1.1. Evidence on Health Effects of Particulates from Vehicular Emissions
3.1.2. Evidence on Health Effects of Particulates from Coal Combustions
3.1.3. Evidence on Health Effects of Particulates from Diesel Combustions Exhaust
3.1.4. Evidence on Health Effects of Particulates from Household Wood Combustors’ Exhaust
3.1.5. Evidence on Health Effects of Particulates from Earth’s Crust Dust
3.2. Deposition of Ultrafine Particles in Lungs
4. Part II: Measurement of Particulate Matter
4.1. Collection of Particles
4.1.1. Collection/Sampling of Fine Particles
High-Volume Sampling Instruments
Small/Medium-Volume Sampling Instruments
High-Volume Cascade Impactor
Harvard Impactors
4.2. Collection of Ultrafine Particulate Matter
4.2.1. High-Volume Impactor Sampling Instruments
4.2.2. Cascade Impactors
5. Conclusions
6. Gaps in Knowledge
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, J.; Li, Y.; Peppers, J.; Wan, C.; Kado, N.Y.; Green, P.G.; Young, T.M.; Kleeman, M.J. Ultrafine particle emissions from natural gas, biogas, and biomethane combustion. Environ. Sci. Technol. 2018, 52, 13619–13628. [Google Scholar] [CrossRef]
- Obaidullah, M.; Bram, S.; Verma, V.K.; De Ruyck, J. A review on particle emissions from small scale biomass combustion. Int. J. Renew. Energy Res. 2012, 2, 147–159. [Google Scholar]
- Wilson, W.; Chow, J.C.; Claiborn, C.; Fusheng, W.; Engelbrecht, J.; Watson, J.G. Monitoring of particulate matter outdoors. Chemosphere 2002, 49, 1009–1043. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.H. Aerosol Sampling: Science, Standards, Instrumentation and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Harrison, R.M. Airborne particulate matter. Philos. Trans. R. Soc. A 2020, 378, 20190319. [Google Scholar] [CrossRef] [PubMed]
- Saraswati. Characterization of Primary and Secondary Airborne Particulates. In Airborne Particulate Matter: Source, Chemistry and Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 103–129. [Google Scholar]
- Kumar, P.; Wiedensohler, A.; Birmili, W.; Quincey, P.; Hallquist, M. Ultrafine particles pollution and measurements. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 73, pp. 369–390. [Google Scholar]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef] [PubMed]
- Grebot, B.; Sobey, M.; Green, C.; Scarbrough, T.; Corden, C.; Dore, C.; Salisbury, E.; Searl, A.; Harrison, R. Industrial Emissions of Nanomaterials and Ultrafine Particles: Final Report; AMEC Environment & Infrastructure UK Limited: London, UK, 2011. [Google Scholar]
- Harrison, R.M.; Beddows, D.C.; Dall’Osto, M. PMF analysis of wide-range particle size spectra collected on a major highway. Environ. Sci. Technol. 2011, 45, 5522–5528. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Georas, S.; Alexis, N.; Fritz, P.; Xia, T.; Williams, M.A.; Horner, E.; Nel, A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J. Allergy Clin. Immunol. 2016, 138, 386–396. [Google Scholar] [PubMed]
- Venecek, M.A.; Yu, X.; Kleeman, M.J. Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events. Atmos. Chem. Phys. 2019, 19, 9399–9412. [Google Scholar] [CrossRef]
- Geiser, M.; Rothen-Rutishauser, B.; Kapp, N.; Schürch, S.; Kreyling, W.; Schulz, H.; Semmler, M.; Hof, V.I.; Heyder, J.; Gehr, P. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 2005, 113, 1555–1560. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, M.K.; Srivastava, A.K. Ultrafine particles in urban ambient air and their health perspectives. Rev. Environ. Health 2013, 28, 117–128. [Google Scholar] [CrossRef]
- Flood-Garibay, J.A.; Angulo-Molina, A.; Méndez-Rojas, M.Á. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. Environ. Sci. Process. Impacts 2023, 25, 704–726. [Google Scholar] [CrossRef]
- Bramble, K.; Blanco, M.N.; Doubleday, A.; Gassett, A.J.; Hajat, A.; Marshall, J.D.; Sheppard, L. Exposure disparities by income, race and ethnicity, and historic redlining grade in the greater Seattle area for ultrafine particles and other air pollutants. Environ. Health Perspect. 2023, 131, 077004. [Google Scholar] [CrossRef] [PubMed]
- Frampton, M.W. Systemic and cardiovascular effects of airway injury and inflammation: Ultrafine particle exposure in humans. Environ. Health Perspect. 2001, 109, 529–532. [Google Scholar] [PubMed]
- Wang, W.; Lin, Y.; Yang, H.; Ling, W.; Liu, L.; Zhang, W.; Lu, D.; Liu, Q.; Jiang, G. Internal exposure and distribution of airborne fine particles in the human body: Methodology, current understandings, and research needs. Environ. Sci. Technol. 2022, 56, 6857–6869. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.; Kolosowska, N.; Saveleva, L.; Malm, T.; Kanninen, K.M. Corrigendum to “Impairment of mitochondrial function by particulate matter: Implications for the brain” [Neurochem. Int. 135 (May 2020) 104694]. Neurochem. Int. 2020, 139, 104776. [Google Scholar] [CrossRef]
- Han, D.; Chen, R.; Kan, H.; Xu, Y. The Bio-distribution, Clearance Pathways, and Toxicity Mechanisms of Ambient Ultrafine Particles. Eco-Environ. Health 2023, 2, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Wardoyo, A.Y.; Juswono, U.P.; Noor, J.A. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice. Toxicol. Rep. 2018, 5, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Z.; Shan, D.; Wu, Y.; Zhao, Y.; Li, C.; Shu, Y.; Linghu, X.; Wang, B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J. Environ. Sci. 2024, 135, 449–473. [Google Scholar] [CrossRef] [PubMed]
- Hamanaka, R.B.; Mutlu, G.M. Particulate matter air pollution: Effects on the cardiovascular system. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef]
- Polichetti, G.; Cocco, S.; Spinali, A.; Trimarco, V.; Nunziata, A. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular system. Toxicology 2009, 261, 1–8. [Google Scholar] [CrossRef]
- Bourdrel, T.; Bind, M.-A.; Béjot, Y.; Morel, O.; Argacha, J.-F. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 2017, 110, 634–642. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Jin, Y.; Li, J.; Li, W.; Wu, W. Impact of particulate air pollution on cardiovascular health. Curr. Allergy Asthma Rep. 2018, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, J.; Zhou, Y.; Xu, J.; Song, Q.; Peng, L.; Ye, X.; Yang, D. The impact of fine particulate matter on chronic obstructive pulmonary disease deaths in Pudong New Area, Shanghai, during a long period of air quality improvement. Environ. Pollut. 2024, 340, 122813. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.N.; Vu, T.D.; Vuong, N.L.; Pham, T.V.L.; Le, T.H.; Tran, M.D.; Nguyen, T.L.; Künzli, N.; Morgan, G. Effect of ambient air pollution on hospital admission for respiratory diseases in Hanoi children during 2007–2019. Environ. Res. 2024, 241, 117633. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Li, X.; Zhang, Q.; Tang, J.; Liu, Z.; Song, G.; Jiang, L.; Yang, F.; Zhou, J. Characterization of risks and pathogenesis of respiratory diseases caused by rural atmospheric PM2.5. Sci. Total Environ. 2024, 914, 169878. [Google Scholar] [CrossRef]
- Nazar, W.; Niedoszytko, M. Air pollution in Poland: A 2022 narrative review with focus on respiratory diseases. Int. J. Environ. Res. Public Health 2022, 19, 895. [Google Scholar] [CrossRef]
- Wang, D.; Dong, C.; Xu, H.; Xu, D.; Cheng, Y.; Shi, Y.; Han, F.; Chen, F.; Qian, H.; Ren, Y. Association between air pollutants, sources, and components of PM2.5 and pediatric outpatient visits for respiratory diseases in Shanghai, China. Atmos. Environ. 2023, 311, 119978. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.-H.; Kim, Y.-Y.; Park, H.-Y. Air pollution and central nervous system disease: A review of the impact of fine particulate matter on neurological disorders. Front. Public Health 2020, 8, 575330. [Google Scholar] [CrossRef]
- Bandyopadhyay, A. Neurological disorders from ambient (urban) air pollution emphasizing UFPM and PM 2.5. Curr. Pollut. Rep. 2016, 2, 203–211. [Google Scholar] [CrossRef]
- Wei, T.; Tang, M. Biological effects of airborne fine particulate matter (PM2.5) exposure on pulmonary immune system. Environ. Toxicol. Pharmacol. 2018, 60, 195–201. [Google Scholar] [CrossRef]
- Glencross, D.A.; Ho, T.-R.; Camina, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free. Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharma, A.; Thaker, R. Air pollutants and impairments of male reproductive health-an overview. Rev. Environ. Health 2021, 36, 565–575. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Liu, X.; Zhu, J.; Wang, F.; Li, B.; Li, L. Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere 2021, 264, 128436. [Google Scholar] [CrossRef]
- Mu, G.; Zhou, M.; Wang, B.; Cao, L.; Yang, S.; Qiu, W.; Nie, X.; Ye, Z.; Zhou, Y.; Chen, W. Personal PM2.5 exposure and lung function: Potential mediating role of systematic inflammation and oxidative damage in urban adults from the general population. Sci. Total Environ. 2021, 755, 142522. [Google Scholar] [CrossRef]
- Zhang, B.; Gong, X.; Han, B.; Chu, M.; Gong, C.; Yang, J.; Chen, L.; Wang, J.; Bai, Z.; Zhang, Y. Ambient PM2.5 exposures and systemic inflammation in women with early pregnancy. Sci. Total Environ. 2022, 829, 154564. [Google Scholar] [CrossRef]
- de Moura, F.R.; Machado, P.D.W.; Ramires, P.F.; Tavella, R.A.; Carvalho, H.; da Silva Júnior, F.M.R. In the line of fire: Analyzing burning impacts on air pollution and air quality in an Amazonian city, Brazil. Atmos. Pollut. Res. 2024, 15, 102033. [Google Scholar] [CrossRef]
- Manojkumar, N.; Srimuruganandam, B. Health effects of particulate matter in major Indian cities. Int. J. Environ. Health Res. 2021, 31, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, Z.; Xiang, Q.; Wang, W.; Huang, L.; Mao, F. Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. Int. J. Hyg. Environ. Health 2020, 224, 113418. [Google Scholar] [CrossRef] [PubMed]
- Slama, A.; Śliwczyński, A.; Woźnica, J.; Zdrolik, M.; Wiśnicki, B.; Kubajek, J.; Turżańska-Wieczorek, O.; Gozdowski, D.; Wierzba, W.; Franek, E. Impact of air pollution on hospital admissions with a focus on respiratory diseases: A time-series multi-city analysis. Environ. Sci. Pollut. Res. 2019, 26, 16998–17009. [Google Scholar] [CrossRef]
- Viitanen, A.-K.; Uuksulainen, S.; Koivisto, A.J.; Hämeri, K.; Kauppinen, T. Workplace measurements of ultrafine particles—A literature review. Ann. Work. Expo. Health 2017, 61, 749–758. [Google Scholar] [CrossRef]
- Heinzerling, A.; Hsu, J.; Yip, F. Respiratory health effects of ultrafine particles in children: A literature review. Water Air Soil Pollut. 2016, 227, 32. [Google Scholar] [CrossRef] [PubMed]
- e Oliveira, J.R.d.C.; Base, L.H.; de Abreu, L.C.; Filho, C.F.; Ferreira, C.; Morawska, L. Ultrafine particles and children’s health: Literature review. Paediatr. Respir. Rev. 2019, 32, 73–81. [Google Scholar]
- Ali, M.U.; Lin, S.; Yousaf, B.; Abbas, Q.; Munir, M.A.M.; Rashid, A.; Zheng, C.; Kuang, X.; Wong, M.H. Pollution characteristics, mechanism of toxicity and health effects of the ultrafine particles in the indoor environment: Current status and future perspectives. Crit. Rev. Environ. Sci. Technol. 2022, 52, 436–473. [Google Scholar] [CrossRef]
- Abdillah, S.F.; Wang, Y.-F. Ambient ultrafine particle (PM0.1): Sources, characteristics, measurements and exposure implications on human health. Environ. Res. 2023, 218, 115061. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G. Review of measurement methods and compositions for ultrafine particles. Aerosol Air Qual. Res. 2007, 7, 121–173. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, C.; Zhou, G.; Sun, J.; Liu, N.; Hsu, P.-C.; Wang, H.; Qiu, Y.; Zhao, J.; Wu, T. Morphology and property investigation of primary particulate matter particles from different sources. Nano Res. 2018, 11, 3182–3192. [Google Scholar] [CrossRef]
- Guevara, M. Emissions of Primary Particulate Matter. 2016. Available online: https://books.rsc.org/books/edited-volume/573/chapter-abstract/249498/Emissions-of-Primary-Particulate-Matter?redirectedFrom=fulltext (accessed on 1 March 2024).
- Tomasi, C.; Lupi, A. Primary and secondary sources of atmospheric aerosol. In Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–86. [Google Scholar]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Frampton, M.W.; Stewart, J.C.; Oberdörster, G.; Morrow, P.E.; Chalupa, D.; Pietropaoli, A.P.; Frasier, L.M.; Speers, D.M.; Cox, C.; Huang, L.-S. Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environ. Health Perspect. 2006, 114, 51–58. [Google Scholar] [CrossRef]
- Daigle, C.C.; Chalupa, D.C.; Gibb, F.R.; Morrow, P.E.; Oberdörster, G.; Utell, M.J.; Frampton, M.W. Ultrafine particle deposition in humans during rest and exercise. Inhal. Toxicol. 2003, 15, 539–552. [Google Scholar] [CrossRef]
- Frampton, M.W. Does inhalation of ultrafine particles cause pulmonary vasular effects in humans? Inhal. Toxicol. 2007, 19, 75–79. [Google Scholar] [CrossRef]
- Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 2006, 114, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Samet, J.M.; Rappold, A.; Graff, D.; Cascio, W.E.; Berntsen, J.H.; Huang, Y.-C.T.; Herbst, M.; Bassett, M.; Montilla, T.; Hazucha, M.J. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am. J. Respir. Crit. Care Med. 2009, 179, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Bräuner, E.V.; Forchhammer, L.; Møller, P.; Simonsen, J.; Glasius, M.; Wåhlin, P.; Raaschou-Nielsen, O.; Loft, S. Exposure to ultrafine particles from ambient air and oxidative stress–induced DNA damage. Environ. Health Perspect. 2007, 115, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Sioutas, C.; Malik, S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ. Health Perspect. 2005, 113, 934–946. [Google Scholar] [CrossRef]
- Li, N.; Sioutas, C.; Cho, A.; Schmitz, D.; Misra, C.; Sempf, J.; Wang, M.; Oberley, T.; Froines, J.; Nel, A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 2003, 111, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Nel, A. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; O’Neill, M.S.; Vokonas, P.S.; Sparrow, D.; Schwartz, J. Effects of air pollution on heart rate variability: The VA normative aging study. Environ. Health Perspect. 2005, 113, 304–309. [Google Scholar] [CrossRef]
- Timonen, K.L.; Vanninen, E.; De Hartog, J.; Ibald-Mulli, A.; Brunekreef, B.; Gold, D.R.; Heinrich, J.; Hoek, G.; Lanki, T.; Peters, A. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 332–341. [Google Scholar] [CrossRef]
- Zhang, S.; Breitner, S.; Pickford, R.; Lanki, T.; Okokon, E.; Morawska, L.; Samoli, E.; Rodopoulou, S.; Stafoggia, M.; Renzi, M. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. Environ. Pollut. 2022, 314, 120245. [Google Scholar] [CrossRef]
- Schneider, A.; Hampel, R.; Ibald-Mulli, A.; Zareba, W.; Schmidt, G.; Schneider, R.; Rückerl, R.; Couderc, J.P.; Mykins, B.; Oberdörster, G. Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease. Part. Fibre Toxicol. 2010, 7, 29. [Google Scholar] [CrossRef]
- Weichenthal, S.; Kulka, R.; Dubeau, A.; Martin, C.; Wang, D.; Dales, R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ. Health Perspect. 2011, 119, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Folino, A.F.; Scapellato, M.L.; Canova, C.; Maestrelli, P.; Bertorelli, G.; Simonato, L.; Iliceto, S.; Lotti, M. Individual exposure to particulate matter and the short-term arrhythmic and autonomic profiles in patients with myocardial infarction. Eur. Heart J. 2009, 30, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Zareba, W.; Couderc, J.P.; Oberdörster, G.; Chalupa, D.; Cox, C.; Huang, L.-S.; Peters, A.; Utell, M.J.; Frampton, M.W. ECG parameters and exposure to carbon ultrafine particles in young healthy subjects. Inhal. Toxicol. 2009, 21, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-C.; Chuang, K.-J.; Shiao, G.-M.; Lin, L.-Y. Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ. Health Perspect. 2004, 112, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- Kuwayama, T.; Ruehl, C.R.; Kleeman, M.J. Daily trends and source apportionment of ultrafine particulate mass (PM0.1) over an annual cycle in a typical California city. Environ. Sci. Technol. 2013, 47, 13957–13966. [Google Scholar] [CrossRef] [PubMed]
- Phairuang, W.; Hongtieab, S.; Suwattiga, P.; Furuuchi, M.; Hata, M. Atmospheric ultrafine particulate matter (PM0.1)-Bound carbon composition in bangkok, Thailand. Atmosphere 2022, 13, 1676. [Google Scholar] [CrossRef]
- Thuy, N.T.T.; Dung, N.T.; Sekiguchi, K.; Thuy, L.B.; Hien, N.T.T.; Yamaguchi, R. Mass concentrations and carbonaceous compositions of PM0.1, PM2.5, and PM10 at urban locations of Hanoi, Vietnam. Aerosol Air Qual. Res. 2018, 18, 1591–1605. [Google Scholar] [CrossRef]
- Heo, J.; Schauer, J.J.; Yi, O.; Paek, D.; Kim, H.; Yi, S.-M. Fine particle air pollution and mortality: Importance of specific sources and chemical species. Epidemiology 2014, 25, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Slezakova, K.; Castro, D.; Delerue–Matos, C.; da Conceição Alvim–Ferraz, M.; Morais, S.; do Carmo Pereira, M. Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks. Atmos. Res. 2013, 127, 141–147. [Google Scholar] [CrossRef]
- Hachem, M.; Loizeau, M.; Saleh, N.; Momas, I.; Bensefa-Colas, L. Short-term association of in-vehicle ultrafine particles and black carbon concentrations with respiratory health in Parisian taxi drivers. Environ. Int. 2021, 147, 106346. [Google Scholar] [CrossRef]
- Mbelambela, E.P.; Hirota, R.; Eitoku, M.; Muchanga, S.M.J.; Kiyosawa, H.; Yasumitsu-Lovell, K.; Lawanga, O.L.; Suganuma, N. Occupation exposed to road-traffic emissions and respiratory health among Congolese transit workers, particularly bus conductors, in Kinshasa: A cross-sectional study. Environ. Health Prev. Med. 2017, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yuan, D.; Ye, S.; Qi, P.; Fu, C.; Christiani, D.C. Health effects of occupational exposures to vehicle emissions in Shanghai. Int. J. Occup. Environ. Health 2001, 7, 23–30. [Google Scholar] [CrossRef]
- Bener, A.; Brebner, J.; Atta, M.N.; Gomes, J.; Ozkaragoz, F.; Cheema, M.Y. Respiratory symptoms and lung function in taxi drivers and manual workers. Aerobiologia 1997, 13, 11–15. [Google Scholar] [CrossRef]
- Patra, A.K.; Kolluru, S.S.R.; Penchala, A.; Kumar, S.; Mishra, N.; Sree, N.B.; Santra, S.; Dubey, R. Assessment of seasonal variability of PM, BC and UFP levels at a highway toll stations and their associated health risks. Environ. Res. 2024, 245, 118028. [Google Scholar]
- Jacobs, L.; Nawrot, T.S.; De Geus, B.; Meeusen, R.; Degraeuwe, B.; Bernard, A.; Sughis, M.; Nemery, B.; Panis, L.I. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study. Environ. Health 2010, 9, 64. [Google Scholar] [CrossRef]
- Strak, M.; Boogaard, H.; Meliefste, K.; Oldenwening, M.; Zuurbier, M.; Brunekreef, B.; Hoek, G. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup. Environ. Med. 2010, 67, 118–124. [Google Scholar] [CrossRef]
- Vinzents, P.S.; Møller, P.; Sørensen, M.; Knudsen, L.E.; Hertel, O.; Jensen, F.P.; Schibye, B.; Loft, S. Personal exposure to ultrafine particles and oxidative DNA damage. Environ. Health Perspect. 2005, 113, 1485–1490. [Google Scholar] [CrossRef]
- Zuurbier, M.; Hoek, G.; Oldenwening, M.; Meliefste, K.; van den Hazel, P.; Brunekreef, B. Respiratory effects of commuters’ exposure to air pollution in traffic. Epidemiology 2011, 22, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Lall, R.; Ito, K.; Thurston, G.D. Distributed lag analyses of daily hospital admissions and source-apportioned fine particle air pollution. Environ. Health Perspect. 2011, 119, 455–460. [Google Scholar] [CrossRef]
- Schwartz, J.; Laden, F.; Zanobetti, A. The concentration-response relation between PM (2.5) and daily deaths. Environ. Health Perspect. 2002, 110, 1025–1029. [Google Scholar] [CrossRef]
- Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Pérez, N.; Sunyer, J. The effects of particulate matter sources on daily mortality: A case-crossover study of Barcelona, Spain. Environ. Health Perspect. 2011, 119, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef]
- Mar, T.F.; Ito, K.; Koenig, J.Q.; Larson, T.V.; Eatough, D.J.; Henry, R.C.; Kim, E.; Laden, F.; Lall, R.; Neas, L. PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.; Ito, K.; Lall, R.; Burnett, R.; Turner, M.; Krewski, D.; Shi, Y.; Jerrett, M.; Gapstur, S.; Diver, W. NPACT study 4. mortality and long-term exposure to PM2.5 and its components in the American cancer society’s cancer prevention study II cohort. In National Particle Component Toxicity (NPACT) Initiative: Integrated Epidemiologic and Toxicologic Studies of the Health Effects of Particulate Matter Components; Health Effects Institute: Boston, MA, USA, 2013; pp. 127–166. [Google Scholar]
- Sarnat, J.A.; Marmur, A.; Klein, M.; Kim, E.; Russell, A.G.; Sarnat, S.E.; Mulholland, J.A.; Hopke, P.K.; Tolbert, P.E. Fine particle sources and cardiorespiratory morbidity: An application of chemical mass balance and factor analytical source-apportionment methods. Environ. Health Perspect. 2008, 116, 459–466. [Google Scholar] [CrossRef]
- Gilmour, M.I.; McGee, J.; Duvall, R.M.; Dailey, L.; Daniels, M.; Boykin, E.; Cho, S.-H.; Doerfler, D.; Gordon, T.; Devlin, R.B. Comparative toxicity of size-fractionated airborne particulate matter obtained from different cities in the United States. Inhal. Toxicol. 2007, 19, 7–16. [Google Scholar] [CrossRef]
- Gerlofs-Nijland, M.E.; Dormans, J.A.; Bloemen, H.J.; Leseman, D.L.; Boere, A.J.F.; Kelly, F.J.; Mudway, I.S.; Jimenez, A.A.; Donaldson, K.; Guastadisegni, C. Toxicity of coarse and fine particulate matter from sites with contrasting traffic profiles. Inhal. Toxicol. 2007, 19, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Vedal, S.; Campen, M.J.; McDonald, J.D.; Larson, T.V.; Sampson, P.D.; Sheppard, L.; Simpson, C.D.; Szpiro, A.A. National Particle Component Toxicity (NPACT) initiative report on cardiovascular effects. Res. Rep. (Health Eff. Inst.) 2013, 178, 5–8. [Google Scholar]
- Lippmann, M. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: Coherence and public health implications. Crit. Rev. Toxicol. 2014, 44, 299–347. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.V.; Sayyed, I.; Vedrantam, A.; Garg, A.; Bharti, S.; Shukla, M. State of the Art in Low-Temperature Combustion Technologies: HCCI, PCCI, and RCCI. In Advanced Combustion for Sustainable Transport; Springer: Berlin/Heidelberg, Germany, 2022; pp. 95–139. [Google Scholar]
- Shukla, M.; Chauhan, B.V.; Verma, S.; Dhar, A. Catalytic Direct Decomposition of NOx Using Non-Noble Metal Catalysts. Solids 2022, 3, 665–683. [Google Scholar] [CrossRef]
- Shukla, M.; Chauhan, B.V.; Bhaskar, T.; Dhar, A.; Vedratnam, A. Recycling of Platinum Group Metals and Alternative Catalysts for Catalytic Converters. In Transportation Systems Technology and Integrated Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 363–398. [Google Scholar]
- Garg, A.; Chauhan, B.V.; Vedrantam, A.; Jain, S.; Bharti, S. Potential and Challenges of Using Biodiesel in a Compression Ignition Engine. In Potential and Challenges of Low Carbon Fuels for Sustainable Transport; Springer: Berlin/Heidelberg, Germany, 2022; pp. 289–317. [Google Scholar]
- Bharti, S.; Chauhan, B.V.; Garg, A.; Vedrtnam, A.; Shukla, M. Potential of E-Fuels for Decarbonization of Transport Sector. In Greener and Scalable E-Fuels for Decarbonization of Transport; Springer: Berlin/Heidelberg, Germany, 2022; pp. 9–32. [Google Scholar]
- Chauhan, B.V.; Shukla, M.; Dhar, A. Effect of n-butanol and gasoline blends on si engine performance and emissions. In Alcohol as an Alternative Fuel for Internal Combustion Engines; Springer: Berlin/Heidelberg, Germany, 2021; pp. 175–190. [Google Scholar]
- Luo, Z.; Xing, R.; Huang, W.; Xiong, R.; Qin, L.; Ren, Y.; Li, Y.; Liu, X.; Men, Y.; Jiang, K. Impacts of household coal combustion on indoor ultrafine particles—A preliminary case study and implication on exposure reduction. Int. J. Environ. Res. Public Health 2022, 19, 5161. [Google Scholar] [CrossRef]
- Bond, T.C.; Covert, D.S.; Kramlich, J.C.; Larson, T.V.; Charlson, R.J. Primary particle emissions from residential coal burning: Optical properties and size distributions. J. Geophys. Res. Atmos. 2002, 107, ICC 9-1–ICC 9-14. [Google Scholar] [CrossRef]
- Wang, D.; Li, Q.; Shen, G.; Deng, J.; Zhou, W.; Hao, J.; Jiang, J. Significant ultrafine particle emissions from residential solid fuel combustion. Sci. Total Environ. 2020, 715, 136992. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Jiang, J.; Duan, L.; Hao, J. Evolution of submicrometer organic aerosols during a complete residential coal combustion process. Environ. Sci. Technol. 2016, 50, 7861–7869. [Google Scholar] [CrossRef]
- Weichenthal, S.; Bai, L.; Hatzopoulou, M.; Van Ryswyk, K.; Kwong, J.C.; Jerrett, M.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T.; Lu, H. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: A cohort study. Environ. Health 2017, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Shupler, M.; Hystad, P.; Birch, A.; Miller-Lionberg, D.; Jeronimo, M.; Arku, R.E.; Chu, Y.L.; Mushtaha, M.; Heenan, L.; Rangarajan, S. Household and personal air pollution exposure measurements from 120 communities in eight countries: Results from the PURE-AIR study. Lancet Planet. Health 2020, 4, e451–e462. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Zhang, L.; Li, G.; Du, W.; Chen, Y.; Cheng, H.; Tao, S.; Shen, G. Evaluating co-emissions into indoor and outdoor air of EC, OC, and BC from in-home biomass burning. Atmos. Res. 2021, 248, 105247. [Google Scholar] [CrossRef]
- Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostal, M.; Pastorkova, A.; Bastian, S.; Cyrys, J.; Zscheppang, A. Associations between ultrafine and fine particles and mortality in five central European cities—Results from the UFIREG study. Environ. Int. 2016, 88, 44–52. [Google Scholar] [CrossRef] [PubMed]
- EPA, US. Final Report: Integrated Science Assessment for Particulate Matter; US Environmental Protection Agency: Washington, DC, USA, 2009.
- Carnell, E.; Vieno, M.; Vardoulakis, S.; Beck, R.; Heaviside, C.; Tomlinson, S.; Dragosits, U.; Heal, M.R.; Reis, S. Modelling public health improvements as a result of air pollution control policies in the UK over four decades—1970 to 2010. Environ. Res. Lett. 2019, 14, 074001. [Google Scholar] [CrossRef]
- Ito, K.; Christensen, W.F.; Eatough, D.J.; Henry, R.C.; Kim, E.; Laden, F.; Lall, R.; Larson, T.V.; Neas, L.; Hopke, P.K. PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 300–310. [Google Scholar] [CrossRef]
- Munawer, M.E. Human health and environmental impacts of coal combustion and post-combustion wastes. J. Sustain. Min. 2018, 17, 87–96. [Google Scholar] [CrossRef]
- Feng, B.; Song, X.; Dan, M.; Yu, J.; Wang, Q.; Shu, M.; Xu, H.; Wang, T.; Chen, J.; Zhang, Y. High level of source-specific particulate matter air pollution associated with cardiac arrhythmias. Sci. Total Environ. 2019, 657, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Radić, S.; Medunić, G.; Kuharić, Ž.; Roje, V.; Maldini, K.; Vujčić, V.; Krivohlavek, A. The effect of hazardous pollutants from coal combustion activity: Phytotoxicity assessment of aqueous soil extracts. Chemosphere 2018, 199, 191–200. [Google Scholar] [CrossRef]
- Bureau, Beijing Environmental Protection. Source Appointment of PM 2.5 Pollution in Beijing, 2013; Bureau, Beijing Environmental Protection: Beijing, China, 2014.
- Yu, K.; Qiu, G.; Chan, K.-H.; Lam, K.-B.H.; Kurmi, O.P.; Bennett, D.A.; Yu, C.; Pan, A.; Lv, J.; Guo, Y. Association of solid fuel use with risk of cardiovascular and all-cause mortality in rural China. JAMA 2018, 319, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Folino, F.; Buja, G.; Zanotto, G.; Marras, E.; Allocca, G.; Vaccari, D.; Gasparini, G.; Bertaglia, E.; Zoppo, F.; Calzolari, V. Association between air pollution and ventricular arrhythmias in high-risk patients (ARIA study): A multicentre longitudinal study. Lancet Planet. Health 2017, 1, e58–e64. [Google Scholar] [CrossRef]
- Dong, W.; Pan, L.; Li, H.; Miller, M.; Loh, M.; Wu, S.; Xu, J.; Yang, X.; Shan, J.; Chen, Y. Association of size-fractionated indoor particulate matter and black carbon with heart rate variability in healthy elderly women in Beijing. Indoor Air 2018, 28, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Hatzopoulou, M.; Goldberg, M.S. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: A cross-over study. Part. Fibre Toxicol. 2014, 11, 70. [Google Scholar] [CrossRef]
- Baja, E.S.; Schwartz, J.D.; Wellenius, G.A.; Coull, B.A.; Zanobetti, A.; Vokonas, P.S.; Suh, H.H. Traffic-related air pollution and QT interval: Modification by diabetes, obesity, and oxidative stress gene polymorphisms in the normative aging study. Environ. Health Perspect. 2010, 118, 840–846. [Google Scholar] [CrossRef]
- Delfino, R.J.; Gillen, D.L.; Tjoa, T.; Staimer, N.; Polidori, A.; Arhami, M.; Sioutas, C.; Longhurst, J. Electrocardiographic ST-Segment Depression and Exposure to Traffic-Related Aerosols in Elderly Subjects with Coronary Artery Disease. Environ. Health Perspect. 2011, 119, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Stone, P.H.; Speizer, F.E.; Schwartz, J.D.; Coull, B.A.; Suh, H.H.; Nearing, B.D.; Mittleman, M.A.; Verrier, R.L.; Gold, D.R. T-wave alternans, air pollution and traffic in high-risk subjects. Am. J. Cardiol. 2009, 104, 665–670. [Google Scholar] [CrossRef]
- Berger, K.; Malig, B.J.; Hasheminassab, S.; Pearson, D.L.; Sioutas, C.; Ostro, B.; Basu, R. Associations of source-apportioned fine particles with cause-specific mortality in California. Epidemiology 2018, 29, 639–648. [Google Scholar] [CrossRef]
- Ostro, B.; Malig, B.; Hasheminassab, S.; Berger, K.; Chang, E.; Sioutas, C. Associations of source-specific fine particulate matter with emergency department visits in California. Am. J. Epidemiol. 2016, 184, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.D.; Ito, K.; Mar, T.; Christensen, W.F.; Eatough, D.J.; Henry, R.C.; Kim, E.; Laden, F.; Lall, R.; Larson, T.V. Workgroup report: Workshop on source apportionment of particulate matter health effects—Intercomparison of results and implications. Environ. Health Perspect. 2005, 113, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Ris, C. US EPA health assessment for diesel engine exhaust: A review. Inhal. Toxicol. 2007, 19, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Bunn, W.B., III; Hesterberg, T.W.; Valberg, P.A.; Slavin, T.J.; Hart, G.; Lapin, C.A. A reevaluation of the literature regarding the health assessment of diesel engine exhaust. Inhal. Toxicol. 2004, 16, 889–900. [Google Scholar] [CrossRef]
- McEntee, J.C.; Ogneva-Himmelberger, Y. Diesel particulate matter, lung cancer, and asthma incidences along major traffic corridors in MA, USA: A GIS analysis. Health Place 2008, 14, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.C.; Krewski, D.; Pope III, C.A.; Chen, Y.; Gapstur, S.M.; Thun, M.J. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am. J. Respir. Crit. Care Med. 2011, 184, 1374–1381. [Google Scholar] [CrossRef]
- Ciabattini, M.; Rizzello, E.; Lucaroni, F.; Palombi, L.; Boffetta, P. Systematic review and meta-analysis of recent high-quality studies on exposure to particulate matter and risk of lung cancer. Environ. Res. 2021, 196, 110440. [Google Scholar] [CrossRef]
- Attfield, M.D.; Schleiff, P.L.; Lubin, J.H.; Blair, A.; Stewart, P.A.; Vermeulen, R.; Coble, J.B.; Silverman, D.T. The diesel exhaust in miners study: A cohort mortality study with emphasis on lung cancer. J. Natl. Cancer Inst. 2012, 104, 869–883. [Google Scholar] [CrossRef]
- Zerboni, A.; Rossi, T.; Bengalli, R.; Catelani, T.; Rizzi, C.; Priola, M.; Casadei, S.; Mantecca, P. Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. Environ. Pollut. 2022, 297, 118767. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ciminieri, C.; Bos, I.S.T.; Woest, M.E.; D’Ambrosi, A.; Wardenaar, R.; Spierings, D.C.; Königshoff, M.; Schmidt, M.; Kistemaker, L.E. Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. Environ. Pollut. 2022, 305, 119292. [Google Scholar] [CrossRef]
- Park, E.; Kim, B.-Y.; Lee, S.; Son, K.H.; Bang, J.; Hong, S.H.; Lee, J.W.; Uhm, K.-O.; Kwak, H.-J.; Lim, H.J. Diesel exhaust particle exposure exacerbates ciliary and epithelial barrier dysfunction in the multiciliated bronchial epithelium models. Ecotoxicol. Environ. Saf. 2024, 273, 116090. [Google Scholar] [CrossRef] [PubMed]
- Rynning, I. Toxicity of Diesel Exhaust: Biological Effects of Occupational Exposure and Chemical In Vitro Transformation of Human Bronchial Epithelial Cells. 2019. Available online: https://www.duo.uio.no/handle/10852/68305 (accessed on 1 March 2024).
- Acciani, T.; Brandt, E.; Khurana Hershey, G.; Le Cras, T. Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clin. Exp. Allergy 2013, 43, 1406–1418. [Google Scholar] [CrossRef] [PubMed]
- Ema, M.; Naya, M.; Horimoto, M.; Kato, H. Developmental toxicity of diesel exhaust: A review of studies in experimental animals. Reprod. Toxicol. 2013, 42, 1–17. [Google Scholar] [CrossRef]
- Manners, S.; Alam, R.; Schwartz, D.A.; Gorska, M.M. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J. Allergy Clin. Immunol. 2014, 134, 63–72.e67. [Google Scholar] [CrossRef] [PubMed]
- Weldy, C.S.; Liu, Y.; Liggitt, H.D.; Chin, M.T. In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice. PLoS ONE 2014, 9, e88582. [Google Scholar] [CrossRef] [PubMed]
- Grange, S.; Salmond, J.; Trompetter, W.; Davy, P.; Ancelet, T. Effect of atmospheric stability on the impact of domestic wood combustion to air quality of a small urban township in winter. Atmos. Environ. 2013, 70, 28–38. [Google Scholar] [CrossRef]
- Ancelet, T.; Davy, P.K.; Trompetter, W.J.; Markwitz, A.; Weatherburn, D.C. Carbonaceous aerosols in a wood burning community in rural New Zealand. Atmos. Pollut. Res. 2013, 4, 245–249. [Google Scholar] [CrossRef]
- Benka-Coker, M.L.; Clark, M.L.; Rajkumar, S.; Young, B.N.; Bachand, A.M.; Brook, R.D.; Nelson, T.L.; Volckens, J.; Reynolds, S.J.; Wilson, A. Household air pollution from wood-burning cookstoves and C-reactive protein among women in rural Honduras. Int. J. Hyg. Environ. Health 2022, 241, 113949. [Google Scholar] [CrossRef] [PubMed]
- Glasius, M.; Ketzel, M.; Wåhlin, P.; Jensen, B.; Mønster, J.; Berkowicz, R.; Palmgren, F. Impact of wood combustion on particle levels in a residential area in Denmark. Atmos. Environ. 2006, 40, 7115–7124. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Duan, L.; Hao, J.; Nie, Y. Carbonaceous aerosol emissions from household biofuel combustion in China. Environ. Sci. Technol. 2009, 43, 6076–6081. [Google Scholar] [CrossRef]
- Molnár, P.; Sallsten, G. Contribution to PM 2.5 from domestic wood burning in a small community in Sweden. Environ. Sci. Process. Impacts 2013, 15, 833–838. [Google Scholar] [CrossRef]
- Trompetter, W.; Grange, S.; Davy, P.; Ancelet, T. Vertical and temporal variations of black carbon in New Zealand urban areas during winter. Atmos. Environ. 2013, 75, 179–187. [Google Scholar] [CrossRef]
- Town, G.I. The health effects of particulate air pollution-a Christchurch perspective. Biomarkers 2001, 6, 15–18. [Google Scholar] [CrossRef]
- Schwartz, J.; Slater, D.; Larson, T.V.; Pierson, W.E.; Koenig, J.O. Particulate air pollution and hospital emergency room. Am. Rev. Respir. Dis. 1993, 147, 826–831. [Google Scholar] [CrossRef]
- Naeher, L.P.; Brauer, M.; Lipsett, M.; Zelikoff, J.T.; Simpson, C.D.; Koenig, J.Q.; Smith, K.R. Woodsmoke health effects: A review. Inhal. Toxicol. 2007, 19, 67–106. [Google Scholar] [CrossRef]
- Hosgood, H.D., III; Boffetta, P.; Greenland, S.; Lee, Y.-C.A.; McLaughlin, J.; Seow, A.; Duell, E.J.; Andrew, A.S.; Zaridze, D.; Szeszenia-Dabrowska, N. In-home coal and wood use and lung cancer risk: A pooled analysis of the International Lung Cancer Consortium. Environ. Health Perspect. 2010, 118, 1743–1747. [Google Scholar] [CrossRef]
- Aung, T.W.; Baumgartner, J.; Jain, G.; Sethuraman, K.; Reynolds, C.; Marshall, J.D.; Brauer, M. Effect on blood pressure and eye health symptoms in a climate-financed randomized cookstove intervention study in rural India. Environ. Res. 2018, 166, 658–667. [Google Scholar] [CrossRef]
- Dohoo, C.; Guernsey, J.R.; Critchley, K.; VanLeeuwen, J. Pilot study on the impact of biogas as a fuel source on respiratory health of women on rural Kenyan smallholder dairy farms. J. Environ. Public Health 2012, 2012, 636298. [Google Scholar] [CrossRef]
- Pratiti, R.; Vadala, D.; Kalynych, Z.; Sud, P. Health effects of household air pollution related to biomass cook stoves in resource limited countries and its mitigation by improved cookstoves. Environ. Res. 2020, 186, 109574. [Google Scholar] [CrossRef]
- Jamali, T.; Fatmi, Z.; Shahid, A.; Khoso, A.; Kadir, M.M.; Sathiakumar, N. Evaluation of short-term health effects among rural women and reduction in household air pollution due to improved cooking stoves: Quasi experimental study. Air Qual. Atmos. Health 2017, 10, 809–819. [Google Scholar] [CrossRef]
- Wylie, B.J.; Kishashu, Y.; Matechi, E.; Zhou, Z.; Coull, B.; Abioye, A.I.; Dionisio, K.L.; Mugusi, F.; Premji, Z.; Fawzi, W. Maternal exposure to carbon monoxide and fine particulate matter during pregnancy in an urban Tanzanian cohort. Indoor Air 2017, 27, 136–146. [Google Scholar] [CrossRef]
- Du, B.; Gao, J.; Chen, J.; Stevanovic, S.; Ristovski, Z.; Wang, L.; Wang, L. Particle exposure level and potential health risks of domestic Chinese cooking. Build. Environ. 2017, 123, 564–574. [Google Scholar] [CrossRef]
- Boman, B.C.; Forsberg, A.B.; Järvholm, B.G. Adverse health effects from ambient air pollution in relation to residential wood combustion in modern society. Scand. J. Work. Environ. Health 2003, 29, 251–260. [Google Scholar] [CrossRef]
- McGowan, J.; Hider, P.; Chacko, E.; Town, G. Particulate air pollution and hospital admissions in Christchurch, New Zealand. Aust. New Zealand J. Public Health 2002, 26, 23–29. [Google Scholar] [CrossRef]
- Akintunde, J.K.; Abioye, J.B.; Ebinama, O.N. Potential protective effects of naringin on oculo-pulmonary injury induced by PM10 (wood smoke) exposure by modulation of oxidative damage and acetylcholine esterase activity in a rat model. Curr. Ther. Res. 2020, 92, 100586. [Google Scholar] [CrossRef]
- Seagrave, J.; McDonald, J.D.; Reed, M.D.; Seilkop, S.K.; Mauderly, J.L. Responses to subchronic inhalation of low concentrations of diesel exhaust and hardwood smoke measured in rat bronchoalveolar lavage fluid. Inhal. Toxicol. 2005, 17, 657–670. [Google Scholar] [CrossRef]
- Reed, M.; Gigliotti, A.; McDonald, J.; Seagrave, J.; Seilkop, S.; Mauderly, J. Health effects of subchronic exposure to environmental levels of diesel exhaust. Inhal. Toxicol. 2004, 16, 177–193. [Google Scholar] [CrossRef]
- Gieré, R.; Querol, X. Solid particulate matter in the atmosphere. Elements 2010, 6, 215–222. [Google Scholar] [CrossRef]
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. Atmos. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Wu, C.; Lin, Z.; Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 2020, 20, 10401–10425. [Google Scholar] [CrossRef]
- Chen, W.; Meng, H.; Song, H.; Zheng, H. Progress in dust modelling, global dust budgets, and soil organic carbon dynamics. Land 2022, 11, 176. [Google Scholar] [CrossRef]
- Tegen, I.; Werner, M.; Harrison, S.P.; Kohfeld, K.E. Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Derbyshire, E. Natural aerosolic mineral dusts and human health. In Essentials of Medical Geology: Revised Edition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 455–475. [Google Scholar]
- Van Der Does, M.; Knippertz, P.; Zschenderlein, P.; Giles Harrison, R.; Stuut, J.-B.W. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 2018, 4, eaau2768. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.-C.; Chan, C.-C.; Wang, P.-Y.; Lee, C.-T.; Cheng, T.-J. Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environ. Res. 2004, 95, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Zhang, Q. Oxidative damage of dust storm fine particles instillation on lungs, hearts and livers of rats. Environ. Toxicol. Pharmacol. 2006, 22, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Gyan, K.; Henry, W.; Lacaille, S.; Laloo, A.; Lamsee-Ebanks, C.; McKay, S.; Antoine, R.; Monteil, M.A. African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad. Int. J. Biometeorol. 2005, 49, 371–376. [Google Scholar] [CrossRef]
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme air pollution events from bushfires and dust storms and their association with mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Aghababaeian, H.; Ostadtaghizadeh, A.; Ardalan, A.; Asgary, A.; Akbary, M.; Yekaninejad, M.S.; Stephens, C. Global health impacts of dust storms: A systematic review. Environ. Health Insights 2021, 15, 11786302211018390. [Google Scholar] [CrossRef]
- Chan, C.-C.; Chuang, K.-J.; Chen, W.-J.; Chang, W.-T.; Lee, C.-T.; Peng, C.-M. Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environ. Res. 2008, 106, 393–400. [Google Scholar] [CrossRef]
- Yang, C.-Y. Effects of Asian dust storm events on daily clinical visits for conjunctivitis in Taipei, Taiwan. J. Toxicol. Environ. Health Part A 2006, 69, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Sprigg, W.A.; Nickovic, S.; Galgiani, J.N.; Pejanovic, G.; Petkovic, S.; Vujadinovic, M.; Vukovic, A.; Dacic, M.; DiBiase, S.; Prasad, A. Regional dust storm modeling for health services: The case of valley fever. Aeolian Res. 2014, 14, 53–73. [Google Scholar] [CrossRef]
- Goudie, A.S. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- De Longueville, F.; Ozer, P.; Doumbia, S.; Henry, S. Desert dust impacts on human health: An alarming worldwide reality and a need for studies in West Africa. Int. J. Biometeorol. 2013, 57, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Honda, Y.; Lim, Y.-H.; Guo, Y.L.; Hashizume, M.; Kim, H. Effect of Asian dust storms on mortality in three Asian cities. Atmos. Environ. 2014, 89, 309–317. [Google Scholar] [CrossRef]
- Merrifield, A.; Schindeler, S.; Jalaludin, B.; Smith, W. Health effects of the September 2009 dust storm in Sydney, Australia: Did emergency department visits and hospital admissions increase? Environ. Health 2013, 12, 32. [Google Scholar] [CrossRef]
- Chiu, H.-F.; Tiao, M.-M.; Ho, S.-C.; Kuo, H.-W.; Wu, T.-N.; Yang, C.-Y. Effects of Asian dust storm events on hospital admissions for chronic obstructive pulmonary disease in Taipei, Taiwan. Inhal. Toxicol. 2008, 20, 777–781. [Google Scholar] [CrossRef]
- Tam, W.W.; Wong, T.W.; Wong, A.H.; Hui, D.S. Effect of dust storm events on daily emergency admissions for respiratory diseases. Respirology 2012, 17, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Ghio, A.J.; Kummarapurugu, S.T.; Tong, H.; Soukup, J.M.; Dailey, L.A.; Boykin, E.; Ian Gilmour, M.; Ingram, P.; Roggli, V.L.; Goldstein, H.L. Biological effects of desert dust in respiratory epithelial cells and a murine model. Inhal. Toxicol. 2014, 26, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-C.; Pan, X.-C.; Kim, S.-Y.; Park, K.; Park, E.-J.; Jin, X.; Yi, S.-M.; Kim, Y.-H.; Park, C.-H.; Song, S. Asian dust storm and pulmonary function of school children in Seoul. Sci. Total Environ. 2010, 408, 754–759. [Google Scholar] [CrossRef]
- Yoo, Y.; Choung, J.T.; Yu, J.; Koh, Y.Y. Acute effects of Asian dust events on respiratory symptoms and peak expiratory flow in children with mild asthma. J. Korean Med. Sci. 2008, 23, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Chen, C.-S.; Lin, C.-L. The threat of Asian dust storms on asthma patients: A population-based study in Taiwan. Glob. Public Health 2014, 9, 1040–1052. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, K.K. Effects of Asian dust events on daily asthma patients in Seoul, Korea. Meteorol. Appl. 2014, 21, 202–209. [Google Scholar] [CrossRef]
- Cheng, M.-F.; Ho, S.-C.; Chiu, H.-F.; Wu, T.-N.; Chen, P.-S.; Yang, C.-Y. Consequences of exposure to Asian dust storm events on daily pneumonia hospital admissions in Taipei, Taiwan. J. Toxicol. Environ. Health Part A 2008, 71, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 2007, 20, 459–477. [Google Scholar] [CrossRef] [PubMed]
- Sajani, S.Z.; Miglio, R.; Bonasoni, P.; Cristofanelli, P.; Marinoni, A.; Sartini, C.; Goldoni, C.A.; De Girolamo, G.; Lauriola, P. Saharan dust and daily mortality in Emilia-Romagna (Italy). Occup. Environ. Med. 2011, 68, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Balásházy, U.; Hofmann, W. Particle deposition in airway bifurcations—I. Inspiratory flow. J. Aerosol Sci. 1993, 24, 745–772. [Google Scholar] [CrossRef]
- McClellan, R.O. Particle interactions with the respiratory tract. Lung Biol. Health Dis. 2000, 143, 3–56. [Google Scholar]
- Lekkas, T. Ultrafine particles (UFP) and health effects. Dangerous. Like no other PM? Review and analysis. Glob. NEST J. 2008, 10, 439–452. [Google Scholar]
- Cheng, Y.; Yeh, H.; Guilmette, R.; Simpson, S.; Cheng, K.; Swift, D. Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry. Aerosol Sci. Technol. 1996, 25, 274–291. [Google Scholar] [CrossRef]
- Cassee, F.; Morawska, L.; Peters, A.; Wierzbicka, A.; Buonanno, G.; Cyrys, J.; SchnelleKreis, J.; Kowalski, M.; Riediker, M.; Birmili, W. White Paper: Ambient Ultrafine Particles: Evidence for Policy Makers. 2019. Available online: https://portal.research.lu.se/en/publications/white-paper-ambient-ultrafine-particles-evidence-for-policy-maker (accessed on 1 March 2024).
- Presto, A.A.; Saha, P.K.; Robinson, A.L. Past, present, and future of ultrafine particle exposures in North America. Atmos. Environ. X 2021, 10, 100109. [Google Scholar] [CrossRef]
- Nishida, R.T.; Johnson, T.J.; Hassim, J.S.; Graves, B.M.; Boies, A.M.; Hochgreb, S. A simple method for measuring fine-to-ultrafine aerosols using bipolar charge equilibrium. ACS Sens. 2020, 5, 447–453. [Google Scholar] [CrossRef]
- Weichenthal, S.; Van Ryswyk, K.; Goldstein, A.; Bagg, S.; Shekkarizfard, M.; Hatzopoulou, M. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach. Environ. Res. 2016, 146, 65–72. [Google Scholar] [CrossRef]
- Xu, J.; Yang, W.; Bai, Z.; Zhang, R.; Zheng, J.; Wang, M.; Zhu, T. Modeling spatial variation of gaseous air pollutants and particulate matters in a Metropolitan area using mobile monitoring data. Environ. Res. 2022, 210, 112858. [Google Scholar] [CrossRef]
- Nussbaumer, T.; Czasch, C.; Klippel, N.; Johansson, L.; Tullin, C. Particulate emissions from biomass combustion in IEA countries. In Survey on Measurements and Emission Factors, International Energy Agency (IEA) Bioenergy Task; 2008; Volume 32, Available online: https://czysteogrzewanie.pl/wp-content/uploads/2019/04/nussbaumer_biomass_emissions.pdf (accessed on 1 March 2024).
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Hinds, W.C.; Zhu, Y. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Krecl, P.; Ström, J.; Johansson, C. Carbon content of atmospheric aerosols in a residential area during the wood combustion season in Sweden. Atmos. Environ. 2007, 41, 6974–6985. [Google Scholar] [CrossRef]
- Santoro, R.J.; Shaddix, C.R. Laser-induced incandescence. In Applied Combustion Diagnostics; 2002; pp. 252–286. Available online: https://books.google.co.uk/books?hl=en&lr=&id=p8p6EAAAQBAJ&oi=fnd&pg=PR11&dq=204.%09Hinds,+W.C.%3B+Zhu,+Y.+Aerosol+Technology:+Properties,+Behavior,+and+Measurement+of+Airborne+Particles%3B+John+Wiley+%26+Sons:+Hoboken,+NJ,+USA,+2022.&ots=4Ni_EtuV1r&sig=RUeJG7H770EzGbvCYxias9VVUx0&redir_esc=y#v=onepage&q&f=false (accessed on 1 March 2024).
- Mellon, D.; King, S.J.; Kim, J.; Reid, J.P.; Orr-Ewing, A.J. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy. J. Phys. Chem. A 2011, 115, 774–783. [Google Scholar] [CrossRef]
- Pettersson, A.; Lovejoy, E.R.; Brock, C.A.; Brown, S.S.; Ravishankara, A. Measurement of aerosol optical extinction at 532 nm with pulsed cavity ring down spectroscopy. J. Aerosol Sci. 2004, 35, 995–1011. [Google Scholar] [CrossRef]
- Jiang, R.; Bell, M.L. A comparison of particulate matter from biomass-burning rural and non-biomass-burning urban households in northeastern China. Environ. Health Perspect. 2008, 116, 907–914. [Google Scholar] [CrossRef]
- Elsasser, M.; Crippa, M.; Orasche, J.; DeCarlo, P.; Oster, M.; Pitz, M.; Cyrys, J.; Gustafson, T.; Pettersson, J.B.; Schnelle-Kreis, J. Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: Aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany. Atmos. Chem. Phys. 2012, 12, 6113–6128. [Google Scholar] [CrossRef]
- Daher, N.; Ning, Z.; Cho, A.K.; Shafer, M.; Schauer, J.J.; Sioutas, C. Comparison of the chemical and oxidative characteristics of particulate matter (PM) collected by different methods: Filters, impactors, and biosamplers. Aerosol Sci. Technol. 2011, 45, 1294–1304. [Google Scholar] [CrossRef]
- Costa, M.A.M.; Carvalho, J., Jr.; Neto, T.S.; Anselmo, E.; Lima, B.d.A.; Kura, L.; Santos, J. Real-time sampling of particulate matter smaller than 2.5 μm from Amazon forest biomass combustion. Atmos. Environ. 2012, 54, 480–489. [Google Scholar] [CrossRef]
- Chowdhury, Z.; Campanella, L.; Gray, C.; Al Masud, A.; Marter-Kenyon, J.; Pennise, D.; Charron, D.; Zuzhang, X. Measurement and modeling of indoor air pollution in rural households with multiple stove interventions in Yunnan, China. Atmos. Environ. 2013, 67, 161–169. [Google Scholar] [CrossRef]
- Prado, G.F.; Zanetta, D.M.T.; Arbex, M.A.; Braga, A.L.; Pereira, L.A.A.; de Marchi, M.R.R.; de Melo Loureiro, A.P.; Marcourakis, T.; Sugauara, L.E.; Gattás, G.J.F. Burnt sugarcane harvesting: Particulate matter exposure and the effects on lung function, oxidative stress, and urinary 1-hydroxypyrene. Sci. Total Environ. 2012, 437, 200–208. [Google Scholar] [CrossRef]
- Torvela, T.; Tissari, J.; Sippula, O.; Kaivosoja, T.; Leskinen, J.; Virén, A.; Lähde, A.; Jokiniemi, J. Effect of wood combustion conditions on the morphology of freshly emitted fine particles. Atmos. Environ. 2014, 87, 65–76. [Google Scholar] [CrossRef]
- Öztürk, E. Performance, emissions, combustion and injection characteristics of a diesel engine fuelled with canola oil–hazelnut soapstock biodiesel mixture. Fuel Process. Technol. 2015, 129, 183–191. [Google Scholar] [CrossRef]
- Budianto, A.; Wardoyo, A.; Dharmawan, H.; Nurhuda, M. Performance test of an aerosol concentration measurement system based on quartz crystal microbalance. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; p. 012033. [Google Scholar]
- Wentzel, M.; Gorzawski, H.; Naumann, K.-H.; Saathoff, H.; Weinbruch, S. Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J. Aerosol Sci. 2003, 34, 1347–1370. [Google Scholar] [CrossRef]
- Hossain, A.M.; Park, S.; Kim, J.-S.; Park, K. Volatility and mixing states of ultrafine particles from biomass burning. J. Hazard. Mater. 2012, 205, 189–197. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, F.; Collins, D.; Ren, J.; Liu, J.; Jiang, S.; Li, Z. Characterizing the volatility and mixing state of ambient fine particles in the summer and winter of urban Beijing. Atmos. Chem. Phys. 2022, 22, 2293–2307. [Google Scholar] [CrossRef]
- Zhu, W.; Zhou, M.; Cheng, Z.; Yan, N.; Huang, C.; Qiao, L.; Wang, H.; Liu, Y.; Lou, S.; Guo, S. Seasonal variation of aerosol compositions in Shanghai, China: Insights from particle aerosol mass spectrometer observations. Sci. Total Environ. 2021, 771, 144948. [Google Scholar] [CrossRef]
- Hamilton, F.W.; Gregson, F.K.; Arnold, D.T.; Sheikh, S.; Ward, K.; Brown, J.; Moran, E.; White, C.; Morley, A.J.; Bzdek, B.R. Aerosol emission from the respiratory tract: An analysis of aerosol generation from oxygen delivery systems. Thorax 2022, 77, 276–282. [Google Scholar] [CrossRef]
- Wu, T.; Boor, B.E. Urban aerosol size distributions: A global perspective. Atmos. Chem. Phys. 2021, 21, 8883–8914. [Google Scholar] [CrossRef]
- Kamilli, K.; Poulain, L.; Held, A.; Nowak, A.; Birmili, W.; Wiedensohler, A. Hygroscopic properties of the Paris urban aerosol in relation to its chemical composition. Atmos. Chem. Phys. 2014, 14, 737–749. [Google Scholar] [CrossRef]
- Hosseini, S.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, J.; Mahalingam, S.; Princevac, M.; Jung, H. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys. 2010, 10, 8065–8076. [Google Scholar] [CrossRef]
- Olfert, J.S.; Kulkarni, P.; Wang, J. Measuring aerosol size distributions with the fast integrated mobility spectrometer. J. Aerosol Sci. 2008, 39, 940–956. [Google Scholar] [CrossRef]
- Mariam; Joshi, M.; Khan, A.; Sapra, B. Improving the accuracy of charge size distribution measurement using electrical low pressure impactor. Part. Sci. Technol. 2022, 40, 290–295. [Google Scholar]
- Johnson, T.J.; Symonds, J.P.; Olfert, J.S. Mass–mobility measurements using a centrifugal particle mass analyzer and differential mobility spectrometer. Aerosol Sci. Technol. 2013, 47, 1215–1225. [Google Scholar] [CrossRef]
- Kulkarni, P.; Baron, P.A.; Willeke, K. Aerosol Measurement: Principles, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Coudray, N.; Dieterlen, A.; Roth, E.; Trouvé, G. Density measurement of fine aerosol fractions from wood combustion sources using ELPI distributions and image processing techniques. Fuel 2009, 88, 947–954. [Google Scholar] [CrossRef]
- Jayne, J.T.; Leard, D.C.; Zhang, X.; Davidovits, P.; Smith, K.A.; Kolb, C.E.; Worsnop, D.R. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 2000, 33, 49–70. [Google Scholar] [CrossRef]
- Kumar, P.; Kalaiarasan, G.; Porter, A.E.; Pinna, A.; Kłosowski, M.M.; Demokritou, P.; Chung, K.F.; Pain, C.; Arvind, D.; Arcucci, R. An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. Sci. Total Environ. 2021, 756, 143553. [Google Scholar] [CrossRef]
- Bisht, D.; Dumka, U.; Kaskaoutis, D.; Pipal, A.; Srivastava, A.; Soni, V.; Attri, S.; Sateesh, M.; Tiwari, S. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Sci. Total Environ. 2015, 521, 431–445. [Google Scholar] [CrossRef]
- Islam, N.; Dihingia, A.; Khare, P.; Saikia, B.K. Atmospheric particulate matters in an Indian urban area: Health implications from potentially hazardous elements, cytotoxicity, and genotoxicity studies. J. Hazard. Mater. 2020, 384, 121472. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, A.; Massey, D.D.; Masih, J.; Taneja, A. Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a semi arid region of India. Aerosol Air Qual. Res. 2014, 14, 1738–1751. [Google Scholar] [CrossRef]
- Habil, M.; Massey, D.; Taneja, A. Personal and ambient PM2.5 exposure assessment in the city of Agra. Data Brief 2016, 6, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Envirotech Instruments. APM 550 Impactor Based (USEPA Published Design). 2011. Available online: https://envirotechindia.com/apm-550/ (accessed on 30 January 2024).
- Mohanraj, R.; Solaraj, G.; Dhanakumar, S. Fine particulate phase PAHs in ambient atmosphere of Chennai metropolitan city, India. Environ. Sci. Pollut. Res. 2011, 18, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Grover, D.; Chaudhry, S. Ambient air quality changes after stubble burning in rice–wheat system in an agricultural state of India. Environ. Sci. Pollut. Res. 2019, 26, 20550–20559. [Google Scholar] [CrossRef] [PubMed]
- Fu, P. Causes of Neurological Disorders: Associations of pm2.5 Exposure and Intestinal Disorders. Doctoral Thesis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 2020. [Google Scholar]
- AMAE. ADS-2062E Intelligent Integrated Air Sampler. 2011. Available online: www.xianidea.com/en/product-25969-104208.html (accessed on 25 February 2024).
- Guo, X.; Chen, F.; Zhang, W. Pollution level, source, and health risk assessment of PAHs in food products and environmental media in Nantong, China: A pilot case. J. Food Compos. Anal. 2023, 123, 105624. [Google Scholar] [CrossRef]
- He, Q.; Zhao, W.; Luo, P.; Wang, L.; Sun, Q.; Zhang, W.; Yin, D.; Zhang, Y.; Cai, Z. Contamination profiles and potential health risks of environmentally persistent free radicals in PM2.5 over typical central Chinese megacity. Ecotoxicol. Environ. Saf. 2023, 264, 115437. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Li, R.; Chen, W.; Chung, C.K.A.; Cai, Z. The cellular effects of PM2.5 collected in Chinese Taiyuan and Guangzhou and their associations with polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and hydroxy-PAHs. Ecotoxicol. Environ. Saf. 2020, 191, 110225. [Google Scholar] [CrossRef]
- Fu, P.; Bai, L.; Cai, Z.; Li, R.; Yung, K.K.L. Fine particulate matter aggravates intestinal and brain injury and affects bacterial community structure of intestine and feces in Alzheimer’s disease transgenic mice. Ecotoxicol. Environ. Saf. 2020, 192, 110325. [Google Scholar] [CrossRef]
- Duan, J.; Hu, H.; Zhang, Y.; Feng, L.; Shi, Y.; Miller, M.R.; Sun, Z. Multi-organ toxicity induced by fine particulate matter PM2.5 in zebrafish (Danio rerio) model. Chemosphere 2017, 180, 24–32. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.; Luo, X.-S.; Huang, W.; Pang, Y.; Yang, J.; Tang, M.; Mehmood, T.; Zhao, Z. Toxicity assessment and heavy metal components of inhalable particulate matters (PM2.5 & PM10) during a dust storm invading the city. Process Saf. Environ. Prot. 2022, 162, 859–866. [Google Scholar]
- Sun, Q.; Alexandrova, O.A.; Herckes, P.; Allen, J.O. Quantitative extraction of organic tracer compounds from ambient particulate matter collected on polymer substrates. Talanta 2009, 78, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Wuhan Tianhong Environmental Protection Industry Co. Ltd. Th-1000cii Intelligent Large Flow Air Particle Sampler. 2010. Available online: https://www.thyb.cn/en/ProductCenter/list.aspx?itemid=547&lcid=45 (accessed on 29 February 2024).
- Zhang, Y.; Hu, H.; Shi, Y.; Yang, X.; Cao, L.; Wu, J.; Asweto, C.O.; Feng, L.; Duan, J.; Sun, Z. 1H NMR-based metabolomics study on repeat dose toxicity of fine particulate matter in rats after intratracheal instillation. Sci. Total Environ. 2017, 589, 212–221. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Yan, L.; Ding, W.; Liu, R.; Wang, H.; Wang, S. Analysis of Chemical Composition Characteristics and Source of PM2.5 under Different Pollution Degrees in Autumn and Winter of Liaocheng, China. Atmosphere 2021, 12, 1180. [Google Scholar] [CrossRef]
- Huang, X.; Tang, G.; Zhang, J.; Liu, B.; Liu, C.; Zhang, J.; Cong, L.; Cheng, M.; Yan, G.; Gao, W. Characteristics of PM2.5 pollution in Beijing after the improvement of air quality. J. Environ. Sci. 2021, 100, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wuhan Tianhong Environmental Protection Industry Co. Ltd. Tianhong TH-150C PM2.5 Sampler Instrument. 2010. Available online: https://www.thyb.cn/en/ProductCenter/list.aspx?itemid=550&lcid=45 (accessed on 27 February 2024).
- Ren, F.; Ji, C.; Huang, Y.; Aniagu, S.; Jiang, Y.; Chen, T. AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci. Total Environ. 2020, 719, 135097. [Google Scholar] [CrossRef]
- Bérubé, K.; Balharry, D.; Jones, T.; Moreno, T.; Hayden, P.; Sexton, K.; Hicks, M.; Merolla, L.; Timblin, C.; Shukla, A. Characterisation of Airborne Particulate Matter and Related Mechanisms of Toxicity: An Experimental Approach. Air Pollut. Health 2006, 3, 69. [Google Scholar]
- MLU, ChemVol Model 2400 High Volume Cascade Impactor. Instruments Systems Service Instruments Systems Service Instruments Systems Service 2002. Available online: https://d3pcsg2wjq9izr.cloudfront.net/files/2152/download/20923/2400chemtvol_e.pdf (accessed on 28 February 2024).
- Becker, S.; Dailey, L.A.; Soukup, J.M.; Grambow, S.C.; Devlin, R.B.; Huang, Y.-C.T. Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environ. Health Perspect. 2005, 113, 1032–1038. [Google Scholar] [CrossRef]
- O’Connor, I.; Allanic, A.; Hellebust, S.; Healy, D.; Healy, R.; Jordan, C.; Wenger, J.; Sodeau, J. Environmental linkage of in-port emissions of PM, their chemical analysis and health effects in Cork Harbour, Ireland. Available online: https://www.researchgate.net/profile/John-Wenger-3/publication/242365045_Environmental_linkage_of_in-port_emissions_of_PM_their_chemical_analysis_and_health_effects_in_Cork_Harbour_Ireland/links/00463528f1698bf44c000000/Environmental-linkage-of-in-port-emissions-of-PM-their-chemical-analysis-and-health-effects-in-Cork-Harbour-Ireland.pdf (accessed on 1 March 2024).
- Ghio, A.J.; Dailey, L.A.; Soukup, J.M.; Stonehuerner, J.; Richards, J.H.; Devlin, R.B. Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure. Part. Fibre Toxicol. 2013, 10, 25. [Google Scholar] [CrossRef]
- Mirowsky, J.; Hickey, C.; Horton, L.; Blaustein, M.; Galdanes, K.; Peltier, R.E.; Chillrud, S.; Chen, L.C.; Ross, J.; Nadas, A. The effect of particle size, location and season on the toxicity of urban and rural particulate matter. Inhal. Toxicol. 2013, 25, 747–757. [Google Scholar] [CrossRef]
- Becker, S.; Soukup, J. Coarse (PM 2.5–10), fine (PM 2.5), and ultrafine air pollution particles induce/increase immune costimulatory receptors on human blood-derived monocytes but not on alveolar macrophages. J. Toxicol. Environ. Health Part A 2003, 66, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Alexis, N.E.; Lay, J.C.; Zeman, K.; Bennett, W.E.; Peden, D.B.; Soukup, J.M.; Devlin, R.B.; Becker, S. Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J. Allergy Clin. Immunol. 2006, 117, 1396–1403. [Google Scholar] [CrossRef]
- Kim, Y.H.; Krantz, Q.T.; McGee, J.; Kovalcik, K.D.; Duvall, R.M.; Willis, R.D.; Kamal, A.S.; Landis, M.S.; Norris, G.A.; Gilmour, M.I. Chemical composition and source apportionment of size fractionated particulate matter in Cleveland, Ohio, USA. Environ. Pollut. 2016, 218, 1180–1190. [Google Scholar] [CrossRef]
- Hargrove, M.M.; McGee, J.K.; Gibbs-Flournoy, E.A.; Wood, C.E.; Kim, Y.H.; Gilmour, M.I.; Gavett, S.H. Source-apportioned coarse particulate matter exacerbates allergic airway responses in mice. Inhal. Toxicol. 2018, 30, 405–415. [Google Scholar] [CrossRef]
- Deiuliis, J.A.; Kampfrath, T.; Zhong, J.; Oghumu, S.; Maiseyeu, A.; Chen, L.C.; Sun, Q.; Satoskar, A.R.; Rajagopalan, S. Pulmonary T cell activation in response to chronic particulate air pollution. Am. J. Physiol. -Lung Cell. Mol. Physiol. 2012, 302, L399–L409. [Google Scholar] [CrossRef]
- Birger, N.; Gould, T.; Stewart, J.; Miller, M.R.; Larson, T.; Carlsten, C. The Air Pollution Exposure Laboratory (APEL) for controlled human exposure to diesel exhaust and other inhalants: Characterization and comparison to existing facilities. Inhal. Toxicol. 2011, 23, 219–225. [Google Scholar] [CrossRef]
- Tolocka, M.P.; Peters, T.M.; Vanderpool, R.W.; Chen, F.-L.; Wiener, R.W. On the modification of the low flow-rate PM10 dichotomous sampler inlet. Aerosol Sci. Technol. 2001, 34, 407–415. [Google Scholar] [CrossRef]
- Kavouras, I.G.; Koutrakis, P. Use of polyurethane foam as the impaction substrate/collection medium in conventional inertial impactors. Aerosol Sci. Technol. 2001, 34, 46–56. [Google Scholar] [CrossRef]
- Demokritou, P.; Gupta, T.; Koutrakis, P. A high volume apparatus for the condensational growth of ultrafine particles for inhalation toxicological studies. Aerosol Sci. Technol. 2002, 36, 1061–1072. [Google Scholar] [CrossRef]
- Gao, R.; Sang, N. Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. Environ. Pollut. 2020, 256, 113390. [Google Scholar] [CrossRef] [PubMed]
- Weggeberg, H.; Benden, T.F.; Steinnes, E.; Flaten, T.P. Element analysis and bioaccessibility assessment of ultrafine airborne particulate matter (PM0.1) using simulated lung fluid extraction (artificial lysosomal fluid and Gamble’s solution). Environ. Chem. Ecotoxicol. 2019, 1, 26–35. [Google Scholar] [CrossRef]
- Badran, G.; Ledoux, F.; Verdin, A.; Abbas, I.; Roumie, M.; Genevray, P.; Landkocz, Y.; Guidice, J.-M.L.; Garçon, G.; Courcot, D. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere 2020, 243, 125440. [Google Scholar] [CrossRef] [PubMed]
- Sotty, J.; Garcon, G.; Denayer, F.-O.; Alleman, L.-Y.; Saleh, Y.; Perdrix, E.; Riffault, V.; Dubot, P.; Lo-Guidice, J.-M.; Canivet, L. Toxicological effects of ambient fine (PM2.5-0.18) and ultrafine (PM0.18) particles in healthy and diseased 3D organo-typic mucocilary-phenotype models. Environ. Res. 2019, 176, 108538. [Google Scholar] [CrossRef] [PubMed]
- Setyawati, M.I.; Singh, D.; Krishnan, S.P.; Huang, X.; Wang, M.; Jia, S.; Goh, B.H.R.; Ho, C.G.; Yusoff, R.; Kathawala, M.H. Occupational inhalation exposures to nanoparticles at six Singapore printing centers. Environ. Sci. Technol. 2020, 54, 2389–2400. [Google Scholar] [CrossRef] [PubMed]
- Demokritou, P.; Lee, S.J.; Ferguson, S.T.; Koutrakis, P. A compact multistage (cascade) impactor for the characterization of atmospheric aerosols. J. Aerosol Sci. 2004, 35, 281–299. [Google Scholar] [CrossRef]
- Patel, P.; Aggarwal, S.G.; Tsai, C.-J.; Okuda, T. Theoretical and field evaluation of a PM2.5 high-volume impactor inlet design. Atmos. Environ. 2021, 244, 117811. [Google Scholar] [CrossRef]
- Billet, S.; Landkocz, Y.; Martin, P.J.; Verdin, A.; Ledoux, F.; Lepers, C.; André, V.; Cazier, F.; Sichel, F.; Shirali, P. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J. Environ. Sci. 2018, 71, 168–178. [Google Scholar] [CrossRef]
- The Staplex Company. Staplex Model TFIA Series High Volume Air Sampler; Staplex Company: New York, NY, USA, 2024; Available online: http://www.staplex.com/airsamplers/TFIA/index.html (accessed on 29 February 2024).
- Borgie, M.; Ledoux, F.; Verdin, A.; Cazier, F.; Greige, H.; Shirali, P.; Courcot, D.; Dagher, Z. Genotoxic and epigenotoxic effects of fine particulate matter from rural and urban sites in Lebanon on human bronchial epithelial cells. Environ. Res. 2015, 136, 352–362. [Google Scholar] [CrossRef]
- Campbell, A.; Daher, N.; Solaimani, P.; Mendoza, K.; Sioutas, C. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM). Toxicol. Vitr. 2014, 28, 1290–1295. [Google Scholar] [CrossRef]
- Li, R.; Yang, J.; Saffari, A.; Jacobs, J.; Baek, K.I.; Hough, G.; Larauche, M.H.; Ma, J.; Jen, N.; Moussaoui, N. Ambient ultrafine particle ingestion alters gut microbiota in association with increased atherogenic lipid metabolites. Sci. Rep. 2017, 7, 42906. [Google Scholar] [CrossRef] [PubMed]
- Bliss, B.; Tran, K.I.; Sioutas, C.; Campbell, A. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors. Environ. Res. 2018, 161, 314–320. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Balasubramanian, R. Effects of oxygenated fuel blends on the composition of size-segregated engine-out diesel particulate emissions and on the toxicity of quasi-ultrafine particles. Fuel 2018, 215, 161–170. [Google Scholar] [CrossRef]
- Ruusunen, J.; Tapanainen, M.; Sippula, O.; Jalava, P.I.; Lamberg, H.; Nuutinen, K.; Tissari, J.; Ihalainen, M.; Kuuspalo, K.; Mäki-Paakkanen, J. A novel particle sampling system for physico-chemical and toxicological characterization of emissions. Anal. Bioanal. Chem. 2011, 401, 3183–3195. [Google Scholar] [CrossRef]
- Dekati Ltd. Dekati Gravimetric Impactor DGI. 2024. Available online: https://dekati.com/products/dgi/ (accessed on 29 February 2024).
- Lamberg, H.; Nuutinen, K.; Tissari, J.; Ruusunen, J.; Yli-Pirilä, P.; Sippula, O.; Tapanainen, M.; Jalava, P.; Makkonen, U.; Teinilä, K. Physicochemical characterization of fine particles from small-scale wood combustion. Atmos. Environ. 2011, 45, 7635–7643. [Google Scholar] [CrossRef]
- Garra, P.; Leyssens, G.; Schonnenbeck, C.; Kohler, S.; Trouve, G.; Dieterlen, A.; Liaud, C.; Le Calvé, S.; Jaffrezo, J.-L.; Fiore, S. Collection of substantial amount of fine and ultrafine particles during the combustion of miscanthus and forest residues in small and medium scale boilers for morphological and chemical characterizations. In Proceedings of the 1st International Conference on Atmospheric Dust, Castellaneta Marina, Italy, 1–6 June 2014; pp. 168–173. [Google Scholar]
- Horák, J.; Kubonová, L.; Krpec, K.; Hopan, F.; Kubesa, P.; Kolonicný, J.; Plachá, D. A comparison of PAH emission sampling methods (cyclone, impactor) in particulate and gaseous phase. Aerosol Air Qual. Res. 2018, 18, 849–855. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Li, D.; Si, J.; Zhao, B.; Xu, M. Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer. Proc. Combust. Inst. 2015, 35, 2793–2800. [Google Scholar] [CrossRef]
- Yi, H.; Guo, X.; Hao, J.; Duan, L.; Li, X. Characteristics of inhalable particulate matter concentration and size distribution from power plants in China. J. Air Waste Manag. Assoc. 2006, 56, 1243–1251. [Google Scholar] [CrossRef]
- Seames, W.S.; Wendt, J.O. The partitioning of arsenic during pulverized coal combustion. Proc. Combust. Inst. 2000, 28, 2305–2312. [Google Scholar] [CrossRef]
- Marple, V.A. History of impactors—The first 110 years. Aerosol Sci. Technol. 2004, 38, 247–292. [Google Scholar] [CrossRef]
- Marple, V.; Olson, B.; Romay, F.; Hudak, G.; Geerts, S.M.; Lundgren, D. Second generation micro-orifice uniform deposit impactor, 120 MOUDI-II: Design, evaluation, and application to long-term ambient sampling. Aerosol Sci. Technol. 2014, 48, 427–433. [Google Scholar] [CrossRef]
- Allen, A.; Nemitz, E.; Shi, J.; Harrison, R.; Greenwood, J. Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos. Environ. 2001, 35, 4581–4591. [Google Scholar] [CrossRef]
- Fang, C.; McMurry, P.; Marple, V.; Rubow, K. Effect of flow-induced relative humidity changes on size cuts for sulfuric acid droplets in the microorifice uniform deposit impactor (MOUDI). Aerosol Sci. Technol. 1991, 14, 266–277. [Google Scholar] [CrossRef]
- Liu, C.-N.; Awasthi, A.; Hung, Y.-H.; Tsai, C.-J. Collection efficiency and interstage loss of nanoparticles in micro-orifice-based cascade impactors. Atmos. Environ. 2013, 69, 325–333. [Google Scholar] [CrossRef]
- McMurry, P.H.; Marple, V.A. Measurement of Sub 3 0 mu M Size-Resolved Aerosol Chemical Composition with Microorifice Uniform Deposit Impactors (Moudi). 1986. Available online: https://experts.umn.edu/en/publications/measurement-of-sub-3-0-mu-m-size-resolved-aerosol-chemical-compos (accessed on 1 March 2024).
- Kim, J.-E.; Lee, H.-Y. Aerosol Density Determined Using Micro-orifice Uniform Deposit Impactor and Aerosol Dust Monitors Data at Seoul. J. Korean Soc. Atmos. Environ. 2010, 26, 298–304. [Google Scholar] [CrossRef]
- Ji, J.-H.; Bae, G.-N.; Hwang, J. Observation Evaluation of Nozzle Clogging in a Micro-orifice Impactor Used for Atmospheric Aerosol Sampling. Part. Sci. Technol. 2006, 24, 85–96. [Google Scholar] [CrossRef]
- Ji, J.-H.; Bae, G.-N.; Hwang, J.-H. Effect of particle clogging in orifices on the particle collection efficiency of a micro-orifice impactor. Trans. Korean Soc. Mech. Eng. B 2003, 27, 197–205. [Google Scholar]
- Chang, M.; Kim, S.; Sioutas, C. Experimental studies on particle impaction and bounce: Effects of substrate design and material. Atmos. Environ. 1999, 33, 2313–2322. [Google Scholar] [CrossRef]
- Misra, C.; Singh, M.; Shen, S.; Sioutas, C.; Hall, P.M. Development and evaluation of a personal cascade impactor sampler (PCIS). J. Aerosol Sci. 2002, 33, 1027–1047. [Google Scholar] [CrossRef]
- Singh, M.; Misra, C.; Sioutas, C. Field evaluation of a personal cascade impactor sampler (PCIS). Atmos. Environ. 2003, 37, 4781–4793. [Google Scholar] [CrossRef]
- Chen, M.; Romay, F.J.; Marple, V.A. Design and evaluation of a low flow personal cascade impactor. Aerosol Sci. Technol. 2018, 52, 192–197. [Google Scholar] [CrossRef]
Type | PM Diameter (µm) | |
---|---|---|
Particulate contaminants | Soot | 0.01–0.8 |
Smog | 0.01–1 | |
Tobacco smoke | 0.01–1 | |
Fly ash | 1–100 | |
Cement dust | 8–100 | |
Biological contaminants | Viruses | 0.01–1 |
Bacteria and bacterial spores | 0.7–10 | |
Fungi and moulds | 2–12 | |
Allergens (dogs, cats, pollen, household dust) | 0.1–100 | |
Types of dust | Atmospheric dust | 0.01–1 |
Settling dust | 1–100 | |
Heavy dust | 100–1000 | |
Gases | Different gaseous contaminants | 0.0001–0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, B.V.S.; Corada, K.; Young, C.; Smallbone, K.L.; Wyche, K.P. Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles. Atmosphere 2024, 15, 572. https://doi.org/10.3390/atmos15050572
Chauhan BVS, Corada K, Young C, Smallbone KL, Wyche KP. Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles. Atmosphere. 2024; 15(5):572. https://doi.org/10.3390/atmos15050572
Chicago/Turabian StyleChauhan, Balendra V. S., Karina Corada, Connor Young, Kirsty L. Smallbone, and Kevin P. Wyche. 2024. "Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles" Atmosphere 15, no. 5: 572. https://doi.org/10.3390/atmos15050572
APA StyleChauhan, B. V. S., Corada, K., Young, C., Smallbone, K. L., & Wyche, K. P. (2024). Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 µm) and Ultrafine (UFP, PM0.1, ≤0.1 µm) Particles. Atmosphere, 15(5), 572. https://doi.org/10.3390/atmos15050572