Application of Effective Conversion Rates between NO and NO2 in a Standard Airport Dispersion Model System
Abstract
:1. Introduction
2. Foundations
2.1. Reaction Mechanism
2.2. Photolysis Frequency
2.3. LASREA
- LASAT carries out the dispersion calculation for the time interval 0 to without conversions, writes out the particle tables (locations, species quantities and other parameters) and pauses.
- LASREA reads the particle tables, calculates on the LASAT grid the current concentrations (volume average over a grid cell) and adds the pre-defined background concentrations.
- LASREA calculates for each grid cell the chemical reactions for the time interval 0 to T using a QSSA method.
- LASREA subtracts the background concentrations, distributes in each grid cell the calculated species quantities over the particles of the grid cell and writes out the particle tables.
- LASAT reads in the particles tables and continues the dispersion calculation for the time interval to T.
3. Effective Conversion Rates
3.1. Plume Calculations
3.2. Conversion Rates
3.3. Categorized Conversion Rates
4. Airport Application
4.1. LASPORT
4.2. Los Angeles International Airport
4.3. Results
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Aircraft |
APU | Auxiliary power unit |
AUSTAL | Ausbreitungsrechnung nach TA Luft |
CAEP | Committee on aviation environmental protection in ICAO |
EU | European Union |
GPU | Ground power unit |
GSE | Ground support equipment |
ICAO | International civil aviation organisation |
LASAT | Lagrangian simulation of aerosol transport |
LASPORT | LASAT for airports |
LASREA | LASAT and reactions |
LAX | Los Angeles international airport |
M1 | Reaction mechanism number 1 |
M2 | Reaction mechanism number 2 |
QSSA | Quasi stationary state approximation |
TA Luft | Technische Anleitung zur Reinhaltung der Luft |
VDI | Verein Deutscher Ingenieure |
References
- Seinfeld, J.; Pandis, S. Atmospheric Chemistry and Physics; Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- VDI 3783 Part 19. Environmental Meteorology—Reaction Mechanism for the Determination of the Nitrogen Dioxide Concentration; Beuth: Berlin, Germany, 2017; Available online: https://www.vdi.de/en/home/vdi-standards/details/vdi-3783-blatt-19-environmental-meteorology-reaction-mechanism-for-the-determination-of-the-nitrogen-dioxide-concentration (accessed on 10 April 2024).
- Janicke, U. Effektive Umsetzungsraten Zwischen NO und NO2 für die Verwendung in Ausbreitungsmodellen [Effective Conversion Rates between NO and NO2 for the Application in Dispersion Models]; Reports on Environmental Physics; Janicke Consulting: Überlingen, Germany, 2023; Volume 11/1, Available online: https://www.janicke.de/data/bzu/bzu-011-01.pdf (accessed on 10 April 2024).
- Program System AUSTAL; Federal Environment Agency: Dessau-Roßlau, Germany, 2024. Available online: https://www.umweltbundesamt.de/en/topics/air/air-quality-control-in-europe/overview (accessed on 10 April 2024).
- TA Luft 2021. Neufassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft—TA Luft) [New Version of the First General Administrative Regulation to the Federal Immission Control Act (Technical Instructions on Air Quality Control—TA Luft)], GMBl No. 48-54, 1050-1192. 2021. Available online: https://www.verwaltungsvorschriften-im-internet.de/bsvwvbund_18082021_IGI25025005.htm (accessed on 10 April 2024).
- Janicke, U.; Fleuti, E.; Fuller, I. LASPORT—A model system for airport-related source systems based on a Lagrangian particle model. In Proceedings of the 11th International Conference on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes, Cambridge, UK, 2–5 July 2007; Available online: https://www.harmo.org/Conferences/Proceedings/_Cambridge/publishedSections/Op352-356.pdf (accessed on 10 April 2024).
- Program System LASPORT. Janicke Consulting. Available online: https://www.janicke.de/en/lasport.html (accessed on 10 April 2024).
- VDI 3783 Part 18. Environmental Meteorology; Photolysis Frequencies for Calculating Pollutant Concentrations in the Atmosphere; Beuth: Berlin, Germany, 2017; Available online: https://www.vdi.de/en/home/vdi-standards/details/vdi-3783-blatt-18-environmental-meteorology-photolysis-frequencies-for-calculating-pollutant-concentrations-in-the-troposphere (accessed on 10 April 2024).
- Janicke, L. Particle simulation of inhomogeneous turbulent diffusion. In Air Pollution Modeling and Its Application II; De Wispelaere, C., Ed.; Springer: Boston, MA, USA, 1983; pp. 527–535. Available online: https://link.springer.com/chapter/10.1007/978-1-4684-7941-6_31 (accessed on 10 April 2024).
- VDI 3945 Part 3. Environmental Meteorology; Atmospheric Dispersion Models; Particle Model; Beut: Berlin, Germany, 2020; Available online: https://www.vdi.de/en/home/vdi-standards/details/vdi-3945-blatt-3-environmental-meteorology-atmospheric-dispersion-models-particle-model (accessed on 10 April 2024).
- Janicke, U.; Janicke, L. Lagrangian Particle Modeling for Regulatory Purposes; A Survey of Recent Developments in Germany. In Proceedings of the 11th International Conference on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes, Cambridge, UK, 2–5 July 2007; Available online: https://www.harmo.org/Conferences/Proceedings/_Cambridge/publishedSections/Op109-113.pdf (accessed on 10 April 2024).
- Middleton, D.; Jones, A.; Redington, A.; Thomson, D.; Sokhi, R.; Luhana, L.; Fisher, B. Lagrangian modelling of plume chemistry for secondary pollutants in large industrial plumes. Atmos. Environ. 2008, 42, 415–427. [Google Scholar] [CrossRef]
- Dabdub, D.; Seinfeld, J.H. Extrapolation techniques used in the solution of stiff ODEs associated with chemical kinetics of air quality models. Atmos. Environ. 1995, 29, 403–410. [Google Scholar] [CrossRef]
- VDI 3783 Part 8. Environmental Meteorology; Turbulence Parameters for Dispersion Models Supported by Measurement Data; Beuth: Berlin, Germany, 2017; Available online: https://www.vdi.de/en/home/vdi-standards/details/vdi-3783-blatt-8-environmental-meteorology-turbulence-parameters-for-dispersion-models-supported-by-measurement-data (accessed on 25 February 2024).
- Diegmann, V.; Pfäfflin, F.; Tautz, F.; Wursthorn, H.; Baier, M.; Uhrner, U. Update RLuS. Technical Publication, Research Project 02.0375; Federal Highway Research Institute: Bergisch Gladbach, Germany, 2021. [Google Scholar]
- Lorentz, H.; Schmidt, W.; Hellebrandt, P.; Ketzel, M.; Jakobs, H.; Janicke, U. Einfluss eines Grossflughafens auf zeitliche und räumliche Verteilungen der Aussenluftkonzentrationen von Ultrafeinstaub [Influence of a Major Airport on Temporal and Spatial Distributions of Outdoor Air Concentrations of Ultrafine Particulate Matter]; Report 14/2021; German Federal Environment Agency: Dessau-Roßlau, Germany, 2021. Available online: https://www.umweltbundesamt.de/en/press/pressinformation/ground-level-engine-emissions-are-greatest-source (accessed on 10 April 2024).
- Janicke, U.; Montreuil, E.; Ghedhaïfi, W.; Terrenoire, E. Time resolved aircraft dispersion modelling. In Proceedings of the 3rd ECATS Conference, Online, 13–15 October 2020. [Google Scholar]
- ICAO Environmental Report 2010. International Civil Aviation Organisation. Available online: https://www.icao.int/environmental-protection/pages/envreport10.aspx (accessed on 10 April 2024).
- ICAO Document 9889: Airport Air Quality Manual, 2nd ed.; International Civil Aviation Organisation: Montreal, QC, Canada, 2020; Available online: https://www.icao.int/publications/pages/publication.aspx?docnum=9889 (accessed on 10 April 2024).
- Arunachalam, S.; Blanchard, C.; Henry, R.; Tombach, I. LAX Air Quality and Source Apportionment Study; Final Report, Prepared and Submitted to Los Angeles World Airports; Tetra Tech Inc.: Pasadena, CA, USA, 2013. [Google Scholar]
- UK Department for Transport. Project for the Sustainable Development of Heathrow; Air Quality Technical Report; Department for Transport: London, UK, 2006.
- Durdina, L. Results from Aircaft Engine Measurements; Private Communication; ZHAW School of Engineering: Winterthur, Switzerland, 2023. [Google Scholar]
- European Commission. EU Air Quality Standards. Available online: https://environment.ec.europa.eu/topics/air/air-quality/eu-air-quality-standards_en (accessed on 10 April 2024).
- US Environmental Protection Agency. Criteria Air Pollutants, NAAQS Table. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 10 April 2024).
- European Commission. Revision of the Ambient Air Quality Directives. Available online: https://environment.ec.europa.eu/topics/air/air-quality/revision-ambient-air-quality-directives_en (accessed on 10 April 2024).
NO2 μg/m3 | O3 μg/m3 | Time | NOx μg/m3 | [NO2]/[NOx] |
---|---|---|---|---|
5 | 55 | day | 9.2 | 0.54 |
5 | 55 | night | 5.2 | 0.97 |
10 | 50 | day | 19.3 | 0.52 |
10 | 50 | night | 10.3 | 0.97 |
20 | 45 | day | 40.6 | 0.49 |
20 | 45 | night | 20.8 | 0.96 |
30 | 40 | day | 64.8 | 0.46 |
30 | 40 | night | 31.3 | 0.96 |
NO2 μg/m3 | Stability | Time | Ta min | Tb min |
---|---|---|---|---|
5 | stable | day | 32.9 | 38.6 |
5 | neutral | day | 6.0 | 7.0 |
5 | unstable | day | 7.0 | 8.2 |
5 | stable | night | 25.2 | 815.2 |
5 | neutral | night | 4.6 | 148.5 |
5 | unstable | night | 5.1 | 163.4 |
10 | stable | day | 37.0 | 40.1 |
10 | neutral | day | 6.9 | 7.5 |
10 | unstable | day | 8.1 | 8.8 |
10 | stable | night | 27.8 | 898.0 |
10 | neutral | night | 5.1 | 165.0 |
10 | unstable | night | 5.6 | 181.3 |
20 | stable | day | 42.6 | 40.9 |
20 | neutral | day | 8.4 | 8.1 |
20 | unstable | day | 9.8 | 9.4 |
20 | stable | night | 30.9 | 741.3 |
20 | neutral | night | 5.7 | 137.1 |
20 | unstable | night | 6.3 | 150.6 |
30 | stable | day | 49.9 | 42.5 |
30 | neutral | day | 10.4 | 8.9 |
30 | unstable | day | 12.2 | 10.4 |
30 | stable | night | 34.9 | 837.0 |
30 | neutral | night | 6.5 | 156.4 |
30 | unstable | night | 7.2 | 171.6 |
Station | Characteristics | Symbol |
---|---|---|
AQ | background, airport | – |
BN | road, airport | – |
BNR | airport, runway | orange, triangle |
BS | airport, road | green, triangle |
BSR | runway, airport | green, square |
CE | road, urban | – |
CE2 | urban | – |
CN | airport, urban | orange, circle |
CN2 | urban | – |
CS | road, airport | – |
CS2 | background, industry | – |
CT | taxiways, terminal | blue, triangle |
NR | runway, road | orange, square |
R405 | road, urban | – |
SRE | runway | red, square |
SRN | airport, urban | orange, star |
UW | background, airport | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicke, U. Application of Effective Conversion Rates between NO and NO2 in a Standard Airport Dispersion Model System. Atmosphere 2024, 15, 574. https://doi.org/10.3390/atmos15050574
Janicke U. Application of Effective Conversion Rates between NO and NO2 in a Standard Airport Dispersion Model System. Atmosphere. 2024; 15(5):574. https://doi.org/10.3390/atmos15050574
Chicago/Turabian StyleJanicke, Ulf. 2024. "Application of Effective Conversion Rates between NO and NO2 in a Standard Airport Dispersion Model System" Atmosphere 15, no. 5: 574. https://doi.org/10.3390/atmos15050574
APA StyleJanicke, U. (2024). Application of Effective Conversion Rates between NO and NO2 in a Standard Airport Dispersion Model System. Atmosphere, 15(5), 574. https://doi.org/10.3390/atmos15050574